TOPOLOGY OPTIMIZATION AND OPTIMAL CONTROL IN STRUCTURAL DESIGN

Size: px
Start display at page:

Download "TOPOLOGY OPTIMIZATION AND OPTIMAL CONTROL IN STRUCTURAL DESIGN"

Transcription

1 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil OPOLOGY OPIMIZAION AND OPIMAL CONROL IN SRUCURAL DESIGN Alxndr Moltr, Vldir Bottg, Univrsidd Fdrl d Plots, Dp. Mthmtis nd Sttistis, Cmpus Univrsitário, s/nº, 354, 961-9, Plots, RS, Brzil. Jun S. O. Fons, jun@ufrgs.br Otávio A. Alvs d Silvir, otvio.silvir@ufrgs.br Univrsidd Fdrl do Rio Grnd do Sul, Dp. Mhnil Enginring, R. Srmnto Lit, 425, 95-17, Porto Algr, RS Brzil. Abstrt. his work prsnt struturl dsign mthodology onsidring ontrol ffts, th hng of th topology by ontrol for tion, nd dsign modl ontrol for suitbl fixd tutor lotions. h tutors r omposd by pizoltri mtril. h topology optimiztion in this work uss homogniztion dsign mthod, bsd on th onpt of optimizing th mtril distribution, through dnsity distribution, whil th ontrol for is obtind by th optiml ontrol dsign for trnsint rspons nd prformd in th modl sp. A Continuum finit lmnts modling is pplid to simult th dynmi hrtristis of th strutur. h ost funtionl is th strin nrgy of th strutur nd th ontrol nrgy. Rsults of numril simultions for ntilvr bm modl r prsntd nd disussd. Kywords: opologi Optimiztion, tutors, dynmis, vibrtion ontrol. 1. INRODUCION Struturl vibrtion ontrol is prtiulrly importnt onsidrtion in th dsign of dynmi systms. h min id of th struturl optimiztion is to obtin n optiml mtril lyout of lod-bring strutur. Usully, ontinuum topology optimiztion problms r formultd to minimiz th struturl mtril volum or to optimiz th struturl prformn. A typil xmpl is to ris th first fundmntl frquny of strutur whil obying volum onstrint (Zhn, Xioming nd Rui, 29). Mnwhil, struturl dynmis ontrol, onsidring pizoltri tutors, is usd to minimiz supprss vibrtion ffts. h dsign of ths struturs tks into ount th intrtion of th pplid fors, th lsti mods nd th tutor plmnt. hr r lwys fundmntl intrst in dsigns with ffiint struturl ontrol systm from both struturl nd ontrol nginrs. Howvr, ths groups hv bn working indpndntly. rditionlly, th struturl dsignr dvlops his dsign bsd on strngth nd stiffnss rquirmnts, nd th ontrol dsignr rts th ontrol lgorithm to rdu th dynmi rspons of strutur (Ou nd Kikuhi, 1996). In this work w r dsigning th strutur nd ontrols simultnously, mning tht th ost funtion inluds not only th strin nrgy, but lso th ontrol nrgy. h rson why topology optimiztion is boming vry importnt rsrh fild is th nssity of ffiint mthodologis to dsign struturs, thus sving mtril nd tim. h min objtiv of th topology optimiztion problm is to find mtril distribution tht minimizs givn objtiv funtionl, subjtd to st of onstrints, hivd by onsistnt prmtriztion of th mtril proprtis in h prt of th dsign domin. A nturl qustion is whthr thr xists or not mtril in givn point, whih lds to disrt problm. It is wll-known tht this intgr prmtriztion lds to numril diffiultis, ssoitd with th intgr problm onvrgn (Crdoso nd Fons, 23; Bndsø nd Kikuhi, 1988; Bndsø nd Sigmund, 1999). Minimizing th vibrtion ffts of th dynmi rspons is n importnt gol for th struturl vibrtion ontrol, nd th fftivity of th ontrol dpnds on th wighting mtris. h objtiv of this ppr is to prsnt struturl dsign mthodology onsidring th ontrol ffts, th hng of th topology by ontrol for tion, nd dsign modl ontrol for suitbl fixd tutor lotions. h struturl optimiztion dsign is ompltd through dnsity dsign mthod, whil th ontrol for is obtind by th optiml ontrol dsign for trnsint rspons nd prformd in th modl sp. h ffiint struturl ontrol dsign nds rful sltion of tutor positions (Ou nd Kikuhi, 1996). Howvr, in this work th tutors lotions r hosn rbitrrily prior to th struturl dsign. In ft, it is wll known tht good lotion for n tutor in ntilvr strutur is los th fixd siz of th strutur, sin it ts upon th first nd most signifint mod (Sun t l., 24, Donoso, A. nd Sigmund, O., 29; Moltr, A. t l, 21). h lowr fundmntl mods r rsponsibl for th most of th tip displmnt of th bm; thrfor, th first two ignfuntions r omputd nd onsidrd in this work. h dynmis nd ontrol dsign wr inludd in topology optimiztion od. Simultions wr ondutd to ssss th fftivnss nd ontrol modl ffiiny.

2 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil 2. FORMULAION OF SRUCURAL OPOLOGY OPIMIZAION CONSIDE-RING CONROL ACION h homogniztion dsign mthod (Bndsø nd Sigmund, 23) is hoosing th tool for th topology optimiztion onsidring ontrol tion. his mthod is bsd on th onpt of optimizing th mtril distribution, through dnsity distribution. A finit lmnt msh is dfind to prform th struturl modl nlysis (Bth, 1996). As simplifition, w ssum tht th dnsity is onstnt in h finit lmnt. An optimlity ritri (OC) is drivd from th nssry minimiztion onditions, nd it is solvd to updt th dnsity distribution. A numbr of simplifitions r introdud to th implmnttion, s rgulr msh. W now onsidr tht th objtiv funtion is th sum of th strin nrgy nd th ontrol nrgy. hn, th topologi optimiztion problm in stdy stt hs th form min J, J ( x) = f Rf + U QU x subjt to V ( x) V min < x x 1 min = V KU = Hf + F (1) whr U nx1 is th displmnt vtor, H nxm is lotion mtrix for th ontrol for, m is th numbr of tion ontrol fors nd F nx1 is th pplid xtrnl for vtor, f mx1 is n pplid ontrol for in trms of ltri lod. h mgnituds of th mtris Q nxn nd R mxm r ssignd ording to th rltiv importn of th stt vribls nd th ontrol for in th minimiztion produr. K nxn is th finit lmnt globl stiffnss mtrix. x is th vtor of dsign vribls, x min is vtor of minimum rltiv dnsitis. V(x) nd V is th mtril volum nd dsign domin volum, rsptivly nd V min is th prsribd volum funtion. Considring th disrtiztion, N = ( x ) p U QU u q u, (2) = 1 whr N is th numbr of lmnts, p is th pnliztion xponnt, u nd q r th lmnt displmnt vtor nd wighting mtrix, rsptivly. h optimiztion problm is solvd using th Optimlity ritrion (OC), nd this ritrion is drivd from th Krush-Kuhn-ukr onditions (Bndsø nd Kikuhi, 1988). h Lgrngin funtion of th minimiztion problm is N N ( ) min 1 2 min 3 mx = 1 = 1 L( x) = J ( x) + λ ( V x V V ) + λ ( KU ( Hf + F)) + λ ( x x ) + λ ( x x ). (3) whr th slrλ nd th vtor λ1r th globl Lgrngin multiplirs, nd th slrs multiplirs for lowr nd uppr sid onstrints. o lot sttionry point, it is nssry tht L / x =, thn λ nd λ r Lgrngin 2 3 L J V ( KU ( Hf + F)) = + λ + λ λ + λ = x x x x (4) Hr, w ssum tht onstrins of th dsign vribls r not tiv, λ = λ = nd tht th lod nd fors r 2 3 ( Hf + F) dsign indpndnt, =. x h fdbk rquirs full knowldg of stts. By using th displmnt losd-loop fdbk ontrol w n ssum 1 f = R H U, (5) thn th quilibrium onstrint from Eq. (1) boms K U = F, (6)

3 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil whr 1 K = K + HR H. (7) W n not tht this K is th modifid mtrix undr ontrol fft nd th modifition pprs whr th for ontrol is pplid, whih ffts lso th ignvlus nd displmnt of th strutur. h problm n b solvd s th onvntionl stti finit lmnt mthod in stndrd form K U = F. h influn of th wighting mtrix R is n importnt spt to onsidr. o hv signifint fft on th topology of th strutur, th mtrix R -1 nd n quivlnt mgnitud omptibl with th stiffnss mtrix. Sin th stiffnss is modifid on h itrtion, thn R is hosn s R = Gdig ( P / µ ), whr µ r th ignvlus (th smllst to th lrgst), G is wighting onstnt is nd P mxm is omputd s th nrgti quivlnt gnrlizd for (Yng t l., 25; Kumr nd Nrynn, 28; Moltr t l, 21), tht is, s momnt Snsitivity Anlysis Snsitivitis r dfind s th drivtivs of th objtiv funtion nd th onstrints with rspt to th dsign vribls, nd is oftn th mjor omputtionl ost of th optimiztion. In this modl, th objtiv funtion snsitivity rquirs diffrntiting displmnts (whih implis stiffnss diffrntition) nd ignvlus. Substituting Eq. (5) in J from Eq. (1), this yild ( ) J = U ΓU + U QU = U Γ + Q U, (8) whr Γ = HR RRH. h drivtivs of J n b omputing by J U U = ( Γ + Q) U + U( Γ + Q) x x x. (9) It is possibl obtin simplifition for th drivtivs of J, Eq (9), djusting th mtrix Q by Q=K. hn, th objtiv funtion hng, substituting Eq. (7) into Eq. (6) nd thn Eq. (6) into Eq. (1), this yild ( ) J = f Rf + U Hf + F. (1) Using Eq. (5) into Eq. (1), w obtin th simplifid objtiv funtion J = F U. (11) king th drivtiv of th objtiv funtion, on h lmnt, on n obtin J U = F x x, (12) nd substituting nd U x = K K x 1 U (13) K K 1 µ = + H H x x GP x (14) into (12), w hv

4 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil J K 1 µ = U U + U H H U. (15) x x GP x h snsitivity of th h ignvlu µ is omputd by (Hftk t l., 199) ( K - µ M) φ = (16) nd µ K M k m = φ µ φ = φ µ φ, (17) x x x x x whr φ is th mss-normlizd ignvtor nd M is th mss mtrix, on h lmnt φ, k nd m. With som xpnding of th trms, lso simplifition of th qutions nd huristis shm for th dsign vribls (Sigmund, 21), w n obtin th nw x for h itrtion: ( k ) ( k ) α ( k ) ( xmin x δ ) x B ( xmin x δ ) α α ( min δ ) ( δ ) ( k ) ( k ) ( k ) α ( x + δ ) ( x + δ ) x B mx, if mx,, ( k + 1) ( k ) ( k ) ( k ) ( k ) x = x B if mx x, x x B min 1, x +, min 1, if min 1,, (18) whr δ nd α r rsptivly, th prsribd mov limit nd th prsribd numril dmping offiint. h trm B is dfind from th optimlity ondition s B = ( ) p x p 1 u k u, (19) λρ V whr ρ is th mss dnsity of th mtril, V is th lmntl volum. h msh-indpndnt filtr is providd from Sigmund (21). 3. CONROL EFFECS ON SRUCURAL OPOLOGY W n imgin priori tht ontrol fors ting in diffrnt lotions on th strutur should influn th optimizd dsign. o xmplify this ft, w onsidr dsign domin s ntilvr bm shows in Fig Figur 1. Dsign domin ntilvr bm. For struturl only dsign of this domin, w us th omplin s th objtiv funtion, nd obtin th topology, for th ntilvr bm, shown in Fig. 2. hn w try to introdu ontrol fors on this dsign lyout. It is possibl tht on th dsird lotion for th tutor thr is no mtril. If th optimiztion is prformd without onsidring th ontrol fors, thn w nd ithr to hng th tutor lotion or to rdsign th strutur. In Fig. 2 w inditd with points (smll irls) th tutor lotion nd dsignd th strutur gin, this tim onsidring th ontrol for. h vlu of th prmtrs r: p 3, α.5, δ.2 P = dig -.2, -.1 nd G is djustd with = = =, ( ) similr mgnitud of th stiffnss invrs vlus. h nw topology for this problm is shown in Fig. 2b, orrsponding to th dsign domin, Fig. 1. h msh domin in th simultion uss 144 finit lmnts.

5 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil (2) (2b) Figur 2. -opology optimiztion without ontrol for tion. b-opology optimiztion with ontrol for tion. In this simultions it n b notd tht th strutur dsign hng ompltly with th ontrol tion ffts. Additionlly som ttntion for th tutor lotion is rquird to ssur th ontrollbility of th systm nd th vlu of G nd th tutor lotion hs onsidrbl influn of ontrol ffiiny nd th finl topology. 4. OPIMAL CONROL DESIGN IN MODAL SPACE Aftr omputing th optiml strutur w srh for th vibrtion supprssion for trnsint rspons of th systm. It is possibl to dsign th ontrol for th displmnt of prtiulr point of th strutur. In this work w driv th ontrol in indpndnt modl sp, omputing th bhvior of th systm on th nods whr th ontrol fors r pplid. h formultion of indpndnt modl sp ontrol, drivd by th lssil optiml thory (Nidu, 23), ssoitd with th distributd-prmtr systm n b writtn brifly s follows. h modl formultion for th systm is ɺɺ, (2) 2 η + ω η = φ GP V whr ω r th frqunis nd V th voltg pplid to tutor. Lt ssum tht l = (m + numbr of mods). hn, Glxl is wighting mtrix nd P l x l is th nrgti quivlnt gnrlizd for mtrix. h dynmi systm dfind by Eq. (2) n b prmtrizd in first ordr qutions nd writtn in th stt-offiint form ɺ (21) y = Ay + BV ;, z = Cy whr y 2lx1 is stt, tim dpndnt vribl, sp, yɺ 2l x1 is th vtor of th first ordr tim drivts of th stts in modl l V S R is th ontrol vtor, S is th ontrol onstrint st. z 2lx1 is snsor output nd C 2lx2l is th snsor output mtrix in modl sp. his systm rprsnts th onstrins from th nonlinr rgultor problm, togthr with y( t ) = y, y( ) =, rsptivly th initil nd finl onditions. h offiint mtris, in modl sp, without onsidring dmping, r givn by l xl Ιl xl l xl η l xl C l xl A =,,, 2 B = = l xl l xl φ y C = ω GP ηɺ l xl l xl (22) A stt fdbk rthr thn output fdbk is doptd to nhn th ontrol prformn. h qudrti ost funtion for th rgultor problm is givn by J 1 = + 2 t y Qy V RV dt, (23) whr Q is smi-positiv-dfinit wighting mtrix on th outputs nd R positiv dfinit wighting mtrix on th ontrol inputs. Assuming full stt fdbk, th ontrol lw is givn by

6 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil V R B Pz Kz, (24) 1 = = whr P stisfis th lgbri Riti qution 1 A P + PA PBR B P + Q =. (25) h omputtionl ost is high if ll mods r onsidrd. But it n b drmtilly rdud if only fw mods r dominnt nd thir ontrol is suffiint for th whol strutur. h losd loop dynmis of th systm is givn by ɺ, (26) y = ( ) A - BKC y h stbility of th fdbk mtrix A = ( ) ontrol. It n b show tht for our problm th stbility for A is ssurd. A - BKC is n importnt ondition for th xistn of th fdbk 5. RESULS h physil systm onsidrd in th simultions is omposd by ntilvrd stl bm shown in Fig. 2 nd th pizoltri tutor bondd on th uppr surf, t th bginning of th bm. h snsor is onsidrd pizofilm bondd on th bottom surf, lso t th bginning of th bm. h rsulting topology for this problm is show in Fig. 3 nd Fig. 3b, whr th lotions of th horizontl ontrol fors r indit by points (smll irls) nd th snsor by smll rtngl. his lotion for th tutor ws hosn bus it is known ft tht th bst pl for on tutor, bondd on ntilvr bm, is s los s possibl to th fixd siz of th strutur, whih brs th mximum strss indud by th first nd most signifint mod. Som simplifitions r introdud to th problm nd its rspons nlysis. W ssum tht th two ontrol points n hv diffrnt fors. his mns tht thr r two xtrnl tutors. Only on tutor would gnrt qul mgnitud opposing fors nd nd to b xpliitly inludd in th modl. () (b) Figur 3. -opology optimiztion without ontrol for tion. b-opology optimiztion with ontrol for tion. It n b not in Fig. 3b tht th topology hs not hngd s muh s in Fig. 2b. his n b ttributd to lotion nd mgnitud of th for ontrol hv bn lss inisiv in th topology thn in th prvious ss, but with nhnd ontrol ffiiny. h onvrgn of th objtiv funtion is plottd in Fig. 4. J J J Itrtion Numbr Itrtion Numbr Itrtion Numbr () (b) ()

7 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil Figur 4. Objtiv funtion onvrgn of th ntilvr bm s - without ontrol; b- with ontrol for t th nd of th bm ; - with ontrol fors t th bginning of th bm. W n obsrv in Fig. 4 tht th onvrgn is fstr in th initil 3 itrtions, ftr thr is smllr hng of th objtiv funtion vlu t h itrtion. h topology shown in Figur 2 subjt to trnsint fors produs initil dformtion nd so tiv th nturl vibrtions. h thr fr vibrtion mods of th modl, whih finit lmnt disrtiztion r shown in Fig. 5, whos frqunis r 5Hz, 5Hz nd.24hz, rsptivly. mod1 mod2 mod3 Figur 5. Dfltions of th mods in modl sp. In Fig. 5, it n b not tht th first mod is not vrtil nd th sond nd third mods r vrtil mods. h rsults of th optiml ontrol simultion in Mtlb r shown in Fig. 6. h wighting mtris nd ontrol G = dig(1,1,1,1 ), Q = dig(1,1,1,1) mtris r:. Hr r onsidrd th two first mods of th optimizd strutur. h position 1 is on th lft point (smll irl) nd position 2 on th right, shown in Fig. 3. h fourth-ordr Rung-Kutt mthod ws usd to intgrt th qutions for thirty sonds simultion. displmnt mod 1, position 1 displmnt mod 2, position φ 1 φ t displmnt mod 1, position t displmnt mod 2, position φ 1 φ t t Figur 6. Dfltions of first nd sond mods without indpndnt modl ontrol (blu nd rd) nd with indpndnt modl ontrol (blk). It is possibl obsrv tht th modl displmnt go quikly to zro, vn without nturl dmping. h hoi of th bst vlus for th stt nd ontrol wighting mtris Q nd R is importnt. A good hoi n improv th ffiiny of th ontrollrs. In this ppr w hv tstd som wighting mtris nd onludd tht, for our ontrol dsign, th good rsults r obtind round th vlus hooss bov. Smllr or grtr vlus ffts th ontrol ffiiny.

8 Prodings of COBEM st Brzilin Congrss of Mhnil Enginring Otobr 24-28, 211, Ntl, RN, Brzil 6. ACKNOWLEDGEMENS h uthor A. Moltr knowldg th finnil support of FAPERGS (Fundção d Ampro à Psquis do Estdo do Rio Grnd do Sul ) Porto Algr - Rio Grnd do Sul -Brzil, Projt: 1/ REFERENCES Bth, J. K. nd Wilson, E. L., 1976, Numril Mthods in Finit Elmnt Anlysis, Prnti Hll.. Bndsø, M. P. nd Kikuhi, N., Gnrting Optiml opologis in Struturl Dsign Using Homogniztion Mthod. Comp. Mth. Appl. Mh. Eng., Vol. 71, pp Bndsø, M. P. nd Sigmund, O., Mtril Intrpoltion Shms in opology Optimiztion. Arhiv of Applid Mhnis, Vol. 69, pp Bndsø, M. P. nd Sigmund, O., 23, opology Optimiztion hory, Mthods nd Applitions, Springr, Nw York. Crdoso, E. L. nd Fons, J., S., O., 23. Complxity Control in th opology Optimiztion of Continuum Struturs. Journl of th Brz. So. of Mh. Si. & Eng., Vol. 3, pp Donoso, A. nd Sigmund, O., 29. Optimiztion of pizoltri bimorph tutors with tiv dmping for stti nd dynmi lods. Struturl nd Multidisiplinry Optimiztion, Vol. 38, No. 4, pp Hftk, R.., Gurdl, Z. nd Kmt, M. P., 199, Elmnts of Struturl Optimiztion, Kluwr. Kumr, K. R., Nrynn, S., 28. Ativ vibrtion ontrol of bms with optiml plmnt of pizoltri snsor/tutor pirs. Smrt Mtrils nd Struturs, Vol. 17, pp Moltr, A., Silvir, O. A. A., Fons, J. nd Bottg, V., 21. Simultnous Pizoltri tutor nd Snsor Plmnt Optimiztion nd Control Dsign of Mnipultors with Flxibl Links Using SDRE Mthod. Mthmtil problms in Enginring, Vol. 21, pp Nidu, D. S., 23, Optiml Control Systms, CRC Prss, Nw York. Ou, J.-S. nd Kikuhi, N., Intgrtd optiml struturl nd vibrtion ontrol dsign. Struturl Optimiztion, Vol. 12, pp Sigmund O., 21, A 99 lin topology optimiztion od writtn in Mtlb. Struturl Multidisiplinry Optimiztion, Vol. 21, pp Yng, Y., Jin, Z., Soh, C.K., 25. Intgrtd optiml dsign of vibrtion ontrol systm for smrt bms using gnti lgorithms. Journl of Sound nd Vibrtion, Vol. 282, pp Zhn K., Xioming W. nd Rui W., 29. opology optimiztion of sp vhil struturs onsidring ttitud ontrol ffort. Finit Elmnts in Anlysis nd Dsign, Vol. 45, pp RESPONSIBILIY NOICE h uthors Alxndr Moltr, Vldir Bottg Jun S. O. Fons nd Otávio A. Alvs d Silvir r th only rsponsibl for th printd mtril inludd in this ppr.

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Formulation of Seismic Active Earth Pressure of Inclined Retaining Wall Supporting c-ф Backfill

Formulation of Seismic Active Earth Pressure of Inclined Retaining Wall Supporting c-ф Backfill 01 IACSIT Coimbtor Confrns IPCSIT ol. 8 (01 (01 IACSIT Prss, Singpor Formultion of Sismi Ati Erth Prssur of Inlind Rtining Wll Supporting -Ф Bkfill Sim Ghosh 1 nd Strup Sngupt + 1 Assistnt Profssor, Ciil

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

WORKSHOP 6 BRIDGE TRUSS

WORKSHOP 6 BRIDGE TRUSS WORKSHOP 6 BRIDGE TRUSS WS6-2 Workshop Ojtivs Lrn to msh lin gomtry to gnrt CBAR lmnts Bom fmilir with stting up th CBAR orinttion vtor n stion proprtis Lrn to st up multipl lo ss Lrn to viw th iffrnt

More information

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals

AP Calculus BC Problem Drill 16: Indeterminate Forms, L Hopital s Rule, & Improper Intergals AP Calulus BC Problm Drill 6: Indtrminat Forms, L Hopital s Rul, & Impropr Intrgals Qustion No. of Instrutions: () Rad th problm and answr hois arfully () Work th problms on papr as ndd () Pik th answr

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1 G( x)] = θp( R) + ( θ R)[1 G( R)] pg 15, problm 6: dmnd of

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Lecture 14 (Oct. 30, 2017)

Lecture 14 (Oct. 30, 2017) Ltur 14 8.31 Quantum Thory I, Fall 017 69 Ltur 14 (Ot. 30, 017) 14.1 Magnti Monopols Last tim, w onsidrd a magnti fild with a magnti monopol onfiguration, and bgan to approah dsribing th quantum mhanis

More information

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice. Utilizing xat and Mont Carlo mthods to invstigat proprtis of th Blum Capl Modl applid to a nin sit latti Nik Franios Writing various xat and Mont Carlo omputr algorithms in C languag, I usd th Blum Capl

More information

Platform. Platform. Platform. Platform. Lighthing Rod 5/8x4' 152 (12) DB874H 150. Pirod 15' Low Profile Rotable 107 Platform

Platform. Platform. Platform. Platform. Lighthing Rod 5/8x4' 152 (12) DB874H 150. Pirod 15' Low Profile Rotable 107 Platform 37.000 8 0.29 22.000 29.586 2.3 48.0 Lighthg (2) Pirod D874H 5' Lo Rod 5/8x4' Profil Rotbl 52 50 37 22 07 Pltform TYPE ELEVATION Lighthg Rod 5/8x4' 52 (2) D874H 50 Pirod 5' Lo Profil Rotbl 50 Pltform (2)

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

Errata for Second Edition, First Printing

Errata for Second Edition, First Printing Errt for Scond Edition, First Printing pg 68, lin 1: z=.67 should b z=.44 pg 71: Eqution (.3) should rd B( R) = θ R 1 x= [1 G( x)] pg 1: Eqution (.63) should rd B( R) = x= R = θ ( x R) p( x) R 1 x= [1

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Weighted Matching and Linear Programming

Weighted Matching and Linear Programming Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

More information

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12

Engineering 323 Beautiful HW #13 Page 1 of 6 Brown Problem 5-12 Enginring Bautiful HW #1 Pag 1 of 6 5.1 Two componnts of a minicomputr hav th following joint pdf for thir usful liftims X and Y: = x(1+ x and y othrwis a. What is th probability that th liftim X of th

More information

Generalized Robust Diagnosability of Discrete Event Systems

Generalized Robust Diagnosability of Discrete Event Systems Prprints of th 18th IFAC World Congrss Milno (Itly) August 28 - Sptmr 2, 2011 Gnrlizd Roust Dignosility of Disrt Evnt Systms Lilin K. Crvlho Mros V. Morir João C. Bsilio Univrsidd Fdrl do Rio d Jniro,

More information

TOPOLOGY DESIGN OF STRUCTURE LOADED BY EARTHQUAKE. Vienna University of Technology

TOPOLOGY DESIGN OF STRUCTURE LOADED BY EARTHQUAKE. Vienna University of Technology Bluchr Mchanical Enginring Procdings May 2014, vol. 1, num. 1 www.procdings.bluchr.com.br/vnto/10wccm TOPOLOGY DESIG OF STRUCTURE LOADED BY EARTHQUAKE P. Rosko 1 1 Cntr of Mchanics and Structural Dynamics,

More information

Uncertainty in non-linear long-term behavior and buckling of. shallow concrete-filled steel tubular arches

Uncertainty in non-linear long-term behavior and buckling of. shallow concrete-filled steel tubular arches CCM14 8-3 th July, Cambridg, England Unrtainty in non-linar long-trm bhavior and bukling of shallow onrt-filld stl tubular arhs *X. Shi¹, W. Gao¹, Y.L. Pi¹ 1 Shool of Civil and Environmnt Enginring, Th

More information

CSCI Compiler Design

CSCI Compiler Design CSCI 565 - Compilr Dsign Spring 2013 Sond Tst - Solution My 1, 2013 t 3.30 PM in Room RTH 115 Durtion: 2h 30 min. Pls ll ll pgs you turn in with your nm nd studnt numr. Nm: Numr: Grd: Prolm 1 [20 points]:

More information

Junction Tree Algorithm 1. David Barber

Junction Tree Algorithm 1. David Barber Juntion Tr Algorithm 1 David Barbr Univrsity Collg London 1 Ths slids aompany th book Baysian Rasoning and Mahin Larning. Th book and dmos an b downloadd from www.s.ul.a.uk/staff/d.barbr/brml. Fdbak and

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P

Problem 1. Solution: = show that for a constant number of particles: c and V. a) Using the definitions of P rol. Using t dfinitions of nd nd t first lw of trodynis nd t driv t gnrl rltion: wr nd r t sifi t itis t onstnt rssur nd volu rstivly nd nd r t intrnl nrgy nd volu of ol. first lw rlts d dq d t onstnt

More information

Analytical and numerical studies of the meniscus equation in the case of crystals grown in zero gravity conditions by the Dewetted Bridgman technique

Analytical and numerical studies of the meniscus equation in the case of crystals grown in zero gravity conditions by the Dewetted Bridgman technique Anlytil nd numril studis of th mnisus qution in th s of rystls grown in zro grvity onditions by th Dwttd Bridgmn thniqu S Epur Abstrt On th physil point of viw, th dwtting phnomnon is govrnd by th Young-Lpl

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA * 17 nd Intrnational Confrnc on Mchanical Control and Automation (ICMCA 17) ISBN: 978-1-6595-46-8 Dynamic Modlling of Hoisting Stl Wir Rop Da-zhi CAO, Wn-zhng DU, Bao-zhu MA * and Su-bing LIU Xi an High

More information

Knowledge-Based Systems. Outline 1. Outline 2. Expert System. Page 1. Development of KB Systems. CI = Computational Intelligence.

Knowledge-Based Systems. Outline 1. Outline 2. Expert System. Page 1. Development of KB Systems. CI = Computational Intelligence. Knowldg-Bsd Systms Andrw Kusik, Profssor 9 Smns Cntr Iow City, Iow - 7 ndrw-kusik@uiow.du http://www.in.uiow.du/~nkusik Tl: 9-9 Fx: 9-9 Outlin INTRODUCTION KNOWLEDGE REPRESENTATION - First-Ordr Logi -

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics 6.5, Rok ropulsion rof. nul rinz-snhz Lur 3: Idl Nozzl luid hnis Idl Nozzl low wih No Sprion (-D) - Qusi -D (slndr) pproximion - Idl gs ssumd ( ) mu + Opimum xpnsion: - or lss, >, ould driv mor forwrd

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation.

Fourier Transforms and the Wave Equation. Key Mathematics: More Fourier transform theory, especially as applied to solving the wave equation. Lur 7 Fourir Transforms and th Wav Euation Ovrviw and Motivation: W first discuss a fw faturs of th Fourir transform (FT), and thn w solv th initial-valu problm for th wav uation using th Fourir transform

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well

Theoretical Study on the While Drilling Electromagnetic Signal Transmission of Horizontal Well 7 nd ntrntionl Confrnc on Softwr, Multimdi nd Communiction Enginring (SMCE 7) SBN: 978--6595-458-5 Thorticl Study on th Whil Drilling Elctromgntic Signl Trnsmission of Horizontl Wll Y-huo FAN,,*, Zi-ping

More information

Oppgavesett kap. 6 (1 av..)

Oppgavesett kap. 6 (1 av..) Oppgvstt kp. 6 (1 v..) hns.brnn@go.uio.no Problm 1 () Wht is homognous nucltion? Why dos Figur 6.2 in th book show tht w won't gt homognous nucltion in th tmosphr? ˆ Homognous nucltion crts cloud droplts

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Finite element discretization of Laplace and Poisson equations

Finite element discretization of Laplace and Poisson equations Finit lmnt discrtization of Laplac and Poisson quations Yashwanth Tummala Tutor: Prof S.Mittal 1 Outlin Finit Elmnt Mthod for 1D Introduction to Poisson s and Laplac s Equations Finit Elmnt Mthod for 2D-Discrtization

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand Volum Issu July 0 ISSN: X Intrntionl Journl of Advnd Rsrh in Computr Sin nd Softwr Enginring Rsrh Ppr Avill onlin t: www.ijrss.om Dominting Funtion Thory from Nwton to Linitz s Approh of Indfinit Intgrtion

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

DTFT Properties Using the differentiation property of the DTFT given in Table 3.2, we observe that the DTFT of nx[n] is given by

DTFT Properties Using the differentiation property of the DTFT given in Table 3.2, we observe that the DTFT of nx[n] is given by DTFT Proprtis Exampl-Dtrmin th DTFT Y ( of n y[ ( n + α µ [, α < n Lt α µ [, α < W an thrfor writ y [ n + From Tabl 3.3, th DTFT of is givn by X ( α DTFT Proprtis Using th diffrntiation proprty of th DTFT

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii

UNCORRECTED SAMPLE PAGES 4-1. Naming fractions KEY IDEAS. 1 Each shape represents ONE whole. a i ii. b i ii - Nming frtions Chptr Frtions Eh shp rprsnts ONE whol. i ii Wht frtion is shdd? Writ s frtion nd in words. Wht frtion is not shdd? Writ s frtion nd in words. i ii i ii Writ s mny diffrnt frtions s you

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN 5-353 APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr

More information

Analysis for Balloon Modeling Structure based on Graph Theory

Analysis for Balloon Modeling Structure based on Graph Theory Anlysis for lloon Moling Strutur bs on Grph Thory Abstrt Mshiro Ur* Msshi Ym** Mmoru no** Shiny Miyzki** Tkmi Ysu* *Grut Shool of Informtion Sin, Ngoy Univrsity **Shool of Informtion Sin n Thnology, hukyo

More information

VECTOR ANALYSIS APPLICATION IN ROTATING MAGNETIC FIELDS

VECTOR ANALYSIS APPLICATION IN ROTATING MAGNETIC FIELDS 22-578 VECTOR ANALYSIS APPLICATION IN ROTATING MAGNETIC FIELDS runo Osorno Dprtnt of Eltril And Coputr Enginring Cliforni Stt Univrsity Northridg 18111 Nordhoff St Northridg CA 9133-8436 Eil:runo@s.sun.du

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Miscellaneous open problems in the Regular Boundary Collocation approach

Miscellaneous open problems in the Regular Boundary Collocation approach Miscllnous opn problms in th Rgulr Boundry Colloction pproch A. P. Zilińsi Crcow Univrsity of chnology Institut of Mchin Dsign pz@mch.p.du.pl rfftz / MFS Confrnc ohsiung iwn 5-8 Mrch 0 Bsic formultions

More information

The Z transform techniques

The Z transform techniques h Z trnfor tchniqu h Z trnfor h th rol in dicrt yt tht th Lplc trnfor h in nlyi of continuou yt. h Z trnfor i th principl nlyticl tool for ingl-loop dicrt-ti yt. h Z trnfor h Z trnfor i to dicrt-ti yt

More information

Elliptical motion, gravity, etc

Elliptical motion, gravity, etc FW Physics 130 G:\130 lctur\ch 13 Elliticl motion.docx g 1 of 7 11/3/010; 6:40 PM; Lst rintd 11/3/010 6:40:00 PM Fig. 1 Elliticl motion, grvity, tc minor xis mjor xis F 1 =A F =B C - D, mjor nd minor xs

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Homotopy perturbation technique

Homotopy perturbation technique Comput. Mthods Appl. Mch. Engrg. 178 (1999) 257±262 www.lsvir.com/locat/cma Homotopy prturbation tchniqu Ji-Huan H 1 Shanghai Univrsity, Shanghai Institut of Applid Mathmatics and Mchanics, Shanghai 272,

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations.

PH427/PH527: Periodic systems Spring Overview of the PH427 website (syllabus, assignments etc.) 2. Coupled oscillations. Dy : Mondy 5 inuts. Ovrviw of th PH47 wsit (syllus, ssignnts tc.). Coupld oscilltions W gin with sss coupld y Hook's Lw springs nd find th possil longitudinl) otion of such syst. W ll xtnd this to finit

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

1.60± ± ±0.07 S 1.60± ± ±0.30 X

1.60± ± ±0.07 S 1.60± ± ±0.30 X 02M557-01B - Pg 1 of 7 Produt Fmily: Prt Numbr Sris: Multilyr rmi itors Flxibl Trmintion ST Sris onstrution: Flxibl Trmintions NPO, X7R, X5R nd Y5V diltri mtrils Wr round ltrods 100% mtt tin ovr Ni trmintions

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Design/Modeling for Periodic Nano Structures t for EMC/EMI. Outline

Design/Modeling for Periodic Nano Structures t for EMC/EMI. Outline /4/00 Dsign/Modling for Priodic Nno Structurs t for EMC/EMI Ji Chn Dprtmnt of ricl nd Computr Enginring Houston, TX, 7704 Outlin Introduction Composit Mtrils Dsign with Numricl Mixing-Lw FDTD dsign of

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

Assignment 4 Biophys 4322/5322

Assignment 4 Biophys 4322/5322 Assignmnt 4 Biophys 4322/5322 Tylr Shndruk Fbruary 28, 202 Problm Phillips 7.3. Part a R-onsidr dimoglobin utilizing th anonial nsmbl maning rdriv Eq. 3 from Phillips Chaptr 7. For a anonial nsmbl p E

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information