Honors Unit 6 Notes - Atomic Structure

Size: px
Start display at page:

Download "Honors Unit 6 Notes - Atomic Structure"

Transcription

1 Name: Honors Unit 6 Notes - Atomic Structure Objectives: 1. Students will have a general understanding of the wave nature of light and the interrelationship between frequency, wavelength, and speed of electromagnetic radiation. 2. Students will have a general understanding of the quantum hypothesis, Einstein s photoelectric effect, and Bohr s contributions to the model of the atom. Based on modern theories of the behavior of electrons, students will be able to explain the production of bright line spectra and will have a basic understanding of the particlewave nature of matter. 3. Students will be able to represent electrons in terms of electron configurations, orbital notations, and core notations for ground state atoms, excited atoms, and ions. 4. Students will develop an understanding of the relationship between electron configuration and the structure of the periodic table. Students will begin to develop and understanding of the relationship between electron configuration and various properties of individual atoms: magnetic properties, atomic radii, ionic radii, ionization energy, electron affinity, and metallic, nonmetallic and noble gas properties. Light, Photon Energies, and Atomic Spectra [pgs in textbook] o Electromagnetic waves o Visible light a form of electromagnetic radiation that is perceivable to human beings and is seen in the colors of the rainbow

2 2 Wave Vocabulary o Crest o Trough o (λ ) the distance from crest to crest or trough to trough in a wave Units: o (ν ) the number of wavelengths that pass a given point in a second Units: o - the distance from the origin to the crest or the trough of a wave o (represented by the variable ) the rate at which all forms of electromagnetic radiation travel through a vacuum Speed of light = Relationship between Wavelength & Frequency As Wavelength increases, frequency. As Wavelength decreases, frequency.

3 3 Wave Equation (Wave Theory of Light) One equation relates speed, frequency, and wavelength: o c = o λ = o ν = Example #1: The wavelength of the radiation which produces the yellow color of sodium vapor light is nm. What is the frequency of this radiation? The Electromagnetic Spectrum o Complete range of wavelengths and frequencies o Mostly invisible

4 o The visible spectrum continuous spectrum; components of white light split into its colors ROY G. BIV From (violet) to (red) Can be split by a prism 4 Particle Theory of Light o Light is generated as a stream of light particles called. o Equation: E = h = ν = Example #1: (a) If the frequency of a ray of light is 5.09 x Hz, calculate the energy, in Joules, of a photon emitted by an excited sodium atom. (b) Calculate the energy, in kilojoules, of a mole of excited sodium atoms. Example #2: What is the energy of a photon from the green portion of the rainbow if it has a wavelength of 4.90 x 10-7 m?

5 5 Bohr Model of the Atom [pgs in textbook] When an electron absorbs a photon of energy, the electron jumps from its ground state to its excited state. o Ground state o Excited state o Line Spectra (a.k.a Atomic Emission Spectra) Unique for every element Used to identify unknown elements To emit light, an electron will drop from its excited state to its ground state. As it falls, energy is emitted that we see as light. Is Light a Particle or Wave? o (1921) Albert Einstein wins Novel Prize in Physics for the photoelectric effect o Photoelectric effect occurs when strikes the surface of a metal and are ejected. o Conclusion: Light not only has but also has properties. These mass-less particles, called, are packets of energy. Light has a!

6 6 Quantum Mechanics [pgs in textbook] o Quantum mechanics o Erwin Schrödinger wave equation that describes hydrogen atom o - the exact location and speed of an electron cannot be determined simultaneously (if you try to observe it, you interfere with the particle) You can know either the location or the velocity, but not both! Electrons exist in and not on specific rings or orbits like in the Bohr model of the atom. Atomic Structure Quantum numbers o They range from the most general locator to the most specific. 1. Energy Level (n) o Always a positive integer o Indicates size of orbital, or how far is from Larger n value = o Similar to Bohr s energy levels or shells o n = for given element 2. Sublevel o Indicates of orbital o Letters

7 7 Energy level 1 has Energy level 2 has Energy level 3 has Energy levels 4-7 have 3. Orbital o The most specific piece of information is about the number and location of the electrons within the sublevel The sublevel has The sublevel has The sublevel has The sublevel has o Orbital Every orbital can hold! Shapes of atomic orbitals: s = p = d = f =

8 8 Capacities of Levels, Sublevels, and Orbitals Principal Energy level (n) 1 Sublevels Present (s, p, d, or f) Number of Orbitals Present s p d f Total Number of Orbitals Maximum Number of Electrons in Energy Level Rules for how Electrons fill into the Electron Cloud Electrons take position into the cloud according to a set of rules Aufbau Principle Pauli Exclusion Principle Hund s Rule An Introduction to Electron Configuration [pgs in textbook] The system of numbers and letters that designates the most probable locations of e - 3 major methods: o o o

9 9 Full Electron Configuration Example Notation: 1s 2 2s 1 Pronounced: A. What does the coefficient mean? B. What does the letter mean? C. What does the exponent mean? Steps for Writing Full Electron Configurations: 1. Determine the total number of electrons the atom has (for neutral atoms it is equal to the atomic number for the element). Example: F atomic # = # of p+ = # of e- = 2. Fill orbitals in order of increasing energy. 3. Make sure the total number of electrons in the electron configuration equals the atomic number. Aufbau Chart (Filling Order of Energy Levels) When writing electron configurations: d sublevels are n 1 from the row they appear in on the periodic table f sublevels are n 2 from the row they appear in on the periodic table

10 Practice! Write full electron configurations for the following elements: 10 Nitrogen: Helium: Phosphorous: Rhodium: Bromine: Cerium: Noble Gas/Abbreviated Configuration A. Where are the noble gases on the periodic table? B. Why are the noble gases special? C. How can we use noble gases to shorten regular electron configurations? 1. Look at the periodic table and find the noble gas in the row above where the element is. 2. Start the configuration with the symbol for that noble gas in brackets, followed by the rest of the electron configuration. Example: Tin

11 Practice! Write noble gas configurations (abbreviated electron configurations) for the following elements 11 Sulfur: Rubidium: Bismuth: Zirconium: Orbital Diagrams (Orbital Diagram Configuration) Orbital diagrams use (sometimes circles) to represent and. are used to represent the. = Sublevels = Don t forget - orbitals have a capacity of!! Two electrons in the same orbital must have so draw the arrows pointing in. Example: Orbital diagram for oxygen

12 Drawing Orbital Diagrams 1. First, determine the electron configuration for the element. 2. Next draw boxes for each of the orbitals present in the electron configuration. Boxes should be drawn in order of increasing energy (see the Aufbau chart). 3. Arrows are drawn in the boxes starting from the lowest energy sublevel and working up. This is known as the Aufbau principle. Add electrons one at a time to each orbital in a sublevel before pairing them up (Hund s rule) The first arrow in an orbital should point up; the second arrow should point down (Pauli exclusion principle) 4. Double check your work to make sure the number of arrows in your diagram is equal to the total number of electrons in the atom. # of electrons = atomic number for an atom 12 Practice! Draw orbital diagrams for the following elements: Nitrogen: Nickel: Electron Configurations: Periodic Relationships [pgs in textbook] o Valence electrons o They determine the chemical properties of an element.

13 o Write the noble gas configuration for an element the valence electrons are the ones 13 Electron Configurations of Ions Cations: (Z = 11) Na Draw Na + Anions: Draw Cl - Transition metals: lose electrons from the highest principal energy level (n) first, then they lose their d electrons Electron configuration for Zr atom = Electron configuration for Zr +2 =

14 Periodic Properties &Trends [pgs in textbook] 1. Electronegativity (See page 8 in your reference book for values on the Pauling scale.) ***TREND: Increases going and to the. Across a period Down a group 2. Atomic Radius ***TREND: Increases going and to the. Down a group Across a period ***Remember*** LLLL Lower, Left, Large, Loose

15 3. Ionic Radius 15 o Ionic Radius of Cations o Ionic Radius of Anions ***Cations are than the atoms from which they form. ***Anions are than the atoms from which they form. Trends in ion sizes are the same as the trends in atom sizes. 4. Ionization Energy o 1 st I.E. = o 2 nd I.E. = o 3 rd I.E. = Ex. B --> B + + e- Ex. B + --> B +2 + e- Ex. B +2 --> B +3 + e- I.E. = 801 kj/mol I.E.2 = 2427 kj/mol I.E.3 = 3660 kj/mol ***TREND: Increases going and to the. Down a group Across a period ***Remember*** LLLL Lower, Left, Large, Loose

16 5. Metallic Character 16 ***TREND: Increases going and to the. Think about where the metals and nonmetals are located on the periodic table to help you remember the trend for metallic character!! 6. Electron Affinity ***TREND: Increases going and to the. Summary of Periodic Trends:

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry

Electronic Structure and the Periodic Table. Unit 6 Honors Chemistry Electronic Structure and the Periodic Table Unit 6 Honors Chemistry Wave Theory of Light James Clerk Maxwell Electromagnetic waves a form of energy that exhibits wavelike behavior as it travels through

More information

LIGHT AND THE QUANTUM MODEL

LIGHT AND THE QUANTUM MODEL LIGHT AND THE QUANTUM MODEL WAVES Wavelength ( ) - length of one complete wave Frequency ( ) - # of waves that pass a point during a certain time period hertz (Hz) = 1/s Amplitude (A) - distance from the

More information

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14 1 Chapter 13 Electrons in Atoms We need to further develop our understanding of atomic structure to help us understand how atoms bond to

More information

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model Chapter 5: Electrons in Atoms Honors Chemistry Bohr Model Niels Bohr, a young Danish physicist and a student of Rutherford improved Rutherford's model. Bohr proposed that an electron is found only in specific

More information

Modern Atomic Theory CHAPTER OUTLINE

Modern Atomic Theory CHAPTER OUTLINE Chapter 3B Modern Atomic Theory 1 CHAPTER OUTLINE Waves Electromagnetic Radiation Dual Nature of Light Bohr Model of Atom Quantum Mechanical Model of Atom Electron Configuration Electron Configuration

More information

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of.

: the smallest particle that has the properties of an element. In, this Greek philosopher suggested that the universe was made of. Notes: ATOMS AND THE PERIODIC TABLE Atomic Structure: : the smallest particle that has the properties of an element. From the early concept of the atom to the modern atomic theory, scientists have built

More information

Modern Atomic Theory and Electron Configurations

Modern Atomic Theory and Electron Configurations Chem 101 Modern Atomic Theory and Electron Configurations Lectures 8 and 9 Types of Electromagnetic Radiation Electromagnetic radiation is given off by atoms when they have been excited by any form of

More information

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d. Assessment Chapter Test B Chapter: Arrangement of Electrons in Atoms PART I In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question

More information

Unit 4. Electrons in Atoms

Unit 4. Electrons in Atoms Unit 4 Electrons in Atoms When were most of the subatomic particles discovered? Who discovered densely packed nucleus surrounded by fast moving electrons? Rutherford s Model Major development Lacked detail

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

White Light. Chapter 7 Electron Structure of the Atom

White Light. Chapter 7 Electron Structure of the Atom Chapter 7 Electron Structure of the Atom Electromagnetic Radiation and Energy The Bohr Model of the Hydrogen Atom The Modern Model of the Atom Periodicity of Electron Configurations Valence Electrons for

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE The Electromagnetic Spectrum The Wave

More information

Notes: Electrons and Periodic Table (text Ch. 4 & 5)

Notes: Electrons and Periodic Table (text Ch. 4 & 5) Name Per. Notes: Electrons and Periodic Table (text Ch. 4 & 5) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to

More information

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave nature of

More information

Name Date Period Unit 3 Review: Electrons and the periodic table

Name Date Period Unit 3 Review: Electrons and the periodic table Name Date Period Unit 3 Review: Electrons and the periodic table G Chem; Coleman SHOW YOUR WORK ON ANY AND ALL CALCULATIONS. SIG FIGS MATTER. UNITS MATTER. General Questions: 1. Use the following terms

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes

Electrons, Energy, & the Electromagnetic Spectrum Notes Electrons, Energy, & the Electromagnetic Spectrum Notes Bohr Model Diagram Interpretation What form of EM radiation is released when an electron in a hydrogen atom falls from the 5 th energy level to the

More information

5.1 Light & Quantized Energy

5.1 Light & Quantized Energy 5.1 Light & Quantized Energy Objectives: 1. Describe electromagnetic (EM) wave properties & measures 2. Relate visible light to areas of the EM spectrum with higher & lower energy 3. Know the relationship

More information

Arrangement of Electrons. Chapter 4

Arrangement of Electrons. Chapter 4 Arrangement of Electrons Chapter 4 Properties of Light -Light s interaction with matter helps to understand how electrons behave in atoms -Light travels through space & is a form of electromagnetic radiation

More information

Name Chemistry-PAP Period. Notes: Electrons. Light travels through space as a wave. Waves have three primary characteristics:

Name Chemistry-PAP Period. Notes: Electrons. Light travels through space as a wave. Waves have three primary characteristics: Name Chemistry-PAP Period The Wave Nature of Light Notes: Electrons Light travels through space as a wave. Waves have three primary characteristics: Wavelength (λ): the distance between 2 consecutive crests

More information

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light Objectives To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light 1 A. Rutherford s Atom.but there is a problem here!! 2 Using Rutherford

More information

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation Name: Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book Additional Notes: Electromagnetic Radiation Electromagnetic Spectrum Wavelength Frequency Photoelectric

More information

Unit 3: Electron configuration and periodicity

Unit 3: Electron configuration and periodicity Unit 3: Electron configuration and periodicity Group 1 BOHR MODELS Group 18 H Group 2 Group 13 Group 14 Group 15 Group 16 Group 17 He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca His theory couldn t

More information

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY

ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY ATOMIC STRUCTURE, ELECTRONS, AND PERIODICITY All matter is made of atoms. There are a limited number of types of atoms; these are the elements. (EU 1.A) Development of Atomic Theory Atoms are so small

More information

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 5.1 Notes I. Light and Quantized Energy A. The Wave Nature of Light 1) the wave

More information

CHAPTER 4. Arrangement of Electrons in Atoms

CHAPTER 4. Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms 4.1 Part I Development of a New Atomic Model 4.1 Objectives 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

The Atom & Unanswered Questions:

The Atom & Unanswered Questions: The Atom & Unanswered Questions: 1) Recall-Rutherford s model, that atom s mass is concentrated in the nucleus & electrons move around it. a) Doesn t explain how the electrons were arranged around the

More information

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3 Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 Figure 2 Figure 3 Light Calculation Notes Here s how the type/form of EM radiation can be determined The amount

More information

Academic Chemistry Chapter 5 Electrons in Atoms Notes

Academic Chemistry Chapter 5 Electrons in Atoms Notes Academic Chemistry Chapter 5 Electrons in Atoms Notes Name Date ATOMIC MODEL See Atomic Model Timeline worksheet for specifics. ELECTRONS Quantum Mechanical (QM) Model- This is the currently accepted model

More information

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS Electrons in Atoms ELECTRONS AND THE STRUCTURE OF ATOMS 5.1 Revising the Atomic Model Essential Understanding of an atom. An electron s energy depends on its location around the nucleus Reading Strategy

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior Models of the Atom I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The

More information

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude

1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude Wave Nature of Light 1. Draw a wave below and label the following parts: peak, trough, wavelength and amplitude 2. Draw two waves with different frequencies and circle the wave that has a higher frequency.

More information

Electron Configuration! Chapter 5

Electron Configuration! Chapter 5 Electron Configuration! Chapter 5 DO NOW - Finish coloring your periodic tables! (5 min) State at Room Temperature Appearance Conductivity Malleability and Ductility Metals - solid except for mercury

More information

6.1.5 Define frequency and know the common units of frequency.

6.1.5 Define frequency and know the common units of frequency. CHM 111 Chapter 6 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located?

Unit 3 Periodic Table and Quantum HW Packet Name Date. Periodic Table Concepts. 1. In what family are the most active metals located? Directions: Answer the following questions. Periodic Table Concepts 1. In what family are the most active metals located? 2. In what family are the most active non-metals located? 3. What family on the

More information

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin) Chapter 6 Electronic Structure of Atoms 許富銀 ( Hsu Fu-Yin) 1 The Wave Nature of Light The light we see with our eyes, visible light, is one type of electromagnetic radiation. electromagnetic radiation carries

More information

WARM-UP. Draw each of the three models of the atom that we learned about last unit. Who came up with each? What was wrong with each?

WARM-UP. Draw each of the three models of the atom that we learned about last unit. Who came up with each? What was wrong with each? WARM-UP Draw each of the three models of the atom that we learned about last unit. Who came up with each? What was wrong with each? 1:59 1:58 1:57 1:56 1:55 1:54 1:53 1:52 1:51 1:50 1:49 1:48 1:47 1:46

More information

Light, Waves, and Electrons

Light, Waves, and Electrons Light, Waves, and Electrons Light: Travels 1. 2. Light Waves Wavelength Frequency Electromagnetic Spectrum Speed of light The product of frequency of a wave and wavelength = the speed of light Calculate

More information

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the

Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the Honors Chemistry Ms. Ye Name Date Block Orbital Diagram Rules: 1. The Aufbau Principle: Under normal condition, each electron occupies the 2. The Pauli Exclusion Principle: a maximum of can occupy an orbital

More information

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. ELECTRONS IN ATOMS Chapter Quiz Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. The orbitals of a principal energy level are lower in energy than the orbitals

More information

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates Name Period CRHS Academic Chemistry Unit 4 Electrons Notes Key Dates Quiz Date Exam Date Lab Dates Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11

Modern Atomic Theory. (a.k.a. the electron chapter!) Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 Modern Atomic Theory (a.k.a. the electron chapter!) 1 Chemistry 1: Chapters 5, 6, and 7 Chemistry 1 Honors: Chapter 11 ELECTROMAGNETIC RADIATION 2 Electromagnetic radiation. 3 4 Electromagnetic Radiation

More information

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous? Which of the following would you consider dangerous? X-rays Radio waves Gamma rays UV radiation Visible light Microwaves Infrared radiation Chapter 5 Periodicity and Atomic Structure 2 The Electromagnetic

More information

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom Arrangement of Electrons in Atoms Table of Contents Section 1 The Development of a New Atomic Model Section 2 The Quantum Model of the Atom Section 3 Electron Configurations Section 1 The Development of

More information

The Electron Cloud. Here is what we know about the electron cloud:

The Electron Cloud. Here is what we know about the electron cloud: The Electron Cloud Here is what we know about the electron cloud: It contains the subatomic particles called electrons This area accounts for most of the volume of the atom ( empty space) These electrons

More information

10/27/2017 [pgs ]

10/27/2017 [pgs ] Objectives SWBAT explain the relationship between energy and frequency. SWBAT predict the behavior of and/or calculate quantum and photon energy from frequency. SWBAT explain how the quantization of energy

More information

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation.

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation. Preview Objectives Properties of Light Wavelength and Frequency The Photoelectric Effect The Hydrogen-Atom Line-Emission Spectrum Bohr Model of the Hydrogen Atom Photon Emission and Absorption Section

More information

Atomic Structure Part II Electrons in Atoms

Atomic Structure Part II Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons? Name Chemistry Atomic Structure Essential Question: How was the structure of the atom determined? Vocabulary: bright-line spectrum electron configuration excited state ground state orbital wave-mechanical

More information

Ch 9 Electrons in Atoms & the Periodic Table Study Sheet Acc. Chemistry SCANTRON. Name /99. 3) Light is a type of matter. 3)

Ch 9 Electrons in Atoms & the Periodic Table Study Sheet Acc. Chemistry SCANTRON. Name /99. 3) Light is a type of matter. 3) Ch 9 Electrons in Atoms & the Periodic Table Study Sheet Acc. Chemistry SCANTRON Name /99 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) When the elements are arranged

More information

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Name Date Class 5 Electrons in Atoms Section 5.1 Light and Quantized Energy In your textbook, read about the wave nature of light. Use each of the terms below just once to complete the passage. amplitude

More information

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Name Class Date. Chapter: Arrangement of Electrons in Atoms Assessment Chapter Test A Chapter: Arrangement of Electrons in Atoms In the space provided, write the letter of the term that best completes each sentence or best answers each question. 1. Which of the

More information

Chapter 9: Electrons and the Periodic Table

Chapter 9: Electrons and the Periodic Table C h e m i s t r y 1 2 C h 9 : E l e c t r o n s a n d P e r i o d i c T a b l e P a g e 1 Chapter 9: Electrons and the Periodic Table Work on MasteringChemistry assignments What we have learned: Dalton

More information

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered:

Modern Atomic Theory. Chapter Rutherford s Atom Electromagnetic Radiation. Rutherford showed: Questions left unanswered: Copyright 2004 by Houghton Mifflin Company. Modern Atomic Theory Chapter 10 All rights reserved. 1 10.1 Rutherford s Atom Rutherford showed: Atomic nucleus is composed of protons (positive) and neutrons

More information

Unit 7. Atomic Structure

Unit 7. Atomic Structure Unit 7. Atomic Structure Upon successful completion of this unit, the students should be able to: 7.1 List the eight regions of the electromagnetic spectrum in the designated order and perform calculations

More information

Name: Unit 3 Guide-Electrons In Atoms

Name: Unit 3 Guide-Electrons In Atoms Name: Unit 3 Guide-Electrons In Atoms Importance of Electrons Draw a complete Bohr model of the atom. Write an element s electron configuration. Know how the symbols used in ECs relate to electron properties

More information

Atomic Structure Part II. Electrons in Atoms

Atomic Structure Part II. Electrons in Atoms Atomic Structure Part II Electrons in Atoms Radiant energy travels in the form of waves that have both electrical and magnetic properties. These electromagnetic waves can travel through empty space, as

More information

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT Figure 2 Figure 3 The energy is released as electromagnetic radiation.

More information

UNIT 2 PART 1: ELECTRONS

UNIT 2 PART 1: ELECTRONS UNIT 2 PART 1: ELECTRONS Electrons in an Atom Bohr s Model: Electrons resided in an allowed orbit. Quantum Mechanics Model: Probability of finding an electron in an area around the nucleus. This area around

More information

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE What Makes Red Light Red? (4.1) Electromagnetic Radiation: energy that travels in waves (light) Waves Amplitude: height

More information

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms

Why Patterns for Charges of Common Cations and Anions? Electrons in Atoms Electrons in Atoms From Light to Energy of Electrons in Atom Quantum mechanical description of Atom 1. Principal quantum number: Shell 2. Orientation (shape) of : Subshell 3. Orbitals hold electrons with

More information

Unit 2 - Electrons and Periodic Behavior

Unit 2 - Electrons and Periodic Behavior Unit 2 - Electrons and Periodic Behavior I. The Bohr Model of the Atom A. Electron Orbits, or Energy Levels 1. Electrons can circle the nucleus only in allowed paths or orbits 2. The energy of the electron

More information

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave Properties of Light CHAPTER 4 Light is a form of Electromagnetic Radiation Electromagnetic Radiation (EMR) Form of energy that exhibits wavelike behavior and travels at the speed of light. Together, all

More information

Modern Atomic Theory and the Periodic Table

Modern Atomic Theory and the Periodic Table Modern Atomic Theory and the Periodic Table Chapter 10 the exam would have to be given earlier Hein and Arena Version 1.1 Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Sons,

More information

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion.

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion. Nucleus Contains 99.9% of the mass of an atom Found

More information

ATOMIC STRUCTURE. Wavelength and Frequency

ATOMIC STRUCTURE. Wavelength and Frequency ATOMIC STRUCTURE Wavelength and Frequency WAVELENGTH AND FREQUENCY The Wave Nature of Light Electromagnetic Radiation aka. Radiant energy or light A form of energy having both wave and particle characteristics

More information

Atoms, Electrons and Light MS. MOORE CHEMISTRY

Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms, Electrons and Light MS. MOORE CHEMISTRY Atoms Remember Rutherford??? What did he discover with his gold foil experiment. A: Atoms contain a dense nucleus where the protons and neutrons reside. ATOMS

More information

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine

ELECTRONS IN ATOMS AND THE PERIODIC TABLE. Light and Energy. Chapter Nine ELECTRONS IN ATOMS AND THE PERIODIC TABLE Chapter Nine Light and Energy! Electromagnetic radiation (EM) is an especially important form of energy for scientific study.! Many types of radiant energy are

More information

KWL CHART--ELECTRONS

KWL CHART--ELECTRONS KWL CHART--ELECTRONS WHAT DO I ALREADY KNOW ABOUT ELECTRONS? WHAT DO I WANT TO KNOW CONCERNING ELECTRONS? WHAT HAVE I LEARNED TODAY ABOUT ELECTRONS? GPS STANDARD SC3. Students will use the modern atomic

More information

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies Chemistry: The Central Science Chapter 6: Electronic Structure of Atoms Electronic structure the number of electrons in an atom as well as the distribution of electrons around the nucleus and their energies

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms?

Chapter 7. Characteristics of Atoms. 7.1 Electromagnetic Radiation. Chapter 7 1. The Quantum Mechanical Atom. Atoms: How do we study atoms? Chapter 7 The Quantum Mechanical Atom 1 Characteristics of Atoms Atoms: possess mass contain positive nuclei contain electrons occupy volume have various properties attract one another combine to form

More information

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements

Gilbert Kirss Foster. Chapter3. Atomic Structure. Explaining the Properties of Elements Gilbert Kirss Foster Chapter3 Atomic Structure Explaining the Properties of Elements Chapter Outline 3.1 Waves of Light 3.2 Atomic Spectra 3.3 Particles of Light: Quantum Theory 3.4 The Hydrogen Spectrum

More information

Chapter 5 Electrons In Atoms

Chapter 5 Electrons In Atoms Chapter 5 Electrons In Atoms 5.1 Revising the Atomic Model 5.2 Electron Arrangement in Atoms 5.3 Atomic Emission Spectra and the Quantum Mechanical Model 1 Copyright Pearson Education, Inc., or its affiliates.

More information

Light. Light (con t.) 2/28/11. Examples

Light. Light (con t.) 2/28/11. Examples Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

CHAPTER 4 Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms CHAPTER 4 Arrangement of Electrons in Atoms SECTION 1 The Development of a New Atomic Model OBJECTIVES 1. Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic

More information

CHAPTER 5 Electrons in Atoms

CHAPTER 5 Electrons in Atoms CHAPTER 5 Electrons in Atoms 5.1 Light & Quantized Energy Was the Nuclear Atomic model incomplete? To most scientists, the answer was yes. The arrangement of electrons was not determined > Remember...the

More information

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model Chapter 4 Arrangement of Electrons in Atoms 4.1 The Development of a New Atomic Model Properties of Light Electromagnetic Radiation: EM radiation are forms of energy which move through space as waves There

More information

Name Date Class ELECTRONS IN ATOMS

Name Date Class ELECTRONS IN ATOMS Name _ Date Class 5 ELECTRONS IN ATOMS SECTION 5.1 MODELS OF THE ATOM (pages 127 132) This section summarizes the development of atomic theory. It also explains the significance of quantized energies of

More information

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms Chapter 9 Electrons in Atoms and the Periodic Table Blimps, Balloons, and Models for the Atom Hindenburg Blimps, Balloons, and Models for the Atom Properties of Elements Hydrogen Atoms Helium Atoms 1 Blimps,

More information

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET

EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET EM SPECTRUM, WAVELENGTH, FREQUENCY, AND ENERGY WORKSHEET 1.) Look at the EM spectrum below to answer this question. As you move across the visible light spectrum from red to violet (A) Does the wavelength

More information

The Bohr Model of the Atom

The Bohr Model of the Atom Unit 4: The Bohr Model of the Atom Properties of light Before the 1900 s, light was thought to behave only as a wave. Light is a type of electromagnetic radiation - a form of energy that exhibits wave

More information

Chemistry: Hood River Valley High School Unit 3 Note Packet and Goals. Description A1. Marble Lab. Nailon Isotope Lab A2.

Chemistry: Hood River Valley High School Unit 3 Note Packet and Goals. Description A1. Marble Lab. Nailon Isotope Lab A2. Chemistry: Hood River Valley High School Unit 3 Note Packet and Goals Name: Period: Unit 3 Atomic Structure and Periodic Table Unit Goals- As you work through this unit, you should be able to: 1. describe

More information

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People

Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Accelerated Chemistry Study Guide Electron Configurations, Chapter 4 Key Concepts, Terms, and People Electromagnetic radiation Amplitude Wavelength Frequency Speed of light Visible spectrum Quantum (Planck)

More information

Electrons! Chapter 5

Electrons! Chapter 5 Electrons! Chapter 5 I.Light & Quantized Energy A.Background 1. Rutherford s nuclear model: nucleus surrounded by fast-moving electrons; no info on how electrons move, how they re arranged, or differences

More information

Unit 4B- Electron Configuration- Guided Notes

Unit 4B- Electron Configuration- Guided Notes Unit 4B- Electron Configuration- Guided Notes Atomic Structure Electrons are arranged in or around the nucleus of an atom o First shell can hold a maximum of electrons o Second shell can hold a maximum

More information

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed.

Ch. 7 The Quantum Mechanical Atom. Brady & Senese, 5th Ed. Ch. 7 The Quantum Mechanical Atom Brady & Senese, 5th Ed. Index 7.1. Electromagnetic radiation provides the clue to the electronic structures of atoms 7.2. Atomic line spectra are evidence that electrons

More information

Chapter 3: Electron Structure and the Periodic Law

Chapter 3: Electron Structure and the Periodic Law Chapter 3: Electron Structure and the Periodic Law PERIODIC LAW This is a statement about the behavior of the elements when they are arranged in a specific order. In its present form the statement is:

More information

Unit 3. The Atom & Modern Atomic Theory

Unit 3. The Atom & Modern Atomic Theory Unit 3 The Atom & Modern Atomic Theory Theories of the Atom Early Models & Thoughts: Democritus Matter is made up of tiny particles called atoms. Smallest unit that retains the identity of the element

More information

Atomic Emission Spectra, & Electron Configuration. Unit 1 Coral Gables Senior High Ms. Kiely Pre-IB Chemistry I

Atomic Emission Spectra, & Electron Configuration. Unit 1 Coral Gables Senior High Ms. Kiely Pre-IB Chemistry I Atomic Emission Spectra, & Electron Configuration Unit 1 Coral Gables Senior High Ms. Kiely Pre-IB Chemistry I Bell-Ringer What does Heisenberg s Uncertainty Principle state? Answer Heisenberg s Uncertainty

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Chapter 5: Electrons in Atoms 5 Section 5.1 Section Section 5.3 Table Of Contents Light and Quantized Energy Electron Configuration Compare the wave and particle natures of

More information

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength. Advanced Chemistry Chapter 13 Review Name Per Show all work Wave Properties 1) Which one of the following is correct? A) ν + λ = c B) ν λ = c C) ν = cλ D) λ = c ν E) νλ = c 2) The energy of a photon of

More information

Terms to Know. 10.Angular quantum number 11.Magnetic quantum number 12.Spin quantum number

Terms to Know. 10.Angular quantum number 11.Magnetic quantum number 12.Spin quantum number Terms to Know 1. Photon 2. Atomic emission spectrum 3. Ground state 4. Atomic orbital 5. Aufbau principle 6. Pauli exclusion principle 7. Hunds rule 8. Electron configuration 9. Principle quantum number

More information

#9 Modern Atomic Theory Quantitative Chemistry

#9 Modern Atomic Theory Quantitative Chemistry Name #9 Modern Atomic Theory Quantitative Chemistry Student Learning Map Unit EQ: What is the current model of the atom? Key Learning: The current model of the atom is based on the quantum mechanical model.

More information

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School Atomic Theory Unit 3 Development of the Atomic Theory 1. Where is the mass of the atom concentrated? 2. What is located in the nucleus? 3. What is the negative particle that orbits the nucleus? 4. What

More information

Electron Configuration

Electron Configuration Electron Configuration Plumb Pudding Atomic Model Thomson s atomic model consisted of negatively charged electrons embedded in a ball of positive charge. Diagram pg 81 of chemistry text. Rutherford s Model

More information

Ch 6 Atomic Spectra. Masterson & Hurley

Ch 6 Atomic Spectra. Masterson & Hurley Ch 6 Atomic Spectra Masterson & Hurley 1 Joule = 1 kg m 2 s 2 Ch 6.1 Light, Photon Energies, & Atomic Spectra What scientists know about light, scientists are able to explain the structure of the atom.

More information

Atomic Electron Configurations and Periodicity

Atomic Electron Configurations and Periodicity Atomic Electron Configurations and Periodicity Electron Spin The 4 th quantum number is known as the spin quantum number and is designated by m s. It can have the value of either + ½ or ½ It roughly translates

More information

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light Chapter 5 Periodic Table Song Periodicity and Atomic Structure Development of the Periodic Table Mid-1800 s, several scientists placed known elements in order based on different criteria. Mendeleev s and

More information

Energy and the Quantum Theory

Energy and the Quantum Theory Energy and the Quantum Theory Light electrons are understood by comparing them to light 1. radiant energy 2. travels through space 3. makes you feel warm Light has properties of waves and particles Amplitude:

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information