Dr. Williamson s Notes for Atoms Continued

Size: px
Start display at page:

Download "Dr. Williamson s Notes for Atoms Continued"

Transcription

1 Structure of the Periodic Table Atoms Continued: Bohr student version Dr. V.M. Williamson Arranged by or : vertical columns of elements with similar chemical and physical properties : horizontal rows of elements whose properties change progressively Family Names Group IA: Group IIA: Group I-XB : Group VA : choking-gas formers (pnicogens) Group VIA : chalk formers (chalcogens) Group VIIA: Group VIIIA: Physical Properties of Metals and Nonmetals Metals Nonmetals Good conductor Poor conductor electrical and heat electrical and heat Almost all are Solids, liquids, gases Metallic luster Malleable Ductile No metallic luster Nonductile 1

2 Metals and Nonmetals Metals: are on the of the chart. Some elements come as multiples, rather than single atoms Nonmetals: are on the of the chart. Metaloids: have a mixture of characteristics. Note: elements that touch stair steps from group IIIA, except and Diatomic: (not At) Other multiples: and Gases = H 2, O 2, N 2, F 2, Cl 2, noble gases Liquids = Hg, Br 2 Li Na Mg Al K Ca Periodic Trends in Reactivity with Water (Metallic Character) Periodic Property: Atomic Radii Used to describe atomic size Measured indirectly from bonding distances in molecules Metallic Character Copyright 1995 by Saunders College Publishing 2

3 Atomic Radii of Some Elements Periodic Trend: Atomic Radii Atomic Radii Atomic Radii of Some Transition Elements Periodic Property: Ionization Energy First ionization energy (IE 1 ) or potential: Amount of energy required to remove the most loosely bound electron from an isolated gaseous atom e.g., Always positive (energy absorbed) Ion formed (atom with unequal e- and p+). Second e _ harder to remove: First Ionization Energies of Selected Elements Periodic Trend: Ionization Energy Ionization Energy 3

4 The Trend For I.E. Is General for Each Period Ionic Radii Atoms with unequal protons and electrons = Ionic Radii of Some Elements Periodic Trend: Ionic Radii Ionic Radii Absorption and Emission Electromagnetic Radiation Elements give light of specific colors when given electrical energy Light is a form of called Electromagnetic Radiation or radiation Copyright 1999 by HOLT Publishing 4

5 Electromagnetic Radiation Described in terms of waves: White light is a mixture of all colors. For a wave traveling at some speed: υ = c λ ν = the frequency in cycles per second (1/s or s -1 ; 1 Hz = 1 cycle/s) λ = the wavelength c = the speed of light = m/s Copyright 1999 by HOLT Publishing Electromagnetic (EM) Radiation Visible light is only 1 form of EM radiation. Note the wavelengths on in. Planck Equation Describes light in terms of particles called with a particular quantum of energy: E=hυ= hc λ where E = energy of the photon h = Planck s constant = 6.63 x J s ν = c = λ = E=hυ=hc λ Note that Energy and wavelength are inverse. So wavelengths = lower energy and wavelengths = higher energy. light is longer wavelengths; is shorter. What does that tell you about E for red and blue? Units?? What is the smallest amount of energy (1photon) that an object can absorb from light of frequency 7.35 x s -1 (violet)? E = hν = hc / λ = = 5

6 Blackbody Radiation See Flame Test demo- different ions are heated in a flame So elements are absorbing energy as heat or electricity and giving off energy as light (emission). Copyright 1995 by Saunders College Publishing The hotter an object, the the λ But if electrons are at all energy levels, won t the light given off always be -all wavelengths??? Explaining the Spectrum If Rutherford s model was correct, the electrons should be continuously emitting energy of, resulting in a continuous spectrum of electromagnetic radiation- The Bohr Atom Niels Bohr ( ) Nobel Prize 1922 The light evidence, plus the jumps in the ionization energy lead to a new theory of the atom, proposed by Niels Bohr. He proposed that the electrons in a hydrogen atom move around the nucleus in certain allowed orbits The Bohr Atom Electrons are only at certain specific distances from nucleus 6

7 Absorption and Emission The Bohr Atom Copyright 1999 by HOLT Publishing Copyright 1995 by Saunders College Publishing According to Bohr s atomic model, electrons move in definite around the nucleus, much like planets circle the sun. These orbits, or, are located at certain distances from the nucleus. Electrons move in a circular orbit about the nucleus Electrons in an atom are in definite and discrete An electron can move from one to another with corresponding absorption or emission of radiation The Bohr Atom n = 1 e- n = 2 n = 3 e- e- n = 4 e- 0 Potential Energy n = n = 4 n = 3 n = 2 n = 1 First Ionization Energies of Selected Elements Bohr Orbits n=1 ; electrons n = 2 ; add l e- n = 3 ; add l e- Bohr config.: He 2) both e- in n=1 He to Li? Copyright 1999 by HOLT Publishing C 2)4) e- in n=1; e- in n=2 7

8 Bohr Model Explains Ionization Energy jumps between He and Li, Ne and Na, etc. Has stability with shells Explains atomic radii (size) larger size down a family because more orbits (shells). Li 2) 1) vs. Na 2)8)1) Size across a row is harder. Why is C 2)4) SMALLER than Li 2)1)??? Explains metal reactivity with water Na 2)8)1) while K 2)8)8)1) so it is easier to K because it s electron is further from the nucleus. Effective Nuclear Charge Nuclear charge actually felt by an electron in an outer energy level Denoted by Less than actual nuclear charge,, since electrons in inner filled shells shield or screen outer electrons from full nuclear charge Size across a row : Carbon IS SMALLER than lithium C 2)4) Li 2)1) So actually the n=2 level of carbon has a pull from the nucleus of +4, while lithium has a pull on n=2 of +1. The n=2 level of Carbon is pulled tighter, so it is smaller. Explain Ionic Radii Cations are always smaller than parent neutral atoms. Why?? Li 2)1) Li +1 2) Both have in nucleus Anions are always larger than parent neutral atoms. Why?? F 2)7) F -1 2)8) Both have in nucleus Consider: Li +1 and Be +2 Both only have 2 electrons. They are isoelectronic ions (ions will the same number of electrons). Consider the pull from the nucleus, which will have the larger radius? Li 2)1) Be 2)2) Li +1 2) Be +2 2) 8

9 Calculation Electron Transitions Rydberg Equation Note there are 2 forms of this and that if the negative is removed the initial and final will switch: 1 = λ R = x 10 7 m -1 ΔΕ = ΔΕ = R H = x J for energy of a certain level n Calculate the wavelength when an electron moves from n=4 to n=1 1 λ = R $ 1 2 n 1 ' & 2 ) % f n i ( 1 = e7 m -1 [ 1-1 ] λ / λ = e7 m -1 [ ] 1/ λ = e7 m -1 1 = λ = m x 10 7 m -1 Sample problem continued λ = 9.73 x 10-8 m The only means light (given off). Absorption and Emission Spectra Another unit you will see is nanometer. Add this to your list. 1 nanometer = 1 x 10-9 m 1,000,000,000 nanometers = 1 m So the answer could be λ = nm The Bohr Atom The Bohr model was able to explain the line spectrum He was even able to calculate the energy levels available to the electron in the hydrogen atom Hydrogen Atom With Bohr Model Transition λ predicted actual 2 -> UV 3 -> UV 4 -> UV 3 -> red 4 -> bl/gr 5 -> bl 6 -> vio. 4 -> IF 9

10 Hydrogen and beyond Unfortunately, this did not work for any of the other elements with more complex spectra Bohr Model will be replaced because of a number of reasons. For example: It couldn t predict spectrum results beyond hydrogen It didn t explain the transition elements (why periods vary in length) It didn t explain beyond element 20. BUT, easy to write and can use for a number of things... Models of the Atom So Far 10

White Light. Chapter 7 Electron Structure of the Atom

White Light. Chapter 7 Electron Structure of the Atom Chapter 7 Electron Structure of the Atom Electromagnetic Radiation and Energy The Bohr Model of the Hydrogen Atom The Modern Model of the Atom Periodicity of Electron Configurations Valence Electrons for

More information

Electron Configuration! Chapter 5

Electron Configuration! Chapter 5 Electron Configuration! Chapter 5 DO NOW - Finish coloring your periodic tables! (5 min) State at Room Temperature Appearance Conductivity Malleability and Ductility Metals - solid except for mercury

More information

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered:

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered: Copyright 2004 by Houghton Mifflin Company. Modern Atomic Theory Chapter 10 All rights reserved. 1 10.1 Rutherford s Atom Rutherford showed: Atomic nucleus is composed of protons (positive) and neutrons

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

Hydrogen (H) Nonmetal (none)

Hydrogen (H) Nonmetal (none) Honors Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Metal, Nonmetal or Group/Family Name Semi-metal (Metalloid)? Group 1, Period 1 Hydrogen

More information

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook PART 2 Electronic Structure and the Periodic Table Reference: Chapter 7 8 in textbook 1 Early Atomic Models 2 Thomson s 1904 Model of the Atom Plumb Pudding Model He discovered the electron, a discovery

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ.

The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol λ. CHAPTER 7 Atomic Structure Chapter 8 Atomic Electron Configurations and Periodicity 1 The Electronic Structures of Atoms Electromagnetic Radiation The wavelength of electromagnetic radiation has the symbol

More information

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook

PART 2 Electronic Structure and the Periodic Table. Reference: Chapter 7 8 in textbook PART 2 Electronic Structure and the Periodic Table Reference: Chapter 7 8 in textbook 1 Experiment to Discover Atom Structure -particle: He 2+ mass number = 4 Nucleus and Electron Model 2 Atomic Structure

More information

CHAPTER 6. Chemical Periodicity

CHAPTER 6. Chemical Periodicity CHAPTER 6 Chemical Periodicity 1 Chapter Goals 1. More About the Periodic Table Periodic Properties of the Elements 2. Atomic Radii 3. Ionization Energy (IE) 4. Electron Affinity (EA) 5. Ionic Radii 6.

More information

The Periodic Table and Periodic Trends

The Periodic Table and Periodic Trends The Periodic Table and Periodic Trends The properties of the elements exhibit trends and these trends can be predicted with the help of the periodic table. They can also be explained and understood by

More information

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms Electrons in Atoms From Light to Energy of Electrons in Atom Quantum mechanical description of Atom 1. Principal quantum number: Shell 2. Orientation (shape) of : Subshell 3. Orbitals hold electrons with

More information

2. Why do all elements want to obtain a noble gas electron configuration?

2. Why do all elements want to obtain a noble gas electron configuration? AP Chemistry Ms. Ye Name Date Block Do Now: 1. Complete the table based on the example given Location Element Electron Configuration Metal, Nonmetal or Semi-metal Metalloid)? Group 1, Period 1 Group 11,

More information

Atoms and Periodic Properties

Atoms and Periodic Properties Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Unit 01 (Chp 6,7): Atoms and Periodic Properties John D. Bookstaver St. Charles Community College

More information

CHAPTER 2. Atoms,Elements, Periodic Table

CHAPTER 2. Atoms,Elements, Periodic Table CHAPTER Atoms,Elements, Periodic Table 1 Vocabulary Chemistry Science that describes matter its properties, the changes it undergoes, and the energy changes that accompany those processes Matter Anything

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Chapter 9 Electrons in Atoms and the Periodic Table

Chapter 9 Electrons in Atoms and the Periodic Table Chapter 9 Electrons in Atoms and the Periodic Table Electromagnetic Radiation Bohr Model The Quantum Mechanical Model Electron Configurations Periodic Trends 1 Electromagnetic Radiation 2 The electromagnetic

More information

Ch. 7- Periodic Properties of the Elements

Ch. 7- Periodic Properties of the Elements Ch. 7- Periodic Properties of the Elements 7.1 Introduction A. The periodic nature of the periodic table arises from repeating patterns in the electron configurations of the elements. B. Elements in the

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Atomic Theory and Periodic Trends Practice AP Chemistry Questions

Atomic Theory and Periodic Trends Practice AP Chemistry Questions AP Chemistry/1516 Atomic Theory and Periodic Trends Practice AP Chemistry Questions 1. 2007 B, question #2 Answer the following problems about gases. (b) A major line in the emission spectrum of neon corresponds

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Periodic Table. Metalloids diagonal between metals and nonmetals. Have metallic and non-metallic properties

Periodic Table. Metalloids diagonal between metals and nonmetals. Have metallic and non-metallic properties Chapter 6 Periodic Table Most elements are metals Metals are shiny, malleable, ductile, and good conductors of heat and electricity Most metals are solid at room temperature Non-metals in upper right corner,

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements

PowerPoint to accompany. Chapter 6. Periodic Properties of the Elements PowerPoint to accompany Chapter 6 Periodic Properties of the Elements Development of the Periodic Table Elements in the same group generally have similar chemical properties. Properties are not identical,

More information

PERIODIC PROPERTIES OF THE ELEMENTS

PERIODIC PROPERTIES OF THE ELEMENTS PERIODIC PROPERTIES OF THE ELEMENTS DEVELOPMENT OF PERIODIC TABLE Elements in the same group generally have similar chemical properties. Properties are not identical, however. DEVELOPMENT OF PERIODIC TABLE

More information

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined

Trends in Atomic Size. Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Periodic trends Trends in Atomic Size Atomic Radius-one half the distance between the nuclei of two atoms of the same element when the atoms are joined Trends in Atomic Size Group Trend: Atomic radii of

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Chapter 6 The Periodic Table The how and why History. Mendeleev s Table

Chapter 6 The Periodic Table The how and why History. Mendeleev s Table Chapter 6 The Periodic Table The how and why History 1829 German J. W. Dobereiner grouped elements into triads Three elements with similar properties Properties followed a pattern The same element was

More information

Section 11: Electron Configuration and Periodic Trends

Section 11: Electron Configuration and Periodic Trends Section 11: Electron Configuration and Periodic Trends The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 11.01 The Bohr Model of the Atom

More information

Chapter 6 The Periodic Table

Chapter 6 The Periodic Table Chapter 6 The Periodic Table Section 6.1 Organizing the Elements OBJECTIVES: Explain how elements are organized in a periodic table. Section 6.1 Organizing the Elements OBJECTIVES: Compare early and modern

More information

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light Objectives To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light 1 A. Rutherford s Atom.but there is a problem here!! 2 Using Rutherford

More information

Unit 7. Atomic Structure

Unit 7. Atomic Structure Unit 7. Atomic Structure Upon successful completion of this unit, the students should be able to: 7.1 List the eight regions of the electromagnetic spectrum in the designated order and perform calculations

More information

Alchemy Unit Investigation III. Lesson 7: Life on the Edge

Alchemy Unit Investigation III. Lesson 7: Life on the Edge Alchemy Unit Investigation III Lesson 7: Life on the Edge The Big Question How does the atomic structure of atoms account for the trends in periodicity of the elements? You will be able to: Explain how

More information

number. Z eff = Z S S is called the screening constant which represents the portion of the nuclear EXTRA NOTES

number. Z eff = Z S S is called the screening constant which represents the portion of the nuclear EXTRA NOTES EXTRA NOTES 1. Development of the Periodic Table The periodic table is the most significant tool that chemists use for organising and recalling chemical facts. Elements in the same column contain the same

More information

Chapter 7. Periodic Properties of the Elements. Lecture Outline

Chapter 7. Periodic Properties of the Elements. Lecture Outline Chapter 7. Periodic Properties of the Elements Periodic Properties of the Elements 1 Lecture Outline 7.1 Development of the Periodic Table The periodic table is the most significant tool that chemists

More information

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter Nine Light and Energy! Electromagnetic radiation (EM) is an especially important form of energy for scientific study.! Many types of radiant energy are

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Modern Atomic Theory and Electron Configurations

Modern Atomic Theory and Electron Configurations Chem 101 Modern Atomic Theory and Electron Configurations Lectures 8 and 9 Types of Electromagnetic Radiation Electromagnetic radiation is given off by atoms when they have been excited by any form of

More information

Chapter 7. Periodic Properties of the Elements. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 7. Periodic Properties of the Elements. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how

More information

Periodic Properties of the Elements

Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements DEVELOPMENT OF THE PERIODIC TABLE Elements in the same group generally have similar chemical properties. Properties are not identical, however. Brown, LeMay,

More information

Why is it called a periodic table?

Why is it called a periodic table? The Periodic Table Why is it called a periodic table? The properties of the elements in the table repeat in a "periodic" way (specific pattern). Periodic law: There is a periodic repetition of chemical

More information

CHAPTER 2. Structure of the Atom. Atoms and Elements

CHAPTER 2. Structure of the Atom. Atoms and Elements CHAPTER 2 Atoms and Elements 1 Atoms Dalton s Atomic Theory - 1808 1. -Element is composed of small, indivisible particles called atoms. 2. -Atoms of an element have identical properties that differ from

More information

- Chapter 7 - Periodic Properties of the Elements

- Chapter 7 - Periodic Properties of the Elements - Chapter 7 - Periodic Properties of the Elements Summary 7.1 Development of the periodic table 7.2 Effective nuclear charge 7.3 Size of atoms and ions 7.4 Ionization energy 7.5 Electron affinities 7.6

More information

Chapter 5 Notes Chemistry; The Periodic Law The Periodic Table The periodic table is used to organize the elements in a meaningful way.

Chapter 5 Notes Chemistry; The Periodic Law The Periodic Table The periodic table is used to organize the elements in a meaningful way. Chapter 5 Notes Chemistry; The Periodic Law The Periodic Table The periodic table is used to organize the elements in a meaningful way. As a consequence of this organization, there are periodic properties

More information

Introduction period group

Introduction period group The Periodic Table Introduction The periodic table is made up of rows of elements and columns. An element is identified by its chemical symbol. The number above the symbol is the atomic number The number

More information

Problems with the Wave Theory of Light (Photoelectric Effect)

Problems with the Wave Theory of Light (Photoelectric Effect) CHEM101 NOTES Properties of Light Found that the wave theory could not work for some experiments e.g. the photovoltaic effect This is because the classic EM view of light could not account for some of

More information

Chemistry 111 Dr. Kevin Moore

Chemistry 111 Dr. Kevin Moore Chemistry 111 Dr. Kevin Moore Black Body Radiation Heated objects emit radiation based on its temperature Higher temperatures produce higher frequencies PhotoElectric Effect Light on a clean metal surface

More information

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas?

How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? EXAMPLE PROBLEM: How many grams of sodium metal is required to completely react with 2545 grams of chlorine gas? 1 - Convert 2545 grams of chlorine to moles chlorine using formula weight 2 - Convert moles

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

Unit 7:Periodic Table Notes. Essential Question: Describe the differences between nonmetals, metalloids and metals.

Unit 7:Periodic Table Notes. Essential Question: Describe the differences between nonmetals, metalloids and metals. Unit 7:Periodic Table Notes Essential Question: Describe the differences between nonmetals, metalloids and metals. 1 Red stair step line separates metals from nonmetals Groups/families vertical Have similar

More information

For the Periodic Table above indicate each of the following TRENDS: atomic size and ionic size. Na Na + F F - Ne < < < <

For the Periodic Table above indicate each of the following TRENDS: atomic size and ionic size. Na Na + F F - Ne < < < < Chapter 6 Organizing the Elements THE PERIODIC TABLE AND PERIODIC LAW Periodic Table Summary Sheet For the Periodic Table above indicate each of the following TRENDS: atomic size and ionic size Na Na +

More information

Exam Electrons and Periodic Table

Exam Electrons and Periodic Table 1-20 multiple choice. Answer on scantron. 21-25 short response. Answer on exam paper. All questions are 4 points each. 1. Which term is defined as the region in an atom where an electron is most likely

More information

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements

Chapter 7. Generally, the electronic structure of atoms correlates w. the prop. of the elements Chapter 7 Periodic Properties of the Elements I) Development of the P.T. Generally, the electronic structure of atoms correlates w. the prop. of the elements - reflected by the arrangement of the elements

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

Chapter 7. Periodic Properties. of the Elements

Chapter 7. Periodic Properties. of the Elements Chapter 7 7.1 Development of Table in the same group generally have similar chemical properties. Physical are not identical, however. Development of Table Dmitri Mendeleev and Lothar Meyer independently

More information

Chapter 11: MODERN ATOMIC THEORY

Chapter 11: MODERN ATOMIC THEORY Chapter 11: MODERN ATOMIC THEORY LIGHT: Electromagnetic Radiation Light is a form of electromagnetic radiation, a type of energy that travels through space at a constant speed, known as the speed of light

More information

Periodic Properties. of the Elements. 2009, Prentice-Hall, Inc. Periodic Properties of the Elements. 2009, Prentice-Hall, Inc.

Periodic Properties. of the Elements. 2009, Prentice-Hall, Inc. Periodic Properties of the Elements. 2009, Prentice-Hall, Inc. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Chapter 7 11, 19, 21,

More information

Unit 2 Part 2: Periodic Trends

Unit 2 Part 2: Periodic Trends Unit 2 Part 2: Periodic Trends Outline Classification of elements using properties Representative elements, transition elements Metals, nonmetals and metalloids Classification of elements using electron

More information

Topic : Periodic Trends

Topic : Periodic Trends Topic 3.1-3.2: Periodic Trends Essential Ideas: 3.1: The arrangement of elements in the Periodic Table helps to predict their electron configurations 3.2: Elements show trends in their physical and chemical

More information

The Wave Nature of Light. Chapter Seven: Electromagnetic Waves. c = λν. λ and ν are inversely related

The Wave Nature of Light. Chapter Seven: Electromagnetic Waves. c = λν. λ and ν are inversely related The Wave Nature of Light Chapter Seven: ATOMIC STRUCTURE & PERIODICITY Electromagnetic radiation is energy propagated by vibrating electric and magnetic fields. Electromagnetic radiation forms a whole

More information

Honors Unit 6 Notes - Atomic Structure

Honors Unit 6 Notes - Atomic Structure Name: Honors Unit 6 Notes - Atomic Structure Objectives: 1. Students will have a general understanding of the wave nature of light and the interrelationship between frequency, wavelength, and speed of

More information

Chapter 7. Periodic Properties of the Elements. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 7. Periodic Properties of the Elements. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 7 John D. Bookstaver St. Charles Community College Cottleville, MO Development of Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how

More information

Development of Periodic Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how elements should be grouped.

Development of Periodic Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion about how elements should be grouped. Chapter 7 Periodic Properties of the Elements Development of Periodic Table Elements in the same group generally have similar chemical properties. Properties are not identical, however. Development of

More information

Test Topics: Periodic Table, Atomic Theory, Physical/Chemical Properties, Atom, Isotopes, Average Atomic Mass

Test Topics: Periodic Table, Atomic Theory, Physical/Chemical Properties, Atom, Isotopes, Average Atomic Mass Elemental Properties Review Worksheet Test Topics: Periodic Table, Atomic Theory, Physical/Chemical Properties, Atom, Isotopes, Average Atomic Mass Periodic Table 1. List the element symbols for the following

More information

Development of Periodic Table

Development of Periodic Table Development of Table in the same group generally have similar chemical properties. are not identical, however. Development of Table Dmitri Mendeleev and Lothar Meyer independently came to the same conclusion

More information

Atomic Model and Periodic Table Test Review

Atomic Model and Periodic Table Test Review Atomic Model and Periodic Table Test Review A. Give the family name for each description. 1. I have 1 electron on my outer shell. 2. One of the elements has 35 protons. 3. I have 2 electrons on my outer

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements Development of Periodic Table Elements in the same group generally have similar chemical properties. Properties are not identical, however. Development of

More information

The Periodic Table. Unit 4

The Periodic Table. Unit 4 The Periodic Table Unit 4 I. History A. Dmitir Mendeleev Russian chemist, 19th century Arranged elements by their properties Arranged by increasing atomic mass Groups: vertical groups-elements have similar

More information

Honors Chemistry. If an element has a LOW ionization energy, what does that tell you about its tendency to lose electrons?

Honors Chemistry. If an element has a LOW ionization energy, what does that tell you about its tendency to lose electrons? Do Now: Location on Periodic Table Lose or Gain electrons to obtain noble gas electron configuration? Form cations or anions? Relative ionization energy Relative electronegativity Metals Nonmetals If an

More information

Periodic Nomenclature Columns are called groups or families o 18 columns in standard periodic table o Traditionally numbered I-VIII, followed by A or

Periodic Nomenclature Columns are called groups or families o 18 columns in standard periodic table o Traditionally numbered I-VIII, followed by A or 6.1 Development of the Modern Periodic Table Objectives: 1. Describe the major advancements in development of the periodic table 2. Describe the organization of the elements on the periodic table 3. Classify

More information

Unit 5. The Periodic Table

Unit 5. The Periodic Table Unit 5 The Periodic Table I. Development of Periodic Table Periodic law: when elements are arranged in order of increasing atomic number, their physical and chemical properties show a periodic pattern.

More information

Periodic Relationships

Periodic Relationships Periodic Relationships 1 Tabulation of Elements Mendeleev (1869) Arranged by mass Tabulation by chem.& physical properties Predicted missing elements and properties 2 Modern Periodic Table Argon vs. potassium

More information

Chemistry 101 Chapter 11 Modern Atomic Theory

Chemistry 101 Chapter 11 Modern Atomic Theory Chemistry 101 Chapter 11 Modern Atomic Theory Electromagnetic radiation: energy can be transmitted from one place to another by lightmore properly called electromagnetic radiation. Many kinds of electromagnetic

More information

Lewis Structures. Lewis Structures. Lewis Structures. Lewis Structures. What pattern do you see? What pattern do you see?

Lewis Structures. Lewis Structures. Lewis Structures. Lewis Structures. What pattern do you see? What pattern do you see? Look at the following chart: IA IIA IIIA IVA VA VIA VIIA VIIIA 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 The Roman Numerals are the Group numbers from the Periodic Table, Beneath them is the outer

More information

1. Ham radio operators often broadcast on the 6 meter band. The frequency of this electromagnetic radiation is MHz. a. 500 b. 200 c. 50 d. 20 e. 2.

1. Ham radio operators often broadcast on the 6 meter band. The frequency of this electromagnetic radiation is MHz. a. 500 b. 200 c. 50 d. 20 e. 2. Name: Score: 0 / 60 points (0%) [1 open ended question not graded] Chapters 6&7 Practice Exam Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Ham radio

More information

The Periodic Table. Atoms, Elements, and the Periodic Table

The Periodic Table. Atoms, Elements, and the Periodic Table Atoms, Elements, and the Periodic Table Element: a pure substance that cannot be broken down into simpler substances by a chemical reaction. Each element is identified by a one- or two-letter symbol. Elements

More information

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum V I B G Y O R All EM radiation travels at the speed of light, c = 3 x 10 8 m/s Electromagnetic radiation is a wave with a wavelength

More information

The Periodic Table. Beyond protons, neutrons, and electrons

The Periodic Table. Beyond protons, neutrons, and electrons The Periodic Table Beyond protons, neutrons, and electrons It wasn t always like this Early PT Folks n Johann Dobereiner n Triads- groups of 3 with similarities/ trends n Cl, Br, I the properties of Br

More information

Periodic Table and Periodicity. BHS Chemistry 2013

Periodic Table and Periodicity. BHS Chemistry 2013 Periodic Table and Periodicity BHS Chemistry 2013 In 1869, Dmitri Mendeleev, a Russian chemist noticed patterns in certain elements. He discovered a way to arrange the elements so that they were organized

More information

Topic 3: Periodic Trends and Atomic Spectroscopy

Topic 3: Periodic Trends and Atomic Spectroscopy Topic 3: Periodic Trends and Atomic Spectroscopy Introduction Valence Electrons are those in the outer most shell of an element and are responsible for the bonding characteristics of that element. Core

More information

Chapter 6: The Periodic Table

Chapter 6: The Periodic Table Chapter 6: The Periodic Table (Lecture Notes) Russian chemist Mendeleev proposed that properties of elements repeat at regular intervals when they are arranged in order of increasing atomic mass. He is

More information

Chapter 7 Problems: 16, 17, 19 23, 26, 27, 30, 31, 34, 38 41, 45, 49, 53, 60, 61, 65, 67, 75, 79, 80, 83, 87, 90, 91, 94, 95, 97, 101, 111, 113, 115

Chapter 7 Problems: 16, 17, 19 23, 26, 27, 30, 31, 34, 38 41, 45, 49, 53, 60, 61, 65, 67, 75, 79, 80, 83, 87, 90, 91, 94, 95, 97, 101, 111, 113, 115 Chapter 7 Problems: 16, 17, 19 23, 26, 27, 30, 31, 34, 38 41, 45, 49, 53, 60, 61, 65, 67, 75, 79, 80, 83, 87, 90, 91, 94, 95, 97, 101, 111, 113, 115 117, 121, 122, 125a Chapter 7 Atomic Structure and Periodicity

More information

Notes: Unit 6 Electron Configuration and the Periodic Table

Notes: Unit 6 Electron Configuration and the Periodic Table Name KEY Block Notes: Unit 6 Electron Configuration and the Periodic Table In the 1790's Antoine Lavoisier compiled a list of the known elements at that time. There were only 23 elements. By the 1870's

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

History German J. W. Dobereiner Grouped elements into triads

History German J. W. Dobereiner Grouped elements into triads The Periodic Table History 1829 German J. W. Dobereiner Grouped elements into triads One of these triads included chlorine, bromine, and iodine; another consisted of calcium, strontium, and barium. In

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

Chapter 2: The Structure of the Atom and the Periodic Table

Chapter 2: The Structure of the Atom and the Periodic Table Chapter 2: The Structure of the Atom and the Periodic Table 1. What are the three primary particles found in an atom? A) neutron, positron, and electron B) electron, neutron, and proton C) electron, proton,

More information

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy?

Periodic Trends. 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? Periodic Trends 1. Why is it difficult to measure the size of an atom? 2. What does the term atomic radius mean? 3. What is ionization energy? 4. What periodic trends exist for ionization energy? 5. What

More information

WORKSHOP 10: Quantum Mechanics and Chemical Periodicity

WORKSHOP 10: Quantum Mechanics and Chemical Periodicity NAME WORKSHOP 10: Quantum Mechanics and Chemical Periodicity Section Many important facts and laws in chemistry are experimentally determined, and then rationalized in terms of a theory or artificial concept.

More information

Keep protons in the nucleus from repelling each other. Atomic Number Mass Number Atomic Mass number of protons determines identity of atom

Keep protons in the nucleus from repelling each other. Atomic Number Mass Number Atomic Mass number of protons determines identity of atom Module 1 - The Atom page 1 of 5 A: Matter & Energy Matter The Has, can be weighed, takes up space Made of Energy Makes the stuff do things, like move or glow No mass, doesn t take up space B: Atomic Structure

More information

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements Gilbert Kirss Foster Chapter3 Atomic Structure Explaining the Properties of Elements Chapter Outline 3.1 Waves of Light 3.2 Atomic Spectra 3.3 Particles of Light: Quantum Theory 3.4 The Hydrogen Spectrum

More information

Chemical Periodicity. Periodic Table

Chemical Periodicity. Periodic Table Chemical Periodicity Periodic Table Classification of the Elements OBJECTIVES: Explain why you can infer the properties of an element based on those of other elements in the periodic table. Classification

More information

Chapter 7 Periodic Properties of the Elements

Chapter 7 Periodic Properties of the Elements Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Z eff, and how Z eff depends on nuclear charge and electron configuration. Predict the

More information

8.6,8.7 Periodic Properties of the Elements

8.6,8.7 Periodic Properties of the Elements Pre -AP Chemistry 8.6,8.7 Periodic Properties of the Elements READ p. 305 315, 294-296 Practice Problems Pg 315 -Exercise 8.9 Pg 318-321 #36, 55, 64, 66, 67, 69, 72, 80 Periodic Trends are predictable

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

Atomic Structure and Periodicity

Atomic Structure and Periodicity Atomic Structure and Periodicity Atoms and isotopes: Isotopes-#p + same for all but mass number is different b/c of # n o Average atomic mass is weighted average of all the isotopes for an element Average

More information

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited

I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited NCCS 1.1.2 & 1.1.3 I understand the relationship between energy and a quanta I understand the difference between an electron s ground state and an electron s excited state I will describe how an electron

More information

Periodic Trends. More than 20 properties change in predictable way based location of elements on PT

Periodic Trends. More than 20 properties change in predictable way based location of elements on PT Periodic Trends Periodic Trends More than 20 properties change in predictable way based location of elements on PT Some properties: Density Melting point/boiling point Atomic radius Ionization energy Electronegativity

More information