Three Cups of Modern nmr spectroscopy espresso

Size: px
Start display at page:

Download "Three Cups of Modern nmr spectroscopy espresso"

Transcription

1 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

2 University of California, Irvine Understanding MR Spectroscopy James Keeler, University of Cambridge Sir Paul Callaghan ( ) Introductory MR & MRI

3 uclear magnetic moment Particle Mass Charge Spin (angular momentum) Magnetic dipole moment Electron Proton eutron eutrino Photon Graviton (?) Carbon-2

4 Angular momentum

5 Kerndipole Magnetic dipole moment DE ~ g E DE > DE F 9 F B 0 Die Stärke der Kernmagneten (gyromagnetisches Verhältnis g ) bestimmt ebenfalls die Größe der Energiedifferenz zwischen den beiden rientierungen.

6 uclear magnetic resonance spectroscopy B E ( ) E ( ) DE 2 B DE h Dv B 50 5 T Dv 2 h B 2000 z

7 Boltzmann distribution The potential energy of a molecule : E( h) m g h, The pressure of the idealize gass: P nk T, dp dn Let's assume for simplicity that T does not depend on h, then: k T. dh dh The pressure of a gas column of the height h on unit area is: P P m g nh we have dp m g ndh. 0 dp dn mg h E k T m g n n exp( ) exp( ) dh dh k T k T E E2 n( h) Aexp( ) and n( h2) Aexp( ) k T k T n( h ) E E2 exp( ) nh ( ) kt 2 n DE T n0 exp( k )

8 Boltzmann distribution B E ( ) E ( ) 5 B 50 T und T 300 K B 50 5 T

9 MR spectrometer B B 5 50 T 7 T 4 T 24 T Dv Mz 300 Mz 600 Mz 000 Mz

10 Superconducting magnet flüssiger Stickstoff T = C flüssiges elium T = C B 0

11 uclear magnetic resonance spectroscopy B E ( ) E ( )

12 MR spectrometer B 0 M M MR coil B voltage in the coil ref 0 FID = free induction decay time transmitting receiving transmitter receiver

13 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

14 B 0 E β ~ μ B 0 B RF E α ~ μ B 0

15 Longitudinal and transverse relaxation z z z z u u u u

16 Longitudinal and transverse relaxation

17 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

18 Chemical shift B z B z z DE B e z B e

19 Chemical shift C= C=C C 3 - C 3 - C 3 -C= C C 2 C 3 TMS 3 C ppm v C= Probe v Ref v Ref CDCl 3 C 3 - C C 2 C 3 TMS ppm

20 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

21 Scalar spin-spin coupling no coupling A M X J AM > J AX > J MX J AM J AM J AM J AM and J AX J AX J AX J AX J AM, J AX and J MX J MX J MX J MX J MX

22 A AX AX 2 AX 3 AX 4 Scalar spin-spin coupling Coupling with spins /2 Coupling with spins A AX AX 2 AX 3 AX o. o

23 2 J a,b,c,d a, Scalar spin-spin coupling C 4 ( ) 2.3 ppm 2 J -2 z ClC 3 ( ) 3.0 ppm 2 J -2 z

24 2 C= C 2 ( ) 5.3 ppm 3 J 2 z Scalar spin-spin coupling 2 J -2 z 3 J 9 z 0.20 ( 3) 6.3 ppm 3 J 8 z 3 ( 2) 5.5 ppm ( ) 5.4 ppm 2 J -2 z 2 3 J 5 z Cl

25 Scalar spin-spin coupling Me a b Br C a b C Cl Br c C 3 Cl c ppm

26 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

27 Pople nomenclature Cl δ( ) = 3.7 ppm δ( ) = 3.63 ppm 2 J = -9.4 z ABX

28 Second rder Effects in Coupled Systems ( ) 7.3 ppm 3 J 8 z 4 J 2 z 5 J z ( ) 7.2 ppm ( ) 8.6 ppm 3 J 5 z 4 J 2 z 5 J z J 8 z AA BB X ( ) 7.6 ppm

29 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

30 Proton exchange intermolecular case intramolecular case + ** k * + * k singlet () or () W o k/s ()() ()() ()() ()() triplet W o z 5 J 00 5 () () () () doublet /z doublet 0 J

31 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

32 Spin echoes ffset (chemical shift) J coupling refocused evolves for 2 ffset (chemical shift) J coupling refocused refocused ffset (chemical shift) J coupling evolves for 2 refocused

33 2D-MR t = 0,, 2, 3,, 00 preparation mixing 2 Full magnetization transfer preparation mixing o magnetization transfer preparation mixing 2 Partial magnetization transfer

34 2D-MR. EXSY (Exchange Spectroscopy) Chemical exchange between I and I 2 C 3 I T 360K C 3 I 2 C 3 I 2 C 3 I t = = 2sw 2ms 32 τ s

35 2D-MR. EXSY (Exchange Spectroscopy) τ opt T + k AB + k BA

36 L-istidin, MR in D 2

37 L-istidin, MR in D 2 3 J = 7.97 z 3 J = 4.72 z 2 J = 5.45 z 3 J = 4.72 z 2 J = 5.45 z 3 J = 7.97 z

38 L-istidin, MR in D 2 3 J = 7.97 z 3 J = 4.72 z 2 J = 5.45 z 3 J = 4.72 z 2 J = 5.45 z 3 J = 7.97 z

39 L-istidin, CSY MR in D 2 The intensity is proportional to sin Jt.

40 L-istidin, CSY MR in D 2 The intensity is proportional to sin Jt.

41 L-istidin, MR in D 2

42 L-istidin, MR in D 2

43 L-istidin, CSY MR in D 2

44 L-istidin, MR in D 2 J( 3 C) = z J( 3 C) = z J( 3 C) = z

45 L-istidin, DEPT-35 MR in D 2

46 L-istidin, SQC-DEPT MR in D 2 55 ppm 28 ppm, ppm 3 C, ppm 2.93 & ppm 37 ppm

47 L-istidin, MBC MR in D 2 28 ppm 55 ppm, ppm 3 C, ppm 2.93 & ppm 37 ppm 32 ppm 74 ppm

48 L-istidin, ESY MR in D 2

49 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

50 MR Chemical Shifts of Common Laboratory Solvents as Trace Impurities rganometallics 200, 29, (DI: 0.02/om0006e)

51 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

52 (-)-Borneol (+)-Borneol C 0 8 Spectrometer (6:44 min) MR (:25 min) DEPT-35 (3:37 min) CSY (0:33 min) SQC-DEPT (20: min) MBC (20:44 min) ESY (28:58 min) 3 C MR (55:05 min) (+)-Isoborneol (-)-Isoborneol

53 Karplus equation: Borneol J φ 2 cos 2 φ cos φ a 4a (-2a) 5 0 J(-2a) z (-2b) 25 0 J(-2b) 5 z (3-2a) 40 0 J(3-2a) 7 z (3-2b) 80 0 J(3-2b) z (3-4a) 40 0 J(3-4a) 7 z (3-4b) 80 0 J(3-4b) z 2b 4b

54 Karplus equation: Iso-Borneol J φ 2 cos 2 φ cos φ + 2 2a 3 4a (-2b) 6 0 J(-2b) z (-2a) 26 0 J(-2a) 5 z 2b 4b (3-2a) 45 0 J(3-2a) 7 z (3-2b) 75 0 J(3-2b) z (3-4a) 45 0 J(3-4a) 7 z (3-4b) 75 0 J(3-4b) z

55 MR in DMS

56 MR in DMS

57 MR in DMS

58 2 + (.56 ppm)? MR in CDCl 3

59 MR in CDCl 3 J = 0.00 z J = 3.48 z J =.80 z

60 J = 3.43 z J = 9.97 z MR in CDCl 3 J = 4.73 z J = 3.28 z

61 J = 3.43 z J = 9.97 z J = 4.73 z J = 3.28 z

62 MR in CDCl 3

63 ID, ppm Int C x Multiplet Commectivity 3 C x = Type J,z MBC CSY 3.97 ddd dddd

64 MR in CDCl (.56 ppm)? J = z

65 ID, ppm Int C x Multiplet Commectivity 3 C x = Type J,z MBC CSY 3.97 ddd dddd M 4.70 M 5.59 dd

66 MR in CDCl 3 J = 3.3 z J = 3.5 z

67 ID, ppm Int C x Multiplet Commectivity 3 C x = Type J,z MBC CSY 3.97 ddd dddd M 4.70 M 5.59 dd M dd s s s

68 CSY MR in CDCl ,9,

69 ID, ppm Int C x Multiplet Commectivity 3 C x = Type J,z MBC CSY 3.97 ddd , dddd M 4,6, M 3,5,6, dd ,4, M 3,4, dd s s s 3

70 DEPT-35 MR in CDCl3

71 SQC MR in CDCl

72 ID, ppm Int C x Multiplet Commectivity 3 C x = Type J,z MBC CSY 2,7 5 3,6 4, ddd dddd M 4,6, M 3,5,6, dd ,4, M 3,4, dd s s s 3

73 Borneol Iso-Borneol 3,6 2a 2b (-2a) 5 0 J(-2a) z (-2b) 25 0 J(-2b) 5 z (3-2a) 40 0 J(3-2a) 7 z (3-2b) 80 0 J(3-2b) z (3-4a) 40 0 J(3-4a) 7 z (3-4b) 80 0 J(3-4b) z 3 4b 4a 2,7 4,6 5 J(,2) = 0 z J(,7) = 3.5 z J(2,5) = 4.7 z J(7,5) = 0 z J(5,4) = 4.5 z J(5,6) = 0 z 2a 2b 4b 3 (3-2a) 45 0 J(3-2a) 7 z (3-2b) 75 0 J(3-2b) z 4a (-2b) 6 0 J(-2b) z (-2a) 26 0 J(-2a) 5 z (3-4a) 45 0 J(3-4a) 7 z (3-4b) 75 0 J(3-4b) z

74 MBC MR in CDCl 3 9 0,

75 2, ,6 4,6 ID, ppm Int C x Multiplet Commectivity 3 C x = Type J,z MBC CSY ddd dddd С,3C, 5C, 6C, 9C C, 3C, 4C, 6C M C, 3C, 4C, 6C, 7C M C, 2C, 3C, 5C, 6C ,6,0 3,5,6, dd C, 5C, 6C, 0C, C 2,4, M C, 2C, 3C, 4C, 5C, 6C, 7C, 9C 3,4, dd C, 3C, 4C, 7C s 3C, 7C s 3C, 7C s C, 5C, 6C, 7C, C 3

76 ESY MR in CDCl 3 0 3,6,Me 2,Me 2,7 5 4,6,2 2,Me,Me

77 Borneol 3,6 2,7 5 4,6 5 Iso-Borneol 2 7 E: -2, -Me, 2-Me

78 Solvent Effect D 2 CDCl 3 DMS

79 Solvent Effect MR in CDCl 3 J = 0.00 z J = 3.48 z J =.8 z MR in D 2 J = 0.6 z J = 3.48 z J = 2.2 z

80 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

81 artificial sweetener Leichte Suesse kaufland : atriumcyclamat, Saccharin, natriumhydrogencarbonat, lactose, natriumcitrate MR LeiChTe Suesse kaufland in D 2 MR Saccharose in D 2

82

83

84 artificial sweetener Leichte Suesse kaufland : Part Saccharin (4 mg/tablet): i times sweeter than Sucrose. ii. 5 mg/kg body-weight (ca. 60 Tabletten, 275 g Sucrose). iii. Do not provoke tooth decay. iv. as a bitter taste. 2 Parts atriumcyclamate (40 mg/tablet): i. 30 times sweeter than Sucrose. ii. 7 mg/kg body-weight (ca. 9 Tablet, 39 g Sucrose). iii. Provoke cancer? 0.05 Parts Lactose (a table top sweetene?): i. Milk sugar, 6 times less sweet than Sucrose..4 Parts atriumcitrate (shelf-life extension?): i. Acidity regulator. ii. Contributing a tart flavor. 4 Parts Sodium bicarbonate (shelf-life extension?): i. Baking soda. (dissolution assistance?)

85 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

86 Chemical shift anisotropy B 0 B induced B 0 B induced contribution of electrons in contribution of electrons in F contribution of electrons in contribution of electrons in F B 0 F F

87 Chemical shift anisotropy [(C) 5 CrCCCr(C) 5 ] AsPh 4 + B o II iso 2II 3 iso ppm reference: solid 5 4 Cl -.Benedict,..Limbach, M. Wehlan, W. P. Fehlhammer,. S. Golubev, R. Janoschek, J. Am. Chem. Soc. 998, 20, 2939

88 Magic-angle-spinning 2 3cos 0, 5444'

89 Magic-angle-spinning [(C) 5 CrCCCr(C) 5 ] B o r AsPh cos ' B o II iso 2II 3 iso ppm reference: solid 5 4 Cl -.Benedict,..Limbach, M. Wehlan, W. P. Fehlhammer,. S. Golubev, R. Janoschek, J. Am. Chem. Soc. 998, 20, 2939

90 MAS sidebands

91 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

92 Internal Spin Interactions: Dipolar Coupling B 0 2 E d 2 2 3cos 3 r B 0 2 r E d 2 2 3cos 3 r r B 0 r 2 E d 2 2 3cos 3 r B 0 r 2 E d 2 2 3cos 3 r

93 Internal Spin Interactions: Dipolar Coupling B 0 2 B 0 2 r r nucleus 2 in 90 D gg r 2 3 nucleus 2 in ' 0 0 Pake doublet

94 Internal Spin Interactions: Dipolar Coupling B 0 2 E d 2 2 3cos 3 r B 0 2 r Ed 0 E d 2 2 3cos 3 r r B 0 r 2 Ed 0 E d 2 2 3cos 3 r B 0 r 2 E d 2 2 3cos 3 r

95 Internal Spin Interactions: Dipolar Coupling E d 2 3 3cos r 2 B r E d 2 3 r E d 2 3 r B Ed 0 2 r E d r E d r

96 Internal Spin Interactions: Dipolar Coupling D gg r cos 0 m m 5444' / kz

97 - 5 and 2-5 dipolar interaction without CSA D 3 C r =.096 Å 3 C r D =.083 Å D 3 C 5 C l 3 C 5 D C l D 3 C 3 C slow spinning B 0 r 5444' static B { 2 } 0 kz 0 Ch. oelger,..limbach, J. Phys.Chem., 994, 98, kz 4

98 MAS 0 kz Ph. Lorente, I.G.Shenderovich, G.Buntkowsky,.S.Golubev, G.S.Denisov,.. Limbach, Magn. Reson. Chem. 200, 39, S8

99 5 CSA of solid : complexes of collidine- 5 with acids t r r t t r r t ( 5 )/ppm iso ( 5 )/ppm Ph. Lorente, I.G.Shenderovich, G.Buntkowsky,.S.Golubev, G.S.Denisov,.. Limbach, Magn. Reson. Chem. 200, 39, S8

100 5-2 Dipolar Coupling Ph. Lorente, I.G.Shenderovich, G.Buntkowsky,.S.Golubev, G.S.Denisov,.. Limbach, Magn. Reson. Chem. 200, 39, S8 MAS /D isotop effect on chemical shift static chemical shift tensor 5-2 dipolar coupling D D R -3 D

101 5 MR Chemical Shift as a Measure of Acidity" R /Å pk a 5 ( 5 ) /ppm ( 5 ) /ppm Ph. Lorente, I.G.Shenderovich, G.Buntkowsky,.S.Golubev, G.S.Denisov,.. Limbach, Magn. Reson. Chem. 200, 39, S8

102 Cross polarisation (CP) before contact pulse rotating frame 0 initial states z M B z during 90 pulse z M after 90 pulse z M u u u z z z 5 rotating frame 0 M M M u u u

103 Cross polarisation (CP) contact pulse in the beginning of and 5 contact pulses z at the end of and 5 contact pulses z u B M * * u B M * * z z 5 u M B * * 5 u M B * * g B g B artmann-ahn condition

104 3 3 cellulose LysCel a b 3 3 cellulose LysCel a b Wet paper tears easily 30% wet-tensile-strength improvement Cellulose Grafted with Aminocarboxyl Groups R. Manriquez, F.A. Lopez-Dellamary, J. Frydel, T. Emmler,. Breitzke, G. Buntkowsky,.-. Limbach, I.G. Shenderovich J. Phys. Chem. B 2009, 3, 934.

105 a p c L-Leucine Lyophilized at Different p 5 b 3 C L-leucine + 3 R R ppm a 2 d neutral dimer cation + 3 R cation cation/ neutral zwitterionic 5 dimer 2 anion zwitterionic netwo cation d neutral anion R = (C + 3 ) 2 C-C 2 3 Covalent bonds R (cross linking) LysCell 3 R R C R b R neutral R ne R = (C 3 ) 2 C-C R neutral R R R + R 3 C cation R R = (C 3 ) 2 c cation neutral ani 3 C + R

106 Isotopically Labeled Aminocarboxyl Groups Cellulose % 50% 2 C 3 C R C nm

107 umber of 5 in Close Proximity to 3 C Cellulose a) dimer b) dimer ribbon c) tetramer % 50% 2 C 3 C C C C C C C C C C C DS/S o r 2 3 C 5 r n = x = 0.5 d) tetramer stack C C C C n = 2 x = 0.75 e) dimer stack C C C C n = 2 x = 0.75 f) sheet C C C C dephasing time / ms n = 3 x=0.875 n = 3 x = n = 4 x =

108 R. Manriquez, F.A. Lopez-Dellamary, J. Frydel, T. Emmler,. Breitzke, G. Buntkowsky,.-. Limbach, I.G. Shenderovich J. Phys. Chem. B 2009, 3, 934. Cellulose Grafted with Aminocarboxyl Groups 30% wet-tensile-strength improvement is provided by zwitterionic dimers organized in ribbons or tetramers

109 ISTITUT FÜR RGAISCE CEMIE UIVERSITÄT REGESBURG Three Cups of Modern nmr spectroscopy espresso Ilya G. Shenderovich Classical and quantummechanical descriptions 2. T and T2 Relaxations 3. Chemical shift 4. Spin-spin scalar coupling 5. Spin systems of the first and the second orders 6. Chemical exchange 7. Two-dimensional MR. MR in solution. From spectrum to structure.2. Typical protocol for structure elucidation 2. MR in the solid state 2. rientation-dependent interactions 2. Measurements of internuclear distances 2.3 MR of surfaces and amorphous solids MR Study of ydrogen Bonding in Solution Down to 00 K

110 Pure siliceous materials 3 Idealized Surface Surface Si- Lattice Si Q 3 species Q 4 species Si Si Si Si Si Si Rough Surface Geminal Si-() 2 Q 2 species

111 MR of Surfaces Mesoporous Silica Materials MCM-4, SBA-5 silica MCM-4, 2 4 nm SBA-5, 7 20 nm Surface ~ 000 m 2 /g

112 MR at 300 K from a flask dried in high vacuum at 400 K Si Si Si Si Si Si D. Mauder, D. Akcakayiran, S. B. Lesnichin, G.. Findenegg, I. G. Shenderovich J. Phys. Chem. C 2009, 3: 985.

113 5 -pyridine as a sensor of acidity R /Å ( 5 ) /ppm P. Lorente, I.G. Shenderovich,.S. Golubev, G.S. Denisov, G. Buntkowsky G.,.-. Limbach Magn. Reson. Chem. 200, 39: S8

114 5 30K Dry surface Crystal.67 Å C 2 C C 3 Propionic acid ( 5 ) /ppm I.G. Shenderovich, G. Buntkowsky, A. Schreiber, E. Gedat, S. Sharif, J. Albrecht,.S. Golubev, G.. Findenegg,.-. Limbach J. Phys. Chem. B 2003, 07: Density of -groups: MCM nm -2 SBA nm -2

115 5 300K I.G. Shenderovich, G. Buntkowsky, A. Schreiber, E. Gedat, S. Sharif, J. Albrecht,.S. Golubev, G.. Findenegg,.-. Limbach J. Phys. Chem. B 2003, 07:

116 Pyridine dynamics inside MCM-4 and 300K Q 3 Q 2 Q 4 SBA-5 Q 2 Q 3 Q 4 MCM-4 5 MR 29 Si MR I.G. Shenderovich, G. Buntkowsky, A. Schreiber, E. Gedat, S. Sharif, J. Albrecht,.S. Golubev, G.. Findenegg,.-. Limbach J. Phys. Chem. B 2003, 07:

117 Morphology of Mesoporous Silica 5 MAS 300K Static MAS SBA-5, 8.9 nm Static MAS Static SBA-5, 7.5 nm 300K MAS Static MAS MCM-4, 3.7 nm MCM-4, 3.3 nm Surface diffusion Pyridine Rotation is Restricted =35 0 Static MAS MCM-4, 2.9 nm 30K δ/ppm 7

118 Inner surface of mesoporous silica Rough surface SBA-5 Idealized surface MCM-4

119 Structure of Amorphous Materials Mesoporous Silica Materials Input exp.: Silanol density (3 nm -2 ); Pore diameter D; Lattice parameter a 0 D 20 nm a 0 w 0.95 nm a 0 Transmission electron microscopy MCM-4 Q 4 Q 3 Circular Pores Model MCM-4 Q 3 : Q 4 exagonal Pores Model Exp. circular hexagonal sample sample

120 Distribution of the surface hydroxyl groups

121 Distribution of the surface hydroxyl groups Si Si 29 Si CPMAS MR, 300K Si Si Si Si + (Si(C 3 ) 3 ) (C 3 ) 2 -Si-Cl 2 Si -Si-(C 3 ) 3 Si + 3 -Si-(C 3 ) 3 Si Si -Si- (C 3 ) Cl 5 CPMAS MR, 30K

122 Distribution of the surface hydroxyl groups 5 Å Me Me Me Me Si Me Me Si Me Me Si Me Si Si Si Si Si Uniform distribution assumption 5.8 Å Density of Si- groups: 2.9 nm -2 (MCM-4)

123 Surface functionalization I.G. Shenderovich, D. Mauder, D. Akcakayiran, G. Buntkowsky,.-. Limbach, G.. Findenegg J. Phys. Chem. B 2007, : Me Me D D 2 SBA-5 Si Si Si D 2 MCM-4 Me Si Me D * 0. M aq. Cl Si Si MR /ppm

124 Surface functionalization I.G. Shenderovich, D. Mauder, D. Akcakayiran, G. Buntkowsky,.-. Limbach, G.. Findenegg J. Phys. Chem. B 2007, : SBA-5 T T2 T 3 Si Me Si Si Si T 3 Me Si T 2 Si Si MCM-4 0. M aq. Cl Me Si Si T

125 Surface functionalization I.G. Shenderovich, D. Mauder, D. Akcakayiran, G. Buntkowsky,.-. Limbach, G.. Findenegg J. Phys. Chem. B 2007, :

126 Surface functionalization I.G. Shenderovich, D. Mauder, D. Akcakayiran, G. Buntkowsky,.-. Limbach, G.. Findenegg J. Phys. Chem. B 2007, :

127 Propionic Acid Functionalized SBA K r.67 Å W/Py = 0 r.67 Å C W/Py = Si Si W/Py = 0 A.A. Gurinov, D. Mauder, D. Akcakayiran, G.. Findenegg, I.G. Shenderovich ChemPhysChem 202, 202, 3: ( 5 ) /ppm

128 Propionic Acid Functionalized SBA-5 A.A. Gurinov, D. Mauder, D. Akcakayiran, G.. Findenegg, I.G. Shenderovich ChemPhysChem 202, 3:

129 Strong Acids Functionalized SBA-5 pk a 5.2 5? 5 5?.67 Å S 2 P C 3 6 pk a 4.9 pk a -0.6 C 2 4 pk a 2.4 pk a 7.8 Si Si Si Si Si D. Mauder, D. Akcakayiran, S. B. Lesnichin, G.. Findenegg, I. G. Shenderovich J. Phys. Chem. C 2009, 3: 985.

130 Strong Acids Functionalized SBA-5 Bulk Pyr Si Pyr A - [ Pyr] + 5 MR 30 K δ/ppm P() 2 S D. Mauder, D. Akcakayiran, S. B. Lesnichin, G.. Findenegg, I. G. Shenderovich J. Phys. Chem. C 2009, 3: 985.

131 Conclusion ur ability to manipulate the chemical reactivity of a surface by a fluid filling is limited by: steric hindrance caused by the structure of the surface presence of chemisorbed species

Coupling of Functional Hydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems Observed by Solid State NMR

Coupling of Functional Hydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems Observed by Solid State NMR Supporting Information for Coupling of Functional ydrogen Bonds in Pyridoxal-5 -phosphate- Enzyme Model Systems bserved by Solid State NMR Shasad Sharif, David Schagen, Michael D. Toney, and ans-einrich

More information

Probing Hydrogen Bonding by Solid-State NMR. Steven P. Brown

Probing Hydrogen Bonding by Solid-State NMR. Steven P. Brown Probing ydrogen Bonding by Solid-State M Steven P. Brown Solution-State M: Isotropic Interactions Fast isotropic tumbling of the molecules averages to zero all anisotropic broadening Chemical Shift Differentiation

More information

Two Dimensional (2D) NMR Spectroscopy

Two Dimensional (2D) NMR Spectroscopy The two important parameters obtained from NMR spectra are; Two Dimensional (2D) NMR Spectroscopy py Correlation NMR a. Chemical shift b. Spin-spin coupling constant Large molecules with numerous atoms

More information

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft MR Fundamentals 26 October 2010 Mitglied der Helmholtz-Gemeinschaft Mitglied der Helmholtz-Gemeinschaft Nuclear Spin Nuclear Spin Nuclear magnetic resonance is observed in atoms with odd number of protons

More information

Spin Relaxation and NOEs BCMB/CHEM 8190

Spin Relaxation and NOEs BCMB/CHEM 8190 Spin Relaxation and NOEs BCMB/CHEM 8190 T 1, T 2 (reminder), NOE T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Indirect Coupling. aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only)

Indirect Coupling. aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only) Indirect Coupling aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only) First, two comments about direct coupling Nuclear spins

More information

Physical fundamentals of magnetic resonance imaging

Physical fundamentals of magnetic resonance imaging Physical fundamentals of magnetic resonance imaging Stepan Sereda University of Bonn 1 / 26 Why? Figure 1 : Full body MRI scan (Source: [4]) 2 / 26 Overview Spin angular momentum Rotating frame and interaction

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information

Measuring Spin-Lattice Relaxation Time

Measuring Spin-Lattice Relaxation Time WJP, PHY381 (2009) Wabash Journal of Physics v4.0, p.1 Measuring Spin-Lattice Relaxation Time L.W. Lupinski, R. Paudel, and M.J. Madsen Department of Physics, Wabash College, Crawfordsville, IN 47933 (Dated:

More information

Multidimensional NMR Experiments

Multidimensional NMR Experiments Multidimensional NMR Experiments Chem 8361/4361: Interpretation of rganic Spectra 2009 2013 Andrew arned & Regents of the University of Minnesota General Information More complicated experiments to set

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

Chapter 7. Nuclear Magnetic Resonance Spectroscopy Chapter 7 Nuclear Magnetic Resonance Spectroscopy I. Introduction 1924, W. Pauli proposed that certain atomic nuclei have spin and magnetic moment and exposure to magnetic field would lead to energy level

More information

T 1, T 2, NOE (reminder)

T 1, T 2, NOE (reminder) T 1, T 2, NOE (reminder) T 1 is the time constant for longitudinal relaxation - the process of re-establishing the Boltzmann distribution of the energy level populations of the system following perturbation

More information

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics Magnetic Resonance Imaging Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics pal.e.goa@ntnu.no 1 Why MRI? X-ray/CT: Great for bone structures and high spatial resolution Not so great

More information

Nuclear Magnetic Resonance

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Lectures for CCB 538 James Aramini, PhD. CABM 014A jma@cabm.rutgers.edu J.A.! 04/21/14! April 21!!!!April 23!! April 28! Outline 1. Introduction / Spectroscopy Overview! 2. NMR

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005 Polarised Nucleon Targets for Europe, nd meeting, Bochum Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals H. Štěpánková, J. Englich, J. Kohout,

More information

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013

16.1 Introduction to NMR Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy. Spectroscopy 4/11/2013 What is spectroscopy? NUCLEAR MAGNETIC RESONANCE (NMR) spectroscopy may be the most powerful method of gaining structural information about organic compounds. NMR involves an interaction between electromagnetic

More information

NMR Spectroscopy: A Quantum Phenomena

NMR Spectroscopy: A Quantum Phenomena NMR Spectroscopy: A Quantum Phenomena Pascale Legault Département de Biochimie Université de Montréal Outline 1) Energy Diagrams and Vector Diagrams 2) Simple 1D Spectra 3) Beyond Simple 1D Spectra 4)

More information

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes

Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti- Perovskite Solid Electrolytes Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Elucidating Lithium-Ion and Proton Dynamics in Anti-

More information

Christopher Pavlik Bioanalytical Chemistry March 2, 2011

Christopher Pavlik Bioanalytical Chemistry March 2, 2011 Nuclear Magnetic Resonance of Proteins Christopher Pavlik Bioanalytical Chemistry March 2, 2011 Nuclear Magnetic Resonance NMR Application of a magnetic field causes absorption of EM energy that induces

More information

Basic One- and Two-Dimensional NMR Spectroscopy

Basic One- and Two-Dimensional NMR Spectroscopy Horst Friebolin Basic One- and Two-Dimensional NMR Spectroscopy Third Revised Edition Translated by Jack K. Becconsall WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Contents XV 1 The

More information

To Do s. Answer Keys are available in CHB204H

To Do s. Answer Keys are available in CHB204H To Do s Read Chapters 2, 3 & 4. Complete the end-of-chapter problems, 2-1, 2-2, 2-3 and 2-4 Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Complete the end-of-chapter problems, 4-1, 4-2,

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

To Do s. Answer Keys are available in CHB204H

To Do s. Answer Keys are available in CHB204H To Do s Read Chapters 2, 3 & 4. Complete the end-of-chapter problems, 2-1, 2-2, 2-3 and 2-4 Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Complete the end-of-chapter problems, 4-1, 4-2,

More information

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012 Superoperators for NMR Quantum Information Processing Osama Usman June 15, 2012 Outline 1 Prerequisites 2 Relaxation and spin Echo 3 Spherical Tensor Operators 4 Superoperators 5 My research work 6 References.

More information

Quantification of Dynamics in the Solid-State

Quantification of Dynamics in the Solid-State Bernd Reif Quantification of Dynamics in the Solid-State Technische Universität München Helmholtz-Zentrum München Biomolecular Solid-State NMR Winter School Stowe, VT January 0-5, 206 Motivation. Solid

More information

[1] [2] 10 CH 3 COOH 9 1D 1 H NMR

[1] [2] 10 CH 3 COOH 9 1D 1 H NMR 1.00 0.97 1.03 2.08 1.25 1.08 3.02 rganic NMR quick guide 2016 TDWC NMR Techniques in rganic Chemistry: a quick guide The NMR spectrum proves to be of great utility in structure elucidation because the

More information

Chem343 (Fall 2009) NMR Presentation

Chem343 (Fall 2009) NMR Presentation Chem343 (Fall 2009) NMR Presentation Y Ishii Oct 16, 2009 1 NMR Experiment Cautions Before you start, Read the handouts for background information. Read NMR procedure handouts for the procedures of the

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei : An introduction to Solid State NMR spectroscopy Dr. Susanne Causemann (Solid State NMR specialist/ researcher) Interaction between nuclear spins and applied magnetic fields B 0 application of a static

More information

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 13 Structure t Determination: ti Nuclear Magnetic Resonance Spectroscopy Revisions by Dr. Daniel Holmes MSU Paul D. Adams University of Arkansas

More information

10.4 Continuous Wave NMR Instrumentation

10.4 Continuous Wave NMR Instrumentation 10.4 Continuous Wave NMR Instrumentation coherent detection bulk magnetization the rotating frame, and effective magnetic field generating a rotating frame, and precession in the laboratory frame spin-lattice

More information

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy INTRODUCTION TO Magnetic Resonance Spectroscopy ESR, NMR, NQR D. N. SATHYANARAYANA Formerly, Chairman Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore % I.K. International

More information

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE

High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE High-Resolutio n NMR Techniques i n Organic Chemistry TIMOTHY D W CLARIDGE Foreword Preface Acknowledgements V VI I X Chapter 1. Introduction 1.1. The development of high-resolution NMR 1 1.2. Modern

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Nuclear Magnetic Resonance Spectroscopy Chem 4010/5326: Organic Spectroscopic Analysis Andrew Harned

Nuclear Magnetic Resonance Spectroscopy Chem 4010/5326: Organic Spectroscopic Analysis Andrew Harned Nuclear Magnetic Resonance Spectroscopy Chem 4010/5326: Organic Spectroscopic Analysis 2015 Andrew Harned NMR Spectroscopy NMR Spectroscopy All nuclei have a nuclear spin quantum number (I) I = 0, 1/2,

More information

Clickers. a. I watched all 5 videos b. The dog ate my iphone

Clickers. a. I watched all 5 videos b. The dog ate my iphone Clickers a. I watched all 5 videos b. The dog ate my iphone 40% 33% 33% 40% 59% 67% of you: Watch youtube! PRBLEMS: Complete end of chapter 13 problems 1 10 from Lab Manual Answers 1 NMR Protons (nucleus

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

Ferdowsi University of Mashhad

Ferdowsi University of Mashhad Spectroscopy in Inorganic Chemistry Nuclear Magnetic Resonance Spectroscopy spin deuterium 2 helium 3 The neutron has 2 quarks with a -e/3 charge and one quark with a +2e/3 charge resulting in a total

More information

Nuclear Magnetic Resonance Spectroscopy (NMR)

Nuclear Magnetic Resonance Spectroscopy (NMR) OCR Chemistry A 432 Spectroscopy (NMR) What is it? An instrumental method that gives very detailed structural information about molecules. It can tell us - how many of certain types of atom a molecule

More information

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2)

NMR spectra of some simple molecules. Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) NMR spectra of some simple molecules Effect of spinning: averaging field inhomogeneity (nmr1.pdf pg 2) N S H 0 H o Because the protons have a magnetic field associated with them, the field changes as across

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

8 NMR Interactions: Dipolar Coupling

8 NMR Interactions: Dipolar Coupling 8 NMR Interactions: Dipolar Coupling 8.1 Hamiltonian As discussed in the first lecture, a nucleus with spin I 1/2 has a magnetic moment, µ, associated with it given by µ = γ L. (8.1) If two different nuclear

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Chapter 13: Molecular Spectroscopy

Chapter 13: Molecular Spectroscopy Chapter 13: Molecular Spectroscopy Electromagnetic Radiation E = hν h = Planck s Constant (6.63 x 10-34 J. s) ν = frequency (s -1 ) c = νλ λ = wavelength (nm) Energy is proportional to frequency Spectrum

More information

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface

NMR Nuclear Magnetic Resonance Spectroscopy p. 83. a hydrogen nucleus (a proton) has a charge, spread over the surface NMR Nuclear Magnetic Resonance Spectroscopy p. 83 a hydrogen nucleus (a proton) has a charge, spread over the surface a spinning charge produces a magnetic moment (a vector = direction + magnitude) along

More information

Magnetic Resonance Imaging in a Nutshell

Magnetic Resonance Imaging in a Nutshell Magnetic Resonance Imaging in a Nutshell Oliver Bieri, PhD Department of Radiology, Division of Radiological Physics, University Hospital Basel Department of Biomedical Engineering, University of Basel,

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging Principles of Magnetic Resonance Imaging Hi Klaus Scheffler, PhD Radiological Physics University of 1 Biomedical Magnetic Resonance: 1 Introduction Magnetic Resonance Imaging Contents: Hi 1 Introduction

More information

Acridine a Promising Fluorescence Probe of Non-Covalent Molecular Interactions

Acridine a Promising Fluorescence Probe of Non-Covalent Molecular Interactions Z. Phys. Chem. 227 (2013) 857 868 / DOI 10.1524/zpch.2013.0390 by Oldenbourg Wissenschaftsverlag, München Acridine a Promising Fluorescence Probe of Non-Covalent Molecular Interactions By Yulia Rozhkova

More information

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10

CHEM / BCMB 4190/6190/8189. Introductory NMR. Lecture 10 CHEM / BCMB 490/690/889 Introductory NMR Lecture 0 - - CHEM 490/690 Spin-Echo The spin-echo pulse sequence: 90 - τ - 80 - τ(echo) Spins echoes are widely used as part of larger pulse sequence to refocus

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Relaxation & Multidimensional Spectrocopy Vrije Universiteit Brussel 9th December 2011 Outline 1 Relaxation 2 Principles 3 Outline 1 Relaxation 2 Principles 3 Establishment of Thermal Equilibrium As previously

More information

Center for Sustainable Environmental Technologies, Iowa State University

Center for Sustainable Environmental Technologies, Iowa State University NMR Characterization of Biochars By Catherine Brewer Center for Sustainable Environmental Technologies, Iowa State University Introduction Nuclear magnetic resonance spectroscopy (NMR) uses a very strong

More information

Introduction to Nuclear Magnetic Resonance Spectroscopy

Introduction to Nuclear Magnetic Resonance Spectroscopy Introduction to Nuclear Magnetic Resonance Spectroscopy Dr. Dean L. Olson, NMR Lab Director School of Chemical Sciences University of Illinois Called figures, equations, and tables are from Principles

More information

Structure Elucidation through NMR Spectroscopy. Dr. Amit Kumar Yadav Assistant Professor-Chemistry Maharana Pratap Govt. P.G.

Structure Elucidation through NMR Spectroscopy. Dr. Amit Kumar Yadav Assistant Professor-Chemistry Maharana Pratap Govt. P.G. Structure Elucidation through NMR Spectroscopy Dr. Amit Kumar Yadav Assistant Professor-Chemistry Maharana Pratap Govt. P.G. College, ardoi Introduction NMR is the most powerful tool available for organic

More information

NMR = Nuclear Magnetic Resonance

NMR = Nuclear Magnetic Resonance NMR = Nuclear Magnetic Resonance NMR spectroscopy is the most powerful technique available to organic chemists for determining molecular structures. Looks at nuclei with odd mass numbers or odd number

More information

Chapter 13 Nuclear Magnetic Resonance Spectroscopy

Chapter 13 Nuclear Magnetic Resonance Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 13 Nuclear Magnetic Resonance Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

More information

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ Lecture notes Part 4: Spin-Spin Coupling F. olger Försterling October 4, 2011 So far, spins were regarded spins isolated from each other. owever, the magnetic moment of nuclear spins also have effect on

More information

Double-Resonance Experiments

Double-Resonance Experiments Double-Resonance Eperiments The aim - to simplify complicated spectra by eliminating J-couplings. omonuclear Decoupling A double resonance eperiment is carried out using a second rf source B 2 in addition

More information

6 NMR Interactions: Zeeman and CSA

6 NMR Interactions: Zeeman and CSA 6 NMR Interactions: Zeeman and CSA 6.1 Zeeman Interaction Up to this point, we have mentioned a number of NMR interactions - Zeeman, quadrupolar, dipolar - but we have not looked at the nature of these

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

γ N 6. Nuclear Magnetic Resonance (NMR) Spectroscopy.

γ N 6. Nuclear Magnetic Resonance (NMR) Spectroscopy. 6. Nuclear Magnetic Resonance (NMR) Spectroscopy. In this chapter we will discuss some basic principles of NMR spectroscopy and some very basic applications. A comprehensive treatment of NMR spectroscopy

More information

NMR Spin-Spin Coupling. Further Discussion

NMR Spin-Spin Coupling. Further Discussion NMR Spin-Spin oupling Further Discussion Signs and Mechanisms Most important mechanism is Fermi contact mechanism (see below). J can be either positive or negative. Signs of J usually DO NOT affect the

More information

Chemistry 605 (Hans J. Reich)

Chemistry 605 (Hans J. Reich) Chemistry 605 (ans J. Reich) TIRD UR EXAM Mon. May 1, 2012 Question/Points R-11P /15 R-11Q /15 R-11R /20 R-11S /10 R-11T /20 R-11U /20 Total /100 Name If you place answers anywhere else except in the spaces

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington Lecturer: Gabriele Varani Biochemistry and Chemistry Room J479 and

More information

TECNICHE DI ALTA E BASSA RISOLUZIONE IN NMR STATO SOLIDO

TECNICHE DI ALTA E BASSA RISOLUZIONE IN NMR STATO SOLIDO TECNICHE DI ALTA E BASSA RISOLUZIONE IN NMR STATO SOLIDO Roberto Gobetto Dipartimento di Chimica I.F.M., Università di Torino, Via P. Giuria 7, 10125 Torino Chemical Shift Anisotropy s q Chemical shift

More information

Basic principles of multidimensional NMR in solution

Basic principles of multidimensional NMR in solution Basic principles of multidimensional NMR in solution 19.03.2008 The program 2/93 General aspects Basic principles Parameters in NMR spectroscopy Multidimensional NMR-spectroscopy Protein structures NMR-spectra

More information

Sketch of the MRI Device

Sketch of the MRI Device Outline for Today 1. 2. 3. Introduction to MRI Quantum NMR and MRI in 0D Magnetization, m(x,t), in a Voxel Proton T1 Spin Relaxation in a Voxel Proton Density MRI in 1D MRI Case Study, and Caveat Sketch

More information

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum,

Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, Solid-state NMR and proteins : basic concepts (a pictorial introduction) Barth van Rossum, 16.02.2009 Solid-state and solution NMR spectroscopy have many things in common Several concepts have been/will

More information

1 Magnetism, Curie s Law and the Bloch Equations

1 Magnetism, Curie s Law and the Bloch Equations 1 Magnetism, Curie s Law and the Bloch Equations In NMR, the observable which is measured is magnetization and its evolution over time. In order to understand what this means, let us first begin with some

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

Relaxation, Multi pulse Experiments and 2D NMR

Relaxation, Multi pulse Experiments and 2D NMR Relaxation, Multi pulse Experiments and 2D NMR To Do s Read Chapter 6 Complete the end of chapter problems; 6 1, 6 2, 6 3, 6 5, 6 9 and 6 10. Read Chapter 15 and do as many problems as you can. Relaxation

More information

Two-dimensional Exchange and Nutation Exchange Nuclear Quadrupole Resonance Spectroscopy

Two-dimensional Exchange and Nutation Exchange Nuclear Quadrupole Resonance Spectroscopy Two-dimensional Exchange and Nutation Exchange Nuclear Quadrupole Resonance Spectroscopy M. Maćkowiak, N. Sinyavsky a, N. Velikite a, and D. Nikolaev a Institute of Molecular Physics, Polish Academy of

More information

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1 Chapter 9 Nuclear Magnetic Resonance Ch. 9-1 1. Introduction Classic methods for organic structure determination Boiling point Refractive index Solubility tests Functional group tests Derivative preparation

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Band-Selective Homonuclear 2D Correlation Experiments

Band-Selective Homonuclear 2D Correlation Experiments Band-Selective Homonuclear 2D Correlation Experiments Application Note Authors Péter Sándor Agilent Technologies GmbH D76337 Waldbronn Germany Abstract This application note demonstrates the utility of

More information

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY

Carbon 13 NMR NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY PRINCIPLE AND APPLICATION IN STRUCTURE ELUCIDATION Carbon 13 NMR Professor S. SANKARARAMAN Department of Chemistry Indian Institute of Technology Madras Chennai

More information

Introduction. Introduction. Introduction. Chem Experiment 4 NMR & Mass Spectroscopy and Biomolecular Structure. Fall, 2011

Introduction. Introduction. Introduction. Chem Experiment 4 NMR & Mass Spectroscopy and Biomolecular Structure. Fall, 2011 hem 43 - Experiment 4 MR & Mass pectroscopy and Biomolecular tructure Fall, 2 What does MR measure? Introduction What information does MR provide us about the structures of biological macromolecules -

More information

NMR Spectroscopy of Polymers

NMR Spectroscopy of Polymers UNESCO/IUPAC Course 2005/2006 Jiri Brus NMR Spectroscopy of Polymers Brus J 1. part At the very beginning the phenomenon of nuclear spin resonance was studied predominantly by physicists and the application

More information

NMR Data workup using NUTS

NMR Data workup using NUTS omework 1 Chem 636, Fall 2008 due at the beginning of the 2 nd week lab (week of Sept 9) NMR Data workup using NUTS This laboratory and homework introduces the basic processing of one dimensional NMR data

More information

NMR-spectroscopy. I: basics. Peter Schmieder

NMR-spectroscopy. I: basics. Peter Schmieder NMR-spectroscopy I: basics Why spectroscopy? 2/102 Why spectroscopy It is well established that all biological relevant processes take place via interactions of molecules, either small ones (metall ions,

More information

Nuclear spin and the splitting of energy levels in a magnetic field

Nuclear spin and the splitting of energy levels in a magnetic field Nuclear spin and the splitting of energy levels in a magnetic field Top 3 list for 13 C NMR Interpretation 1. Symmetry 2. Chemical Shifts 3. Multiplicity 13 C NMR of C 3 O 1 NMR of C 3 O 13 C NMR of C

More information

C NMR Spectroscopy

C NMR Spectroscopy 13.14 13 C NMR Spectroscopy 1 H and 13 C NMR compared: both give us information about the number of chemically nonequivalent nuclei (nonequivalent hydrogens or nonequivalent carbons) both give us information

More information

Principles of Nuclear Magnetic Resonance Microscopy

Principles of Nuclear Magnetic Resonance Microscopy Principles of Nuclear Magnetic Resonance Microscopy Paul T. Callaghan Department of Physics and Biophysics Massey University New Zealand CLARENDON PRESS OXFORD CONTENTS 1 PRINCIPLES OF IMAGING 1 1.1 Introduction

More information

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews

Advanced Quadrupolar NMR. Sharon Ashbrook School of Chemistry, University of St Andrews Advanced Quadrupolar NMR Sharon Ashbrook School of Chemistry, University of St Andrews Quadrupolar nuclei: revision single crystal powder ST 500 khz ST ω 0 MAS 1 khz 5 khz second-order broadening Example:

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Spin-spin coupling I Ravinder Reddy

Spin-spin coupling I Ravinder Reddy Spin-spin coupling I Ravinder Reddy Spin-interactions External interactions Magnetic field Bo, RF field B1 Internal Interactions Molecular motions Exchange Chemical shifts J-coupling Spin Diffusion Dipolar

More information

Protein dynamics from NMR Relaxation data

Protein dynamics from NMR Relaxation data Protein dynamics from NMR Relaxation data Clubb 3/15/17 (S f2 ) ( e ) Nitrogen-15 relaxation ZZ-exchange R 1 = 1/T 1 Longitudinal relaxation (decay back to z-axis) R 2 = 1/T 2 Spin-spin relaxation (dephasing

More information

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 Nuclear Magnetic Resonance Spectroscopy (II) AFB QO I 2007/08 2 1 Adaptado de Organic Chemistry, 6th Edition; L.G. Wade,

More information

Concepts on protein triple resonance experiments

Concepts on protein triple resonance experiments 2005 NMR User Training Course National Program for Genomic Medicine igh-field NMR Core Facility, The Genomic Research Center, Academia Sinica 03/30/2005 Course andout Concepts on protein triple resonance

More information

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H Read Chapter 3. To Do s Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7 Answer Keys are available in CB204 NMR Chemical Shifts Further Discussion A set of spectral data is reported when

More information

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11.

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11. Problem Set #1, CEM/BCMB 4190/6190/8189 1). Which of the following statements are rue, False, or Possibly rue, for the hypothetical element X? he ground state spin is I0 for 5 4 b. he ground state spin

More information

William H. Brown & Christopher S. Foote

William H. Brown & Christopher S. Foote Requests for permission to make copies of any part of the work should be mailed to:permissions Department, Harcourt Brace & Company, 6277 Sea Harbor Drive, Orlando, Florida 32887-6777 William H. Brown

More information

Spectroscopy of Polymers

Spectroscopy of Polymers Spectroscopy of Polymers Jack L. Koenig Case Western Reserve University WOMACS Professional Reference Book American Chemical Society, Washington, DC 1992 Contents Preface m xiii Theory of Polymer Characterization

More information

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin

DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin DNP enhanced frequency-selective TEDOR experiments in bacteriorhodopsin Journal of Magnetic Resonance 202 (2010) 9-13 Bajaj S. V., Mak-Jurkauskus, A. L., Belenky, M., Herzfeld, J. and Griffin, R. MR Seminar

More information