APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS"

Transcription

1 Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN APPLICATIONS OF THE LAPLACE-MELLIN INTEGRAL TRANSFORM TO DIFFERNTIAL EQUATIONS S.M.Khirnr, R.M.Pi*, J.N.Slun** Dprtmnt o Mthmti Mhrhtr Adm o Enginring, Alndi-45, Pun, Indi Mobil No.: ,F No.: , Dprtmnt o Mthmti (A.S.& H.* R.G.I.T. Vrov, Andhri (W, Mumbi-53, Indi Mobil No: , F.No nd Dprtmnt o Mthmti** North Mhrtr Univrit,Jlgon-Indi Mo.bil No Abtrt- In thi wor, th Lpl.Mllin intgrl trnorm i uitd in th ininit rgion [,;, ]..Thi wor whih i put orwrd to undrtnd th proprti nd rltion thorm,drivtiv nd pplition or th Lpl - Mllin Intgrl Trnorm in [,] to [, ]. To illutrt th dvntg nd u o thi intgrl trnorm,lpl qution in rtin orm, th on dimnionl wv qution nd hr low qution nd Cuh linr dirntil qution r olv b uing thi intgrl trnorm olvd t th nd. Solution o th dirntil qution r grphill rprntd b uing Mtlb. Ind Trm- Lpl trnorm, Mllin trnorm, Doubl Lpl trnorm,intgrl trnorm AMS Mthmtil Cliition : 44A,33C99 (, 47D3( T I. INTRODUCTION h Lpl- Bi Ltrl Lpl trnorm i ud to ind th Lpl - Mllin intgrl trnorm in th rng [,] to, [ ], proprti li Linr proprt, Sling proprt, Powr proprt, thorm li invrion thorm, onvolution thorm, prvl thorm, hiting thorm.b uing thi intgrl trnorm w obtin th rult o drivtiv w. r. t., nd w ind th gnrlizd rult o th n drivtiv o th untion (, w. r. t... Uing th drivtiv w olv th Lpl qution in Crtin orm, on dimnionl wv nd ht low qution. It olution id rprntd b uing tool o Mtlb. II. PRELIMINARY RESULTS Rltion o th Mllin Intgrl Trnorm with Lpl Trnorm Th Lpl trnorm o th untion ( o i dnotd b L[(, nd dind ( d, L[(,] whnvr thi intgrl i it or r> i th prmtr Th invr o th Lpl trnorm i dnotd b L [ (, L ( [ (, ] nd dind ( i i L[ (, dr Th Mllin intgrl trnorm o th untion o ( o i dnotd b M[(] nd i dind M[( r ( d whnvr thi intgrl i it or > prmtr. Th invrion o th Mllin intgrl trnorm i dnotd b M M [ ( [ ( ( ( nd dind i r i i M[ ( ] d

2 Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M ISSN Th Lpl-Bi Ltrl Lpl trnorm L[ z, L[ z, nd dind ( rz z ddz i dnotd b whnvr thi doubl intgrl i it or r> nd > r prmtr. Subtitut z -log( thn z nd i z thn d, dz -,i z- thn (, p dd, thn (,+ g(, (,+ m[g(, ( B. Sling Proprt Sond vr importnt proprt i tht th Lpl Mllin Intgrl Trnorm i Sling Proprt:, tht i or th untion (, who Lpl -Mllin intgrl trnorm it, thn onidr th qution L[ z, ( rz z ddz (, p dd,thn ( r ( d log( d( rz z z ddz r z ddz q, d z d p (q,r,, (3 (,d C. Powr Proprt Third vr importnt proprt i tht th Lpl Mllin Intgrl Trnorm i Powr Proprt:, tht i or th untion (, who Lpl -Mllin intgrl trnorm it, thn onidr th qution (, p dd, thn r t L[ z, r dd (, r, r (,t,p/ (4 Thi i th rltion in btwn Mllin Intgrl Trnorm nd Lpl trnorm or (, with prmtr r> nd > in th rng [,;, ]..Thi i dnotd b L M[ r, ] r dd L M M[ whr nd nd >,p>. III. PRELIMINARY PROPERTIES A. Linr Proprt A vr importnt proprt i tht th Lpl Mllin Intgrl Trnorm i linr oprtion thorm:, tht i or th untion (, nd g(, who Lpl-Mllin Intgrl Trnorm it nd r ontnt thn onidr th qution ( IV. MAIN RESULTS A. Invrion Thorm Th Lpl-Mllin Intgrl Trnorm i (, (, (i i i i i p p p B. Convolution Thorm Th Lpl-Mllin Intgrl Trnorm i (, dd, thn ddp p dd, thn (5

3 Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M 3 ISSN (,g(t-, (i i i i i p t z p g( t, ddp p d d (6 C. Prvl Thorm (Orthogonlit Th Lpl-Mllin Intgrl Trnorm i (, (,g(, (i (7 i i i i p t z p p D. Shiting Thorm Th Lpl-Mllin Intgrl Trnorm i (, dd, thn g(, ddp p dd, thm Lm], (8 V. LAPLACE MELLIN INTEGRAL TRANSFORM OF DERIVATIVES Thorm: Suppo tht (, i ontinuou or ll t nd z tiing or om t, vlu, nd m nd h drivtiv whih i piwi ontinuou on vr init intrvl in th rng o t. nd z Thn b uing th Lpl- Mllin intgrl trnorm, th drivtiv o (, it whn > nd p> nd t (, m z or ll nd or om ontnt A. Lpl-Mllin Intgrl Trnorm o irt ordr prtil drivtiv o (t w.r.t. Th Lpl- Mllin trnormtion i ( p d[[ d[ (, ] p p p t (, whr - ( dd dd - ( p (, d - d] d] p (, d - (9 B. Lpl-Mllin intgrl trnorm o n th ordr prtil drivtiv o (, w.r.t. Lpl-Mllin Intgrl Trnorm o irt ordr prtil drivtiv o (, w.r.t. Th Lpl- Mllin Intgrl Trnorm i (, (, p dd p dd, thn (, p dd, thn p d d (, p dd p d[[ ] ( d]

4 Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M 4 ISSN p d[ (, ( d] w. r. t. nd -ontnt. p d d,intgrt ( p dd - p (, d p d[[ ] ( d] p dd -(B uing DUIS p d[[ (, ( d] [ -] p (, d p d] (, (, (n (, - ( 3 - ( n - n ( Thi i th gnrlizd rult o h Lpl- Mllin Intgrl th Trnorm o n drivtiv o (,. VI. APPLICATIONS TO LIMIT A. On dimnionl wv qution i olvd b uing Lpl-Mllin Intgrl Trnorm. Th on dimnionl wv qution i whr ( t, z ( t, z Th Lpl- Mllin Intgrl Trnormtion i tht i (3 whr p (, d. + + p (, d p dd w. r. t. nd ontnt. p p d[[ d[[ (, p d ] ( ( d d] d], intgrt (, p dd, thn p (, d p d] p dd p (, d +

5 Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M 5 ISSN whr p (, d [ (DUIS + ppling Lpl- Mllin Intgrl Trnorm (,- D D D - ( D,w hv to Lm (4 [ D (5 Thi i th ordinr dirntil qution w. r. t. CF C C nd PI whr CS C C p (, d (6 To illutrt th u o th Lpl-Mllin intgrl trnorm in olving th rtin prtil dirntil qution.w propo to ind th olution (, o th qution,tiing th boundr ondition Th initil nd boundr ondition r ( I thn (,, ( I thn (,. Th olution o th on dimnionl wvl qution i CS C C I thn (, C + C - C + C - I thn (, W gt C C C C C C - ( ( ( whr C -. nd C ( ( (7 p (, d Grphil Rprnttion, thn (,thn. Empl

6 -i Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M 6 ISSN On Dimntionl.Wv Eqution lm[(t,z, i B. Lpl qution in Crtin orm i olvd b uing Lol-Mllin intgrl trnorm. Th on dimnionl wv qution i ( t, z ( t, z i Th Lpl- Mllin Intgrl Trnormtion i (, p dd +, thn Whr p (, d, thn (,- + ( D D + - (8 Thi i th ordinr dirntil qution o ond ordr in. It root r m i nd m i It Complmntr FuntionO.F. nd tht C o( C in( Prtiulr IntgrlP.I.-, th th Complt Solution i C o( C in( - (9. Empl whr p (, d To illutrt th u o th Lpl-Mllin intgrl trnorm in olving th rtin prtil dirntil qution.w propo to ind th olution (, o,tiing th boundr ondition An. ( I thn (,,( I thn (, Th olution o th prtil qution i givn b Lm [ C o( C in( ( I thn (,C-/ thn C / ( I thn (t,co(+cin(- / C o(-cot( o(+ ot( Th rquird olution i (, o(+[ o (+ ot(]in( - - ( whr p (, d Grphil Rprnttion

7 Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M 7 ISSN ( lm[(, whr C C - p (, d 3. Empl To illutrit th u o th Lpl-Mllin Intgrl Trnorm in olving th On dimntionl Ht Slow Eqution i olvd b uing Lpl- Mllin Intgrl trnorm. Th on dimnionl qution i, whr Th Lpl- Mllin Intgrl Trnormtion i (, p dd, thn Lm [ whr, thn p (, d + D -, thn D D ( ( Thi i th ordinr dirntil qution in C.F. C P.I. - Th omplt olution i C + rtin prtil dirntil qution W propo to ind th olution tiing th boundr ondition It olution i (,p[ C C. - ( I thn (,, ( I thn '(,. Anwr. C ( I thn (,C+C- ( nd id thn (, thn ( ( C (( (, Whr Grphil Rprnttion + C C + (( p (, d (3., nd

8 Intrntionl Journl o Sintii nd Rrh Publition Volum, Iu 5, M 8 ISSN VII. REMARKS B uing Lpl Mllin intgrl trnorm, olution o th Lpl qution in Crtin orm, on dimntionl wv qution nd Ht Flow qution r olvd nd it olution r rprntd grphill b uing tool o Mtl. VIII. CONCLUSION Rprnttion o olution o th dirntil qution b uing tool o Mtlb i th id i givn in thi ppr. REFERENCES [] Dr Nlor, On Mllin Tp Intgrl Trnorm Journl o Mthmti nd Mhni (963 vol., No. [] C.Fo, Applition o Mllin' Trnormtion to th intgrl qution,(933 [3] J.M.Mndz nd J.R.Ngrin, On th init Hnl-Shwrtz Trnormtion o Ditribution Gnit,(988, vol.39, No. [4] S. M. Khirnr, R. M. Pi, J. N. Slun,Bi Ltrl Lpl Mllin Intgrl Trnorm nd It Applition Imt. J. o Pur & Appl. Si. Th., (,, pp 4-6 [5] In N. Snddon,Th u o Intgrl TrnormTMH dition 974 [6] C. Fo Applition o Mllin Trnormtion to Intgrl Eqution, 3rd Mrh, 934,pp [7] A.H.Zmnin, Gnrlizd Intgrl Trnormtion, Intrin Publition, Nw Yor,(968 [8] A. H.. ZmninTh Ditributionl lpl nd Mllin Trnormtion J. SIAM Vol 4. No.. Jn.98 Pritd in U.S.A. [9] S. M. Khirnr, R. M. Pi, J. N. Slun, Stud O Th Sumudu Mllin Intgrl Trnorm nd It Applition IJMSEA, Vol. 4 N. IV ( t. Pp [] I.S. Rd, Th Mllin Tp Doubl Intgrl, Cmbridg, London. [] S. M. Khirnr, R. M. Pi, J. N. Slun, Rltion O Th Finit Mllin Intgrl Trnorm With Th Lpl nd Fourir Trnorm CES, Vol. 4,no. 6, [] S. M. Khirnr, R. M. Pi, J. N. Slun, Applition O Th Mllin Tp Intgrl Trnorm In Th Rng [, ], IJMSA, Vol., No., Jn. Pp -7.

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY MCD CONTINUITY AND DIFFERENTIABILITY NCERT Solvd mpls upto th sction 5 (Introduction) nd 5 (Continuity) : Empl : Chck th continuity of th function f givn by f() = + t = Empl : Emin whthr th function f

More information

The Z transform techniques

The Z transform techniques h Z trnfor tchniqu h Z trnfor h th rol in dicrt yt tht th Lplc trnfor h in nlyi of continuou yt. h Z trnfor i th principl nlyticl tool for ingl-loop dicrt-ti yt. h Z trnfor h Z trnfor i to dicrt-ti yt

More information

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand

Research Scholar, Vinoba Bhave University, Hazaribag, Jharkhand Volum Issu July 0 ISSN: X Intrntionl Journl of Advnd Rsrh in Computr Sin nd Softwr Enginring Rsrh Ppr Avill onlin t: www.ijrss.om Dominting Funtion Thory from Nwton to Linitz s Approh of Indfinit Intgrtion

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Continuous Random Variables: Basics

Continuous Random Variables: Basics Continuous Rndom Vrils: Bsics Brlin Chn Dprtmnt o Computr Scinc & Inormtion Enginring Ntionl Tiwn Norml Univrsit Rrnc: - D.. Brtss, J. N. Tsitsilis, Introduction to roilit, Sctions 3.-3.3 Continuous Rndom

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x.

The Derivative of the Natural Logarithmic Function. Derivative of the Natural Exponential Function. Let u be a differentiable function of x. Th Ntrl Logrithmic n Eponntil Fnctions: : Diffrntition n Intgrtion Objctiv: Fin rivtivs of fnctions involving th ntrl logrithmic fnction. Th Drivtiv of th Ntrl Logrithmic Fnction Lt b iffrntibl fnction

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8 0.2v, p 0.5 p 450 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9

Lecture contents. Bloch theorem k-vector Brillouin zone Almost free-electron model Bands Effective mass Holes. NNSE 508 EM Lecture #9 Lctur contnts Bloch thorm -vctor Brillouin zon Almost fr-lctron modl Bnds ffctiv mss Hols Trnsltionl symmtry: Bloch thorm On-lctron Schrödingr qution ch stt cn ccommo up to lctrons: If Vr is priodic function:

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2012 MASTER CLASS PROGRAM WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2012 MASTER CLASS PROGRAM WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS UNIT SPECIALIST MATHEMATICS SEMESTER TWO MASTER CLASS PROGRAM WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC/UPDATES/VIC QUESTION () Lt p ( z) z z z If z i z

More information

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS MASTER CLASS PROGRAM UNIT SPECIALIST MATHEMATICS SEMESTER TWO WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2013 MASTER CLASS PROGRAM WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2013 MASTER CLASS PROGRAM WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS UNIT SPECIALIST MATHEMATICS SEMESTER TWO MASTER CLASS PROGRAM WEEK WRITTEN EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES QUESTION () Lt p ( z) z z z If z i z ( is

More information

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets

Hardy Spaces, Hyperfunctions, Pseudo-Differential Operators and Wavelets Hrdy Sps, Hyprfuntions, Psudo-Diffrntil Oprtors nd Wvlts Colltions from lrtur Th Hrdy Sp nd Hilbrt Sls Lt : s /, t thn th Rimnn Hypothsis is th sttmnt tht / ( s is nlyti on th hlf-pln Th ppropr Hilbrt

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections

CONIC SECTIONS. MODULE-IV Co-ordinate Geometry OBJECTIVES. Conic Sections Conic Sctions 16 MODULE-IV Co-ordint CONIC SECTIONS Whil cutting crrot ou might hv noticd diffrnt shps shown th dgs of th cut. Anlticll ou m cut it in thr diffrnt ws, nml (i) (ii) (iii) Cut is prlll to

More information

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM

DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF 2 2 MATRICES AND 3 3 UPPER TRIANGULAR MATRICES USING THE SIMPLE ALGORITHM Fr Est Journl o Mthtil Sins (FJMS) Volu 6 Nur Pgs 8- Pulish Onlin: Sptr This ppr is vill onlin t http://pphjo/journls/jsht Pushp Pulishing Hous DEVELOPING COMPUTER PROGRAM FOR COMPUTING EIGENPAIRS OF MATRICES

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

CBSE 2015 FOREIGN EXAMINATION

CBSE 2015 FOREIGN EXAMINATION CBSE 05 FOREIGN EXAMINATION (Sris SSO Cod No 65//F, 65//F, 65//F : Forign Rgion) Not tht ll th sts hv sm qustions Onl thir squnc of pprnc is diffrnt M Mrks : 00 Tim Allowd : Hours SECTION A Q0 Find th

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS VSRT MEMO #05 MASSACHUSETTS INSTITUTE OF TECHNOLOGY HAYSTACK OBSERVATORY WESTFORD, MASSACHUSETTS 01886 Fbrury 3, 009 Tlphon: 781-981-507 Fx: 781-981-0590 To: VSRT Group From: Aln E.E. Rogrs Subjct: Simplifid

More information

Hadamard-Type Inequalities for s-convex Functions

Hadamard-Type Inequalities for s-convex Functions Interntionl Mthemtil Forum, 3, 008, no. 40, 965-975 Hdmrd-Type Inequlitie or -Convex Funtion Mohmmd Alomri nd Mlin Dru Shool o Mthemtil Siene Fulty o Siene nd Tehnology Univeriti Kebngn Mlyi Bngi 43600

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued) Introduction to th Fourir transform Computr Vision & Digital Imag Procssing Fourir Transform Lt f(x) b a continuous function of a ral variabl x Th Fourir transform of f(x), dnotd by I {f(x)} is givn by:

More information

UNIT # 08 (PART - I)

UNIT # 08 (PART - I) . r. d[h d[h.5 7.5 mol L S d[o d[so UNIT # 8 (PRT - I CHEMICL INETICS EXERCISE # 6. d[ x [ x [ x. r [X[C ' [X [[B r '[ [B [C. r [NO [Cl. d[so d[h.5 5 mol L S d[nh d[nh. 5. 6. r [ [B r [x [y r' [x [y r'

More information

On Gaussian Distribution

On Gaussian Distribution Prpr b Çğt C MTU ltril gi. Dpt. 30 Sprig 0089 oumt vrio. Gui itributio i i ollow O Gui Ditributio π Th utio i lrl poitiv vlu. Bor llig thi utio probbilit it utio w houl h whthr th r ur th urv i qul to

More information

Properties of Hexagonal Tile local and XYZ-local Series

Properties of Hexagonal Tile local and XYZ-local Series 1 Proprtis o Hxgonl Til lol n XYZ-lol Sris Jy Arhm 1, Anith P. 2, Drsnmik K. S. 3 1 Dprtmnt o Bsi Sin n Humnitis, Rjgiri Shool o Enginring n, Thnology, Kkkn, Ernkulm, Krl, Ini. jyjos1977@gmil.om 2 Dprtmnt

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) Awr: = ( + )(y + ) Diff prtilly w.r.to & y hr p & q y p = (y + ) ;

More information

Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...?

Practice Final Exam. 3.) What is the 61st term of the sequence 7, 11, 15, 19,...? Discrt mth Prctic Fl Em.) Fd 4 (i ) i=.) Fd i= 6 i.) Wht is th 6st trm th squnc 7,, 5, 9,...? 4.) Wht s th 57th trm, 6,, 4,...? 5.) Wht s th sum th first 60 trms th squnc, 5, 7, 9,...? 6.) Suppos st A

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS UNIT-I PARTIAL DIFFERENTIAL EQUATIONS PART-A. Elimit th ritrry ott & from = ( + )(y + ) = ( + )(y + ) Diff prtilly w.r.to & y hr p & q p = (y + ) ; q = ( +

More information

Double integrals on regions (Sect. 15.2) Review: Fubini s Theorem on rectangular domains

Double integrals on regions (Sect. 15.2) Review: Fubini s Theorem on rectangular domains ouble integrls on regions (Set. 5.) Review: Fubini s on retngulr domins. Fubini s on non-retngulr domins. Tpe I: omin funtions (). Tpe II: omin funtions (). Finding the limits of integrtion. Review: Fubini

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 arxiv: v1 [math.dg] 14 May 2013

MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 arxiv: v1 [math.dg] 14 May 2013 MERIDIAN SURFACE OF WEINGARTEN TYPE IN 4-DIMENSIONAL EUCLIDEAN SPACE E 4 rxiv:13053155v1 [mthdg] 14 My 2013 Astrct In this ppr, w study mridin surfcs of Wingrtn typ in Euclidn 4-spc E 4 W giv th nccssry

More information

Motivation (Cont d) Motivation (Cont d)

Motivation (Cont d) Motivation (Cont d) Data-Flow Analyi or Hot-Spot Program Optimization Jn Knoop Tchnich Univrität Win 1 Motivation 2 A Poibly Hug Program Rgion x Hot Spot 1 Hot Spot 2 A Poibly Hug Program Rgion 3 4 A Poibly Hug Program Rgion

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

1 Finite Automata and Regular Expressions

1 Finite Automata and Regular Expressions 1 Fini Auom nd Rgulr Exprion Moivion: Givn prn (rgulr xprion) for ring rching, w migh wn o convr i ino drminiic fini uomon or nondrminiic fini uomon o mk ring rching mor fficin; drminiic uomon only h o

More information

Fourier Transform Methods for Partial Differential Equations

Fourier Transform Methods for Partial Differential Equations Itrtiol Jourl o Prtil Dirtil Equtio d Applitio,, Vol, No 3, -57 Avill oli t http://puipuom/ijpd//3/ Si d Edutio Pulihig DOI:69/ijpd--3- Fourir Trorm Mthod or Prtil Dirtil Equtio Nol Tu Ngro * Dprtmt o

More information

MATHEMATICS Class 12 FOR JEE MAIN & ADVANCED. Indefinite Integration. Exhaustive Theory. Formula Sheet Problems

MATHEMATICS Class 12 FOR JEE MAIN & ADVANCED. Indefinite Integration. Exhaustive Theory. Formula Sheet Problems Clss 07-8 MATHEMATICS FOR JEE MAIN & ADVANCED SECOND EDITION Ehustiv Thory (Now Rvisd) Formul Sht 9000+ Problms bsd on ltst JEE pttrn 500 + 000 (Nw) Problms of prvious 35 yrs of AIEEE (JEE Min) nd IIT-JEE

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

MAT 403 NOTES 4. f + f =

MAT 403 NOTES 4. f + f = MAT 403 NOTES 4 1. Fundmentl Theorem o Clulus We will proo more generl version o the FTC thn the textook. But just like the textook, we strt with the ollowing proposition. Let R[, ] e the set o Riemnn

More information

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011 plc Trnorm Nionl Chio Tung Univriy Chun-Jn Ti /9/ Trnorm o Funcion Som opror rnorm uncion ino nohr uncion: d Dirniion: x x, or Dx x dx x Indini Ingrion: x dx c Dini Ingrion: x dx 9 A uncion my hv nicr

More information

Binomials and Pascal s Triangle

Binomials and Pascal s Triangle Binomils n Psl s Tringl Binomils n Psl s Tringl Curriulum R AC: 0, 0, 08 ACS: 00 www.mthltis.om Binomils n Psl s Tringl Bsis 0. Intif th prts of th polnomil: 8. (i) Th gr. Th gr is. (Sin is th highst

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

The Similar Construction Method of Non-Homogeneous Boundary Value Problems for Second-Order Homogeneous Linear Differential Equations

The Similar Construction Method of Non-Homogeneous Boundary Value Problems for Second-Order Homogeneous Linear Differential Equations Intntionl Jounl o Sintii n Innovtiv Mthmtil Rsh IJSIMR Volum 3 Issu Novm 5 PP 9-5 ISSN 347-37X Pint & ISSN 347-34 Onlin www.jounls.og Th Simil Constution Mtho o Non-Homognous Boun Vlu Polms o Son-O Homognous

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique Inrnionl hmil orum no. 667-67 Sud of h Soluions of h o Volrr r rdor Ssm Using rurion Thniqu D.Vnu ol Ro * D. of lid hmis IT Collg of Sin IT Univrsi Vishnm.. Indi Y... Thorni D. of lid hmis IT Collg of

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

A Method for Interpolation Wavelet Construction Using Orthogonal Scaling Functions

A Method for Interpolation Wavelet Construction Using Orthogonal Scaling Functions A Mthod for Intrpoltion Wvlt Contruction Uing Orthogonl Scling Function higuo hng Collg of Autotion Univrity of Elctronic Scinc nd Tchnology of Chin Chngdu, Chin zhiguozhng@utc.du.cn Mr A. Kon Dprtnt of

More information

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx Tutoril 2 Euler Lgrnge In one entene: d Fy = F d Importnt ft: ) The olution of EL eqution i lled eterml. 2) Minmum / Mimum of the "Mot Simple prolem" i lo n eterml. 3) It i eier to olve EL nd hek if we

More information

DISCRETE TIME FOURIER TRANSFORM (DTFT)

DISCRETE TIME FOURIER TRANSFORM (DTFT) DISCRETE TIME FOURIER TRANSFORM (DTFT) Th dicrt-tim Fourir Tranform x x n xn n n Th Invr dicrt-tim Fourir Tranform (IDTFT) x n Not: ( ) i a complx valud continuou function = π f [rad/c] f i th digital

More information

Hermite-Hadamard Inequality for Geometrically Quasiconvex Functions on a Rectangular Box

Hermite-Hadamard Inequality for Geometrically Quasiconvex Functions on a Rectangular Box Mth. Si. Ltt. 5, No., 59-69 (26 59 Mthmtil Sins Lttrs An Intrntionl Journl http://d.doi.or/.8576/msl/58 Hrmit-Hdmrd Inulit for Gomtrill Qusionv Funtions on Rtnulr Bo Ali Brni nd Ftmh Mlmir Dprtmnt of Mthmtis,

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently?

Register Allocation. How to assign variables to finitely many registers? What to do when it can t be done? How to do so efficiently? Rgistr Allotion Rgistr Allotion How to ssign vrils to initly mny rgistrs? Wht to o whn it n t on? How to o so iintly? Mony, Jun 3, 13 Mmory Wll Disprity twn CPU sp n mmory ss sp improvmnt Mony, Jun 3,

More information

Assignment 5-6 For Problems 1-4, find a general solution of each differential equation. *Solve for y in Problems 2 and 4.

Assignment 5-6 For Problems 1-4, find a general solution of each differential equation. *Solve for y in Problems 2 and 4. Empl 6: Lt rprsnt th mss, in ponds, of rdioctiv lmnt whos hlf-lif is 4000 rs. If thr r 00 ponds of th lmnt in n inctiv min, how mch will still rmin in 000 rs? Eprss or nswr to or mor dciml plc ccrc. 4

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms

Relation of Finite Mellin Integral Transform. with Laplace and Fourier Transforms Cotmpo Egiig Si Vol. 4 o. 6 69-88 Rltio o Fiit Mlli Itgl Tom with Lpl d Foui Tom S. M. Khi R. M. Pi* d J. N. Sluk** Dptmt o Mthmti Mhht Adm o Egiig Aldi-45Pu Idi mkhi7@gmil.om *Dptmt o Mthmti (A.S.&H.

More information

( x) On the Exponentiated Generalized Weibull Distribution: A Generalization of the Weibull Distribution. 1. Introduction.

( x) On the Exponentiated Generalized Weibull Distribution: A Generalization of the Weibull Distribution. 1. Introduction. Indin Journl o Scinc nd Tchnology, Vol 8(35), DOI:.7485/ist/25/v8i35/676, Dcmr 25 ISSN (Print) : 974-6846 ISSN (Onlin) : 974-5645 On th Eponntitd Gnrlizd Wiull Distriution: A Gnrliztion o th Wiull Distriution

More information

( x) On the Exponentiated Generalized Weibull Distribution: A Generalization of the Weibull Distribution. 1. Introduction.

( x) On the Exponentiated Generalized Weibull Distribution: A Generalization of the Weibull Distribution. 1. Introduction. Indin Journl o Scinc nd Tchnology, Vol 8(35), DOI:.7485/ist/25/v8i35/676, Dcmr 25 ISSN (Print) : 974-6846 ISSN (Onlin) : 974-5645 On th Eponntitd Gnrlizd Wiull Distriution: A Gnrliztion o th Wiull Distriution

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS adjoint...6 block diagram...4 clod loop ytm... 5, 0 E()...6 (t)...6 rror tady tat tracking...6 tracking...6...6 gloary... 0 impul function...3 input...5 invr Laplac tranform, INTRODUCTION TO AUTOMATIC

More information

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000

Mathematics. Mathematics 3. hsn.uk.net. Higher HSN23000 Highr Mthmtics UNIT Mthmtics HSN000 This documnt ws producd spcilly for th HSN.uk.nt wbsit, nd w rquir tht ny copis or drivtiv works ttribut th work to Highr Still Nots. For mor dtils bout th copyright

More information

For more important questions visit :

For more important questions visit : For mor important qustions visit : www4onocom CHAPTER 5 CONTINUITY AND DIFFERENTIATION POINTS TO REMEMBER A function f() is said to b continuous at = c iff lim f f c c i, lim f lim f f c c c f() is continuous

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q. LASS XII Q Evlut : Q sc Evlut c Q Evlut: ( ) Q Evlut: Q5 α Evlut: α Q Evlut: Q7 Evlut: { t (t sc )} / Q8 Evlut : ( )( ) Q9 Evlut: Q0 Evlut: Q Evlut : ( ) ( ) Q Evlut : / ( ) Q Evlut: / ( ) Q Evlut : )

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to.

this is called an indeterninateformof-oior.fi?afleleitns derivatives can now differentiable and give 0 on on open interval containing I agree to. hl sidd r L Hospitl s Rul 11/7/18 Pronouncd Loh mtims splld Non p t mtims w wnt vlut limit ii m itn ) but irst indtrnintmori?lltns indtrmint t inn gl in which cs th clld n i 9kt ti not ncssrily snsign

More information

Module 2 Motion Instructions

Module 2 Motion Instructions Moul 2 Motion Instrutions CAUTION: Bor you strt this xprimnt, unrstn tht you r xpt to ollow irtions EXPLICITLY! Tk your tim n r th irtions or h stp n or h prt o th xprimnt. You will rquir to ntr t in prtiulr

More information

Analytic Solution of Nonlinear Schrödinger Equation by Means of A New Approach

Analytic Solution of Nonlinear Schrödinger Equation by Means of A New Approach Anlytic Solution of Nonlinr Schrödingr Eqution y Mns of A Nw Approch Ali Yunus Rohdi Optoinformtics Lortory, Dprtmnt of Physics, Spuluh Nopmr Institut of Tchnology (ITS), Sukolilo, Sury, 6111 Tlp/Fx :

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Paths, cycles and flows in graphs

Paths, cycles and flows in graphs Chptr 6 Pth, yl n flow in grph Suppo you wnt to fin hortt pth from givn trting point to givn tintion. Thi i ommon nrio in rivr itn ytm (GPS) n n mol on of th mot i omintoril optimiztion prolm, th hortt

More information

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras Glol Journl of Mthemtil Sienes: Theory nd Prtil. ISSN 974-32 Volume 9, Numer 3 (27), pp. 387-397 Interntionl Reserh Pulition House http://www.irphouse.om On Implitive nd Strong Implitive Filters of Lttie

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

RELATIONS BETWEEN GABOR TRANSFORMS AND FRACTIONAL FOURIER TRANSFORMS AND THEIR APPLICATIONS FOR SIGNAL PROCESSING

RELATIONS BETWEEN GABOR TRANSFORMS AND FRACTIONAL FOURIER TRANSFORMS AND THEIR APPLICATIONS FOR SIGNAL PROCESSING RELATIONS BETWEEN ABOR TRANSFORMS AND FRACTIONAL FOURIER TRANSFORMS AND THEIR APPLICATIONS FOR SINAL PROCESSIN Soo-Chang Pi, Jian-Jiun Ding Dpartmnt o Elctrical Enginring, National Taiwan Univrsity, No.,

More information