Homogeneous Gold Catalysis - Unique Reactivity for Activation of C C Multiple Bonds

Size: px
Start display at page:

Download "Homogeneous Gold Catalysis - Unique Reactivity for Activation of C C Multiple Bonds"

Transcription

1 1 rganic Seminar omogeneous Gold Catalysis - Unique Reactivity for Activation of C C Multiple Bonds ysical rganic Chemistry Laboratory (Nakamura Laboratory) D2 Masaki Sekine

2 Development of Gold Catalysis 2 Gold is ighly stable. Dissolved only in aqua regia or such strong oxidants igh Price. Symbol of wealth. Money itself. Neglected in the field of organic chemistry for so long time. Number of publications on gold catalysis from 1900 to May Number of publications on homogeneous gold catalysis only omogeneous gold catalysis is still in the early stage. ashmi, A. S. K.; atchings, G. J. ACIE, 2006, 45, 7896.

3 Relativistic Effect in Gold 3 Relativistic contraction of the 6s shell Ionization potentials for the Group 11 and Group 12 transition metals Dirac-artree-Fock (DF): relativistic artree-fock (F): non-relativistic Pseudopotential (ps): without regard for f electrons Relativistic effects are crucial to understanding the electronic structure of gold (1) Pyykkö, P.; Desclaux, J. P. Acc. Chem. Res. 1979, 12, 276. (2) Pitzer, K. S. Chem. ys. Lett. 1975, 33,

4 Unique Reactivity of Gold(I) 4 Relativistic Effect Affects the Reactivity of Au(I) Comparison of Au and Ag bond energies Strong Lewis acidity Covalent-like bond with ligand share positive charge with ligand soft Lewis acid ighly and selectively activates soft electrophiles (π-systems) Pyykkö, P.; Desclaux, J. P. Acc. Chem. Res. 1979, 12, 276.

5 Initial Studies of Gold Catalysis (1) 5 Simplest Form of Nucleophilic Addition to a C C multiple bond [Au] + R' R R Nu Nu: [Au] ~ + R R' [Au] + Nu R' The Earliest Experiment: ydration of Alkynes 7 mol% [AuCl 4 ] R 1 R 2 R 1 Me/ 2, 65 ºC R 2 + [Au] Markovnikov addition ~ 38% (TN ~ 6) ~ + [Au] [Au] R 1 R R 1 [Au] 2 2 R 2 Thomas, C. B. et al. J. Chem. Soc. Perkin Trans. I, 1976, Gold(III) was recognized as a stoichiometric oxidant. cf.) Cu(II): Fehling solution Ag(I) : Tollens test The same reaction system was rediscovered in (Fukuda, Y.; Utimoto, K. J. rg. Chem. 1991, 56, 3729.)

6 Initial Studies of Gold Catalysis (2) 6 Superior Reactivity to ther Metal Cations ydroamination R 2 2 N R 1 5 mol% Na[AuCl 4 ] MeCN, rt, 12 h 6-exo-dig cyclization R 1 R 2 N R 2 N R 1 ~ quant. R Use of 5 mol% PdCl 2 (MeCN) 2 / EtCN / reflux / 20 h; 70% conversion. Asymmetric Aldol Reaction with Isocyanides Utimoto, K. et al. eterocycles 1987, 25, 297. CMe 1 mol% [Au(c-exNC) 2 ] + BF 4 R CMe R CMe Ligand + N N N C 2 Cl 2, rt, h ~ 100 % yield trans cis Ligand = Fe Me NMe(C 2 ) 2 NEt 2 P 2 igh enantioselectivity (> 90% ee) igh trans selectivity (> 97%) Use of Ag or Cu; low selectivity P 2 Ito, Y.; ayashi, T. JACS 1986, 108, 6406.

7 7 Difference of Reactivity between Au(I) and Au(III) Different xidation States Led to Divergent Product 2 mol% AuCl 3 2 mol% Et 3 PAuCl n-ct toluene n-ct toluene n-ct [Au(III)] n-ct [Au(III)] [Au(I)] [Au(I)] n-ct Gevorgyan, V. et al. JACS, 2005, 127, Theoretical Analysis (298 K, 1 atm) (B 3 LYP/LACV 3 P**//B 3 LYP/LACVP* level of theory)) G rel Cl 3 Au AuCl Au(III) thermodynamically prefers aldehyde coordination Straub, B. F. et al. Chem. Commun., 2004, 1726.

8 Ligand Effects on Au(I) Catalysis 8 Ac 2 mol% LAuCl / AgBF 4 + C Bu 2 Cl 2, rt, 5 min. Ac Bu Ac Bu entry ligand 2 (%) 3 (%) N N N N 1 P N N 2 ITM ITM IPr SIPr 3 4 SIPr IPr Bulky ligand prevent a direct hydroarylation step. Ac Bu 1 [Au + ] 1,3-shift [Au + ] Ac Bu 1,2-shift Bu 2 Ac Ac Ac [Au + ] 1,2-shift Ac 3 Bu Bu [Au] Bu Nolan, S. P. et al. ACIE 2006, 45, 3647.

9 Intramolecular Acetylenic Schmidt Reaction with a Diphosphine Ligand N mol% (dppm)(aucl) 2 5 mol% AgSbF 6 C 2 Cl 2, 35 ºC, 40 min. LAu N 84% N 9 LAu + N 2 N N 2 N N 2 Use of monodentate phosphine Recovery of SM LAu LAu Toste, F. D. et al. JACS 2005, 127, Possible Aurophilic Interaction R 2 P Au P 2 R inactive dppm 2 P Au ~ 3 Å, 7-12 kcal/mol. P Au 2 active catalyst Aurophilic interaction stabilizes the active monoligated catalyst? (still remains unclear.) (a) Schmidbaur,. et al. ACIEE, 1988, 27, (b) Toste, F. D. et al. ACIE 2010, 49, 5519.

10 Carbene Character of Au(I) Species 10 Au Calculated bond length: Non-relativistic: Å Relativistic: Å Au Calculated: Å Significant backbonding from Au(I) into vacant p orbitals on carbon Stabilize carbene intermediates Schwarz,. et al. JACS 1995, 117, 495. Barysz, M.; Pyykkö, P. Chem. ys. Lett. 1998, 285, 398. Comparison of Reactivities of Au(I) and In(III) InCl 3 (5 mol%) AuCl (5 mol%) [Au] [In] Fürstner, A. et al. Chem. Eur. J. 2004, 10, 4556.

11 Intramolecular Cycloisomerization of Enyne 11 Divergent Transformation of 1,6-Enynes (Echavarren, A. M. et al. Chem. Rev. 2008, 108, 3326.) LAu + R 1 Z R 2 R 3 R 4 5-exo-dig LAu R 1 Z R 2 R 3 R 4 Z = C(CMe) 2, NTs, C(S 2 ) 2, etc... 6-endo-dig Z AuL R 1 R 3 R 2 R 4

12 12 Mechanistic Insight of Cycloisomerization of Enyne 1-1 NESY Experiment on Equilibrium of Enyne-Au(I) π-complex Me 2 C [Au] Me 2 C A [Au] fast (at rt) Cycloisomerization Me 2 C Me 2 C [Au] A:B ~ 1:1 (at 223 K) [Au] Me 2 C Me 2 C! No preference in the coordination step to alkynes over alkenes B Bertrand, G. et al. PNAS 2007, 119, What Causes Selective Reaction Route? Energy levels of alkynesʼ LUMs are intrinsically lower than those of alkenesʼ (by ~0.5 ev) Alkenes are intrinsically more nucleophilic. Electrophilic alkynes become more electrophilic by Au(I) coordination.

13 Intermolecular [2+2] Cycloaddition 13 Difficulty of Intermolecular Cycloaddition Many possible products Resulting products could react further with the starting alkyne. Gold(I)-Catalyzed Intermolecular Cycloaddition for Cyclobutene Synthesis R 2 R 1 + R 4 R 3 t Bu [Au(I)] = [Au(I)] (3 mol%) C 2 Cl 2, rt, 7-72 h t Bu SbF P Au NCMe 6 i Pr i Pr i Pr R 1 R 4 R 3 R 2 20 examples 44-80% yield Bulky ligand prevents undesirable side-reaction. Echavarren, A. M. et al. JACS, 2010, 132, 9292.

14 Application for Total Synthesis 14 Total Synthesis of ( )-Englerins A (Echavarren, A. M. et al. ACIE, 2010, 49, 3517.) TES [IPrAu-NC]SbF 6 (3 mol%) C 2 Cl 2, rt, 5h TES Another synthetic route has been reported by K. C. Nicolau in 2010; 28 steps. 67% yield Single diastereomer ( )-Englerins A (inhibitor of renal cancer) 18 steps, 7% overall yield Enantioselective Tandem Reaction (Toste, F. D. et al. JACS 2010, 132, 8276.) Me Me Me Et 2 C Et 2 C 3 mol% Me-DTBM-BIPEP(AuCl) 2 3 mol% AgSbF 6 m-xylene, rt Et 2 C Et 2 C Me 61%, 97% ee 6 other similar examples

15 Gold Catalyzed Sonogashira Coupling? 15 I + [Au I ] cat. (20 mol%) K 3 P 4 (1.4 equiv) o-xylene, 130 ºC, 24 h 54% t Bu 3 P Au N Au P 3 N Au P 3 Au(I), which has the same d 10 electronic configuration as Pd metal and Cu(I), is active and very selective for performing the Sonogashira reaction. [Au I ] cat. Corma, A. et al. ACIE 2007, 46, Suspicious Points Au(I) is less nucleophilic metal species that do not tend to undergo oxidative addition. Even high-purity gold often contains traces of palladium. Nakamura, E. et al. JACS, 2005, 127, Agarwal, D. P. et al. Gold Bull. 1998, 31, 58.

16 Gold-Palladium Combination 16 Actually, Gold-Mediated Sonogashira Coupling with Palladium Ac + I AuI (2 mol%) dppe (2 mol%) K 2 C 3 [Pd] (x mol%) toluene, 130 ºC, 16 h Ac entry [Pd] a (mol%) conversion (%) yield (%) 1 < 2% < 2% a [Pd] = [Pd 2 (dba) 3 CCl 3 ] Without Palladium Alkynylation of [AuXL] occured easily. Reductive elimination from [AuAr(Alkynyl)XL] also occured very fast. xidative addition of ArX to [ArXL] or [Ar(Alkynyl)L] did not occur. Espinet, P.; Echavarren, A. M. et al. rg. Lett., 2010, 12, 3006.

17 Plausible Mechanism 17 Ac + I AuI (2 mol%) dppe (2 mol%) K 2 C 3 [Pd] (0.12 mol%) toluene, 130 ºC, 16 h Ac Au(I) works just as Cu(I) does. Espinet, P.; Echavarren, A. M. et al. rg. Lett., 2010, 12, 3006.

18 Summary 18 Gold is a soft transition metal and thus prefers other soft partners, such as carbon π-systems. Gold often reacts much faster and in milder condition than other transition metals. Selectivities are also very different due to the preference to the carbene-intermediates. In gold homogeneous catalysis, oxidative addition and β-hydride elimination scarcely occur, resulting in the difficulties of general crosscoupling reactions. Gold-catalyzed tandem reactions are to be one of the strongest strategies for the total syntheses of polycyclic compounds.

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

Homogeneous Gold Catalysis

Homogeneous Gold Catalysis 1 omogeneous Gold Catalysis ighly Efficient Functionalization of C C Multiple Bonds and Electron-ich C Bonds 1% 61% yield C Et 1% ( 3 P)AuTf CE, rt, 50 min 95% yield Et 2 C AuL Et Michael. Krout Stoltz

More information

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation Asymmetric Synthesis of Medium-Sized ings by Intramolecular Au(I)-Catalyzed Cyclopropanation 1 2 Iain D. G. Watson, Stefanie itter, and F. Dean Toste JACS, ASAP, 1/22/2009 DI: 10.1021/ja8085005 2.5 mol%

More information

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Chem 253 Problem Set 7 Due: Friday, December 3, 2004 Chem 253 roblem Set 7 ue: Friday, ecember 3, 2004 Name TF. Starting with the provided starting material, provide a concise synthesis of. You may use any other reagents for your synthesis. It can be assumed

More information

Electrophilic Carbenes

Electrophilic Carbenes Electrophilic Carbenes The reaction of so-called stabilized diazo compounds with late transition metals produces a metal carbene intermediate that is electrophilic. The most common catalysts are Cu(I)

More information

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements

OC 2 (FS 2013) Lecture 3 Prof. Bode. Redox Neutral Reactions and Rearrangements C 2 (F 203) Lecture 3 Prof. Bode edox eutral eactions and earrangements Types of edox eutral rganic eactions. eactions with no external reducing or oxidizing agent In this case, one part of the starting

More information

Cationic Phosphine-Gold(I) Catalysis for C-C Forming Reaction with C C ~ Can relativistic effects rationalize its reactivity? ~

Cationic Phosphine-Gold(I) Catalysis for C-C Forming Reaction with C C ~ Can relativistic effects rationalize its reactivity? ~ iterature Seminar (D2 part) 071114 (wed) Wataru Itano (D2) page 1 Cationic Phosphine-Gold(I) Catalysis for C-C Forming eaction with C C ~ Can relativistic effects rationalize its reactivity? ~ @ Carbometallation

More information

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 1 sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito 2016. 1. 30 1. Introduction 2 About Carbene 3 Brief history of carbene (~2000) Carbene Neutral compounds featuring a divalent carbon atom with only

More information

GOLD: A CATALYST WORTH ITS WEIGHT. Reported by Joseph S. Bair 18 October 2007

GOLD: A CATALYST WORTH ITS WEIGHT. Reported by Joseph S. Bair 18 October 2007 GLD: A CATALYST WT ITS WEIGT eported by Joseph S. Bair 18 ctober 2007 ITDUCTI ver the last five years homogeneous catalysis by gold complexes has gone from a relatively obscure sampling of reactions to

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage

Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage henium-catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage Kuninobu, Y.; Takata,.; Kawata, A.; Takai, K. rg. Lett. ASAP Et 5 6 cat. [ebr(c) 3 (thf)] 2 5 6 Current Literature

More information

A Simple Introduction of the Mizoroki-Heck Reaction

A Simple Introduction of the Mizoroki-Heck Reaction A Simple Introduction of the Mizoroki-Heck Reaction Reporter: Supervisor: Zhe Niu Prof. Yang Prof. Chen Prof. Tang 2016/2/3 Content Introduction Intermolecular Mizoroki-Heck Reaction Intramolecular Mizoroki-Heck

More information

Operating mechanisms: Useful articles:

Operating mechanisms: Useful articles: Useful articles: Fairlamb, ACIEE, 2004, 1048. Aubert et al., Chem. Rev., 2002, 813. Fletcher et al., J. Chem. Soc., Perkin 1, 2000, 1657. Fürstner et al., Chem. Eur. J., 2004, 4556. Kozmin et al. Adv.

More information

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Molybdenum-Catalyzed Asymmetric Allylic Alkylation Molybdenum-Catalyzed Asymmetric Allylic Alkylation X MoL n u u * Tommy Bui 9/14/04 Asymmetric Allylic Alkylation from a Synthetic Viewpoint X X M u u * and/or u form a C-C bond with the creation of a new

More information

Sonogashira: in situ, metal assisted deprotonation

Sonogashira: in situ, metal assisted deprotonation M.C. White, Chem 253 Cross-Coupling -120- Week of ctober 11, 2004 Sonogashira: in situ, metal assisted deprotonation catalytic cycle: ' (h 3 ) n d II The first report: h Sonogashira T 1975 (50) 4467. h

More information

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Lecture 6: Transition-Metal Catalysed C-C Bond Formation Lecture 6: Transition-Metal Catalysed C-C Bond Formation (a) Asymmetric allylic substitution 1 u - d u (b) Asymmetric eck reaction 2 3 Ar- d (0) Ar 2 3 (c) Asymmetric olefin metathesis alladium π-allyl

More information

Asymmetric Catalysis by Lewis Acids and Amines

Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Catalysis by Lewis Acids and Amines Asymmetric Lewis acid catalysis - Chiral (bisooxazoline) copper (II) complexes - Monodentate Lewis acids: the formyl -bond Amine catalysed reactions Asymmetric

More information

Literature Report III

Literature Report III Literature Report III Regioselective ydroarylation of Alkynes Reporter: Zheng Gu Checker: Cong Liu Date: 2017-08-28 Cruz, F. A.; Zhu, Y.; Tercenio, Q. D.; Shen, Z.; Dong, V. M. J. Am. Chem. Soc. 2017,

More information

O + k 2. H(D) Ar. MeO H(D) rate-determining. step?

O + k 2. H(D) Ar. MeO H(D) rate-determining. step? ame: CEM 633: Advanced rganic Chem: ysical Problem Set 6 (Due Thurs, 12/8/16) Please do not look up references until after you turn in the problem set unless otherwise noted. For the following problems,

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans Direct xidative eck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans by Zhang,.; Ferreira, E. M.; Stoltz, B. M. Angewandte

More information

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes

Metal Catalyzed Outer Sphere Alkylations of Unactivated Olefins and Alkynes Metal Catalyzed uter Sphere Alkylations of Unactivated lefins and Alkynes Stephen Goble rganic Super-Group Meeting Literature Presentation ctober 6, 2004 1 utline I. Background Introduction to Carbometallation

More information

Chapter 1 Introduction to Gold Catalysis

Chapter 1 Introduction to Gold Catalysis Chapter 1 Introduction to Gold Catalysis 1.1 History Gold has been seen as the most precious metal for thousands of years and is the basis of most monetary systems throughout the world. Gold occurs naturally

More information

Chiral Bronsted Acids as Catalysts

Chiral Bronsted Acids as Catalysts Chiral Bronsted Acids as Catalysts Short Literature Seminar 6/3/08 Dustin aup BIL Derived osphoric Acids - First reported in 1992 as a ligand by irrung and coworkers. 4 h 2 irrung Tet. Lett. 1992, 33,

More information

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts Synthetic Methodology Using Tertiary osphines as Nucleophilic Catalysts 1 3 2 u 2 (P 3 ) 3 4 1 2 D. Ma, X. Lu 1988 1 2 Pd 2 (dba) 3.CCl 3 /P 3 /Ac or Pd(Ac) 2 /P 3 1 2 B. M. Trost 1988 1 3 2 u 2 (P 3 )

More information

π-alkyne metal complex and vinylidene metal complex in organic synthesis

π-alkyne metal complex and vinylidene metal complex in organic synthesis Literature Seminar 080220 Kenzo YAMATSUGU (D1) π-alkyne metal complex and vinylidene metal complex in organic synthesis 0. Introduction ' ' = π-alkyne metal complex vinylidene metal complex ecently, electrophilic

More information

Literature Report. A 11-Steps Total Synthesis of Magellanine through a Gold(І)-Catalyzed Dehydro Diels-Alder Reaction

Literature Report. A 11-Steps Total Synthesis of Magellanine through a Gold(І)-Catalyzed Dehydro Diels-Alder Reaction Literature Report 11-Steps Total Synthesis of Magellanine through a Gold(І)-Catalyzed ehydro iels-lder Reaction Reporter: ong-qiang Shen Checker: Cong Liu ate: 2017/06/19 McGee, P.; Bétournay, G.; Barabé,

More information

Mechanism Problem. 1. NaH allyl bromide, THF N H

Mechanism Problem. 1. NaH allyl bromide, THF N H Mechanism Problem 1. a allyl bromide, TF 2. 9-BB (1.2 equiv), TF, rt; ame (1.2 equiv); t-buli (2.4 equiv), TMEDA (2.4 equiv) 30 to rt; allyl bromide; 30% 2 2, aq. a, 0 C (58% yield) Mechanism Problem 9-BB

More information

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010 Bifunctional Asymmetric Catalysts: Design and Applications Junqi Li CHEM 535 27 Sep 2010 Enzyme Catalysis vs Small-Molecule Catalysis Bronsted acid Lewis acid Lewis acid Bronsted base Activation of both

More information

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129,

Intramolecular Ene Reactions Utilizing Oxazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, Intramolecular Ene Reactions Utilizing xazolones and Enol Ethers Fisk, J.S. and Tepe, J..J J. Am. Chem. Soc., 2007, 129, 3058-3059 - versus -Arylation of Aminoalcohols: rthogonal Selectivity in Copper-Based

More information

Rachel Whittaker Dong Group Literature Talk October 10, Ref: Perez-Temprano, M.H, Casares, J.A., Espinet, P., Chem. Eur. J. 2012, 18, 1864.

Rachel Whittaker Dong Group Literature Talk October 10, Ref: Perez-Temprano, M.H, Casares, J.A., Espinet, P., Chem. Eur. J. 2012, 18, 1864. Rachel Whittaker Dong Group Literature Talk October 10, 2013 Ref: Perez-Temprano, M.H, Casares, J.A., Espinet, P., Chem. Eur. J. 2012, 18, 1864. Overview Introduction Group Exchange C-C Bond Forming Reactions

More information

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES Zachery Matesich 24 February 2015 Roadmap 2 Introduction Synthetic Methods History of NHCs Properties of NHCs Nature of the carbene Structural properties

More information

Regioselective Reductive Cross-Coupling Reaction

Regioselective Reductive Cross-Coupling Reaction Lit. Seminar. 2010. 6.16 Shinsuke Mouri (D3) Regioselective Reductive Cross-Coupling Reaction Glenn C. Micalizio obtained a Ph.D. at the University of Michigan in 2001 under the supervision of Professor

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Advanced Organic Chemistry

Advanced Organic Chemistry D. A. Evans, G. Lalic Question of the day: Chemistry 530A TBS Me 2 C Me toluene, 130 C 70% TBS C 2 Me H H Advanced rganic Chemistry Me Lecture 16 Cycloaddition Reactions Diels _ Alder Reaction Photochemical

More information

Total Syntheses of Minfiensine

Total Syntheses of Minfiensine Total Syntheses of Minfiensine Douany, A. B.; umphreys, P. G.; verman, L. E.*; Wrobelski, A. D., J. Am. Chem. Soc. 2008, ASAP. D: 10.1021/ja800163v Shen, L.; Zhang, M.; Wu, Y.; Qin, Y.*, Angew. Chem. nt.

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group. akatani, Y.; Koizumi, Y.; Yamasaki, R.; Saito, S. rg. Lett. 2008, 10, 2067-2070. An Annulation Reaction for the Synthesis

More information

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES AYMMETIC PALLADIUM-CATALYZED ALKEE CABAMIATI EACTI F TE YTEI F CYCLIC ULFAMIDE Chem. Eur. J. 2016, 22, 5919 5922 Zachary J. Garlets, Kaia. Parenti, and John P. Wolfe James Johnson Wipf Group Current Literature

More information

Carbonyl Ylide Cycloadditions

Carbonyl Ylide Cycloadditions Carbonyl Ylide Cycloadditions cond. icholas Anderson Denmark Group eting 07/13/10 Carbonyl Ylides Uncharged 1,3-Dipole Conjugated π-system ighly reactive on-isolable Generate in-situ Carbonyl Ylide Stability

More information

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities. Problem session (3) Daiki Kuwana Please fill in the blank and explain reaction mechanisms and stereoselectivities. 1. 1-1 1. (Ac) 2 (10 mol%), DPEphos (20 mol%) Et 3, toluene, 90 C 2. s 4 (14 mol%), M;

More information

Zr-Catalyzed Carbometallation

Zr-Catalyzed Carbometallation -Catalyzed Carbometallation C C C C ML n C C ML n ML n C C C C ML n ML n C C ML n Wipf Group esearch Topic Seminar Juan Arredondo November 13, 2004 Juan Arredondo @ Wipf Group 1 11/14/2004 Carbometallation

More information

well over 100 groups worldwide are working on homogeneous gold-catalyzed reactions

well over 100 groups worldwide are working on homogeneous gold-catalyzed reactions 2010 Gold() prefers P or C ligands and a linear coordination geometry well over 100 groups worldwide are working on homogeneous gold-catalyzed reactions 300 250 200 Catalysts Methodology Mechanisms ynthesis

More information

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes

A Highly Efficient Organocatalyst for Direct Aldol Reactions of Ketones and Aldehydes A ighly Efficient rganocatalyst for Direct Aldol Reactions of Ketones and Aldehydes Zhuo Tang, Zhi-ua Yang, Xiao-ua Chen, Lin-Feng Cun, Ai-Qiao Mi, Yao-Zhong Jiang, and Liu-Zhu Gong Contribution from the

More information

Organometallics: Hard to define usefully and completely at the same time, but generally: Compounds containing metal-carbon bond(s).

Organometallics: Hard to define usefully and completely at the same time, but generally: Compounds containing metal-carbon bond(s). eady; Catalysis rganometallics: Definitions rganometallics: ard to define usefully and completely at the same time, but generally: Compounds containing metal-carbon bond(s). C C C C C C K 3 o question:????

More information

Journal Club Presentation by Remond Moningka 04/17/2006

Journal Club Presentation by Remond Moningka 04/17/2006 β-alkyl-α-allylation of Michael Acceptors through the Palladium-Catalyzed Three-Component Coupling between Allylic Substrate, Trialkylboranes, and Activated lefins Yoshinori Yamamoto, et al. J. rg. Chem.

More information

Hydrogen-Mediated C-C Bond Formation

Hydrogen-Mediated C-C Bond Formation EPFL - ISIC - LSPN Hydrogen-Mediated C-C Bond Formation History and selected examples The Research of Prof. Michael Krische (University of Texas at Austin) LSPN Group Seminar Mathias Mamboury Table of

More information

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0 1. (a) rovide a reasonable mechanism for the following transformation. I S 2 C 3 C 3 ( 3 ) 2 2, CuI C 3 TMG, DMF 3 C 2 S TMG = Me 2 Me 2 ICu ( 3 ) 2 0 I S 2 C 3 S 2 C 3 Cu I 3 3 3 C 2 S I 3 3 3 C 2 S 3

More information

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk

Lewis Base Catalysis: the Aldol Reaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk Lewis Base Catalysis: the Aldol eaction (Scott Denmark) Tom Blaisdell Friday, January 17 th 2014 Topic Talk Scott E. Denmark 1975 - S.B. in Chemistry MIT (ichard. olm and Daniel S. Kemp) 1980 - D.Sc in

More information

Rhodium Catalyzed Alkyl C-H Insertion Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions Rhodium Catalyzed Alkyl C-H Insertion Reactions Rh Rh Jeff Kallemeyn 5/17/05 1. Cyclopropanation The Versatile and Reactive Rhodium Carbene R + Et Rh 2 (Ac) 4 R C 2 Et N 2 2. [2,3] sigmatropic rearrangement

More information

1. Addition of HBr to alkenes

1. Addition of HBr to alkenes eactions of Alkenes I eading: Wade chapter 8, sections 8-1- 8-8 tudy Problems: 8-47, 8-48, 8-55, 8-66, 8-67, 8-70 Key Concepts and kills: Predict the products of additions to alkenes, including regiochemistry

More information

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II)

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II) Studies on eck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type xidative Cyclization Catalyzed by Palladium() Zuhui Zhang enmark Group Meeting 10/21/2008 1 Part ne: Palladium(0)-Catalyzed

More information

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013

Chiral Anions in Asymmetric Catalysis. Hannah Haley Burke Group Literature Seminar 13 April 2013 Chiral Anions in Asymmetric Catalysis annah aley Burke Group Literature Seminar 13 April 2013 Key Ac2va2on Modes for Asymmetric Catalysis L M X 1 2 Coordinative interaction 'Lewis acid catalysis' Lewis

More information

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble)

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) YDGEATI Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) eterogeneous Catalysis Catalyst insoluble in reaction medium eactions take place

More information

Shi Asymmetric Epoxidation

Shi Asymmetric Epoxidation Shi Asymmetric Epoxidation Chiral dioxirane strategy: R 3 + 1 xone, ph 10.5, K 2 C 3, H 2, C R 3 formed in situ catalyst (10-20 mol%) is prepared from D-fructose, and its enantiomer from L-sorbose oxone,

More information

Chemistry 210 Organic Chemistry I Winter Semester 2001 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Winter Semester 2001 Dr. Rainer Glaser hemistry 210 rganic hemistry I Winter Semester 2001 Dr. Rainer Glaser Examination #3 Alkenes and Alkynes. Structure, Synthesis and Reactions. Friday, April 20, 2001, 9:00-9:50 Name: Answer Key Question

More information

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds Palladium-Catalyzed xygenation of Unactivated sp 3 C- Bonds Pd(Ac) 2 5 mol% PhI(Ac) 2 1.1 eq. Pd 2 Ac Desai, L. P.; ull, K. L.; Sanford *, M. S. University of Michigan J. Am. Chem. Soc. 2004, 126, ASAP

More information

- Passerini Ugi. (Scheme 1) O-silylative Passerini. Passerini [5+1] [4+1] Passerini. Lewis. -siloxyamide (Scheme 2, ) Ph 2 B-OH.

- Passerini Ugi. (Scheme 1) O-silylative Passerini. Passerini [5+1] [4+1] Passerini. Lewis. -siloxyamide (Scheme 2, ) Ph 2 B-OH. - Passerini Ugi -silylative Passerini Passerini [1] [41] Lewis X C X =, R 3 X u C -u = electrophile u = nucleophile X u (Scheme 1) Passerini -silylative Passerini -siloxyamide (Scheme 2, ) Ph 2 B- X u

More information

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold Tandem h(i)-catalyzed [(5+2)+1] Cycloaddition/Aldol eaction for the Construction of Linear Triquinane Skeleton: Total Syntheses of (+)-irsutene and (+)-1- Desoxyhypnophilin JACS ASAP Article: Published

More information

deactivation or decomposition is therefore quantified using the turnover number.

deactivation or decomposition is therefore quantified using the turnover number. A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency. A catalyst

More information

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting 01-15-2008 Timothy Chang Outlines - Fundamental considerations, C-H versus C-C activation - Orbital interactions -

More information

Catalytic Reactions in Organic Synthesis

Catalytic Reactions in Organic Synthesis 17 April, 2008 Catalytic eactions in rganic Synthesis hodium Complexes and edox Catalysts Koichi AASAKA, Motoki YAMAE, Shunsuke CIBA Division of Chemistry and Biological Chemistry, School of ysical and

More information

Rhodium Carbenoids and C-H Insertion

Rhodium Carbenoids and C-H Insertion hodium Carbenoids and C- Insertion Literature Talk Uttam K. Tambar March 1, 2004 8pm, oyes 147 h h h h h h irreversible reversible carbenoid 2 h2l4 1 h2l4 or h2l4 2 utline I. What is a Carbene? II. What

More information

Denmark s Base Catalyzed Aldol/Allylation

Denmark s Base Catalyzed Aldol/Allylation Denmark s Base Catalyzed Aldol/Allylation Evans Group Seminar ovember 1th, 003 Jimmy Wu Lead eferences: Denmark, S. E. Acc. Chem. es., 000, 33, 43 Denmark, S. E. Chem. Comm. 003, 167 Denmark, S. E. Chem.

More information

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid Shiqing Xu, Akimichi Oda, Thomas Bobinski, Haijun Li, Yohei Matsueda, and Ei-ichi Negishi Angew. Chem. Int. Ed. 2015,

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Transition Metal Catalyzed Carbon-Carbon Bond Activation

Transition Metal Catalyzed Carbon-Carbon Bond Activation literature seminar 2 H. Mitsunuma(M1) 2010/09/08 Transition tal Catalyzed Carbon-Carbon Bond Activation 0. Introduction Currently, selective C-H and C-C bond activation by transition metal complexes has

More information

Recent Developments in Alkynylation

Recent Developments in Alkynylation --New approaches to introduce an alkynyl group Reporter: Zhao-feng Wang Supervisor: Yong Huang 2013-03-27 Contents 1. Introduction of Acetylene Chemistry 2. Nucleophilic alkynylation : Classic text book

More information

Elementary Organometallic Reactions

Elementary Organometallic Reactions Elementary eactions CE 966 (Tunge) Elementary rganometallic eactions All mechanisms are simply a combination of elementary reactions. 1) Coordination -- issociation 2) xidative Addition -- eductive Elimination

More information

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H

Radical Reactions. Radical Stability!!! bond dissociation energies X Y X + Y. bond BDE (kcal/mol) bond BDE (kcal/mol) CH 3 CH 3 CH 2 95 O H R 2 C H adical eactions adical Stability!!! bond dissociation energies X Y X Y bond BDE (kcal/mol) bond BDE (kcal/mol) C 3 104 108 C 3 C 2 98 110 95 2 C 102 (-) 93 (C-) 92 C 3 C 3 36 89 85 C 3 C 3 80 adical eactions

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. It is possible that in the next several decades we may have to shift toward other carbon

More information

Chem 634. Metal Mediated Substitution Chemistry. Reading: Heg Ch 1 2 (handout), CS-B 7.1, , 11.3, Grossman Ch 6

Chem 634. Metal Mediated Substitution Chemistry. Reading: Heg Ch 1 2 (handout), CS-B 7.1, , 11.3, Grossman Ch 6 Chem 634 tal diated Substitution Chemistry eading: Heg Ch 1 2 (handout), CS-B 7.1, 8.2 8.3, 11.3, Grossman Ch 6 Announcements Problem Set 1 due NW. Mary Beth Kramer Lectureship 101 Brown Laboratory September

More information

CO 2 and CO activation

CO 2 and CO activation 2 and activation Most organic chemicals are currently made commercially from ethylene, a product of oil refining. Itispossiblethatinthenextseveraldecadeswemayhavetoshifttowardothercarbonsources for these

More information

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003

Catalytic Asymmetric Pauson-Khand Reaction. Won-jin Chung 02/25/2003 Catalytic Asymmetric Pauson-Khand eaction U. Khand; G.. Knox; P. L. Pauson; W. E. Watts J. Chem. Soc. Chem. Commun. 1971, 36 Won-jin Chung 02/25/2003 The General Pattern of the Pauson-Khand eaction Co

More information

Recapping where we are so far

Recapping where we are so far Recapping where we are so far Valence bond constructions, valence, valence electron counting, formal charges, etc Equivalent neutral classification and MLX plots Basic concepts for mechanism and kinetics

More information

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R eaction using diarylprolinol silyl ether derivatives as catalyst 1) C Et K C 3, ) MgBr, TF TMS hexane, 0 o C TBS p- C 6 4, T C Et 85%, 99% ee Angew. Chem., nt. Ed., 44, 41 (005). rg. Synth., 017, 94, 5.

More information

Molecular Orbitals of Ethene

Molecular Orbitals of Ethene Molecular Orbitals of Ethene 1 Molecular Orbital Analysis of Ethene Dimerisation the reaction is said to be a "symmetry forbidden" interestingly, this reaction is rare and very slow! Molecular Orbitals

More information

Bioinspired Total Synthesis of Agelastatin A

Bioinspired Total Synthesis of Agelastatin A Bioinspired Total Synthesis of Agelastatin A Jeremy Chris P. Reyes and Daniel Romo Benjamin R. Eyer Wipf Group-Current Literature August 25, 2012 Angewandte Chemie International Edition. 2012, 51(28),

More information

PHOTOCATALYSIS: FORMATIONS OF RINGS

PHOTOCATALYSIS: FORMATIONS OF RINGS PHOTOCATALYSIS: FORMATIONS OF RINGS Zachery Matesich 15 April 2014 Roadmap 2 Photoredox Catalysis Cyclizations Reductive Oxidative Redox-neutral Electron Transfer Conclusion http://www.meta-synthesis.com/webbook/11_five/five.html

More information

VI. Metal alkyls from oxidative addition / insertion

VI. Metal alkyls from oxidative addition / insertion V. Metal alkyls from oxidative addition / insertion A. Carbonylation - C insertion very facile, metal acyls easily cleaved, all substrates which undergo oxidative addition can in principle be carbonylated.

More information

Transition Metal-Catalyzed 1,2-Diamination of Alkenes. Group Meeting Timothy Chang

Transition Metal-Catalyzed 1,2-Diamination of Alkenes. Group Meeting Timothy Chang Transition Metal-Catalyzed 1,2-Diamination of Alkenes Group Meeting Timothy Chang 04-27-10 Valuable 1,2-Diamine Motif H H S Biotin CH H H Pt Eloxatin (Anticaner) H 2 AcH CHEt 2 Tamiflu (Antiviral) Et Ph

More information

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes Selective Synthesis of Multisubstituted Cycloheptadienes 1 2 Cat. Ni 0 1 2 Komagawa, S.; Saito, S. Angew.

More information

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting The Mechanistic Studies of the Wacker xidation Tyler W. Wilson SE Group Meeting 11.27.2007 Introduction xidation of ethene by (II) chloride solutions (Phillips, 1894) -First used as a test for alkenes

More information

ORGANIC - CLUTCH CH ADDITION REACTIONS.

ORGANIC - CLUTCH CH ADDITION REACTIONS. !! www.clutchprep.com CONCEPT: GENERAL MECHANISM Addition reactions are ones in which 1 bond is broken and 2 new bonds are formed. They are the inverse of reactions EXAMPLE: Provide the mechanism for the

More information

Multicatalyst Promoted Asymmetric Tandem Reactions

Multicatalyst Promoted Asymmetric Tandem Reactions Literature presentation Kishor Mohanan Multicatalyst Promoted Asymmetric Tandem Reactions Features of Tandem Catalysis Reduces the yield losses associated with the purification of intermediates, Save time,

More information

Anti-Markovnikov Olefin Functionalization

Anti-Markovnikov Olefin Functionalization Anti-Markovnikov Olefin Functionalization ~Prof. Robert H. Grubbs Work~ 4 th Literature Seminar July 5, 2014 Soichi Ito (D1) Contents 1. Introduction Flow of Prof. Grubbs Research Markovnikov s Rule Wacker

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Name: CHEM 633: Advanced Organic Chem: Physical Problem Set 5 Due 11/10/17

Name: CHEM 633: Advanced Organic Chem: Physical Problem Set 5 Due 11/10/17 ame: CEM 633: Advanced rganic Chem: ysical Problem Set 5 Due 11/10/17 Please do not look up references until after you turn in the problem set unless otherwise noted. For the following problems, please

More information

Homogeneous Catalysis - B. List

Homogeneous Catalysis - B. List omogeneous Catalysis - B. List 2.2.2 Research Area "rganocatalytic Asymmetric α-alkylation of Aldehydes" (B. List) Involved:. Vignola, A. Majeed Seayad bjective: α-alkylations of carbonyl compounds are

More information

Initials: 1. Chem 633: Advanced Organic Chemistry 2016 Final Exam

Initials: 1. Chem 633: Advanced Organic Chemistry 2016 Final Exam Initials: 1 ame: Chem 633: Advanced rganic Chemistry 2016 Final Exam This exam is closed note, closed book. Please answer the following questions clearly and concisely. In general, use pictures and less

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University)

Keisuke Suzuki. Baran lab Group Meeting 6/11/16. Shigenobu Umemiya. Akira Suzuki. Takanori Suzuki (Hokkaido University) 197.D., Teruaki Mukaiyama, University of Tokyo 193 Assistant Professor, Keio University 197 Lecturer, Keio University 199 Assocate Professor, Keio University 1990 Visiting Professor, ET 1994 ull Professor,

More information

2.222 Practice Problems 2003

2.222 Practice Problems 2003 2.222 Practice Problems 2003 Set #1 1. Provide the missing starting compound(s), reagent/solvent, or product to correctly complete each of the following. Most people in the class have not done this type

More information

Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date :

Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date : Literature Report 3 Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A Reporter : Xiao-Yong Zhai Checker : Shubo u Date : 2017-10-30 Pritchett, B. P.; Donckele, E. J.; Stoltz, B. M. Angew.

More information

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02 Xiao, W.-J. et al. J. Am. Chem. Soc. 2016, 138, 8360.

More information

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology Organic Chemistry M. R. Naimi-Jamal Faculty of Chemistry Iran University of Science & Technology Chapter 4-3: Continue Alkynes: An Introduction to Organic Synthesis Based on: McMurry s Organic Chemistry,

More information

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information