Radioactivity and Radiation

Size: px
Start display at page:

Download "Radioactivity and Radiation"

Transcription

1 Radioactivity and Radiation

2 Radiation Protection c by Claus Grupen

3 Claus Grupen Mark Rodgers Radioactivity and Radiation What They Are, What They Do, and How to Harness Them 123

4 Claus Grupen Department of Physics University of Siegen Siegen Germany Mark Rodgers Bluesmith Information Systems Leeds UK ISBN ISBN (ebook) DOI / Library of Congress Control Number: Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. With cartoons by N. Downes, C. Grupen (partly inspired by his son Cornelius), L. Murchetz, V. Renčín, J. Wolter; copyright by the cartoonists. All line drawings, unless otherwise noted, are by C. Grupen, who retains the copyright for them. Certain diagrams were produced by M. Rodgers, who retains the copyright for them, using Jaxodraw by D. Binosi and L. Theußl, and the GNU Image Manipulation Program, Graphic design is by Armbrust Design, Stefan H. Armbrust, Siegen, Germany. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG Switzerland

5 Disclaimer This book provides an overview of radiation physics. It is intended for members of the general public who are interested in radioactivity and radiation, and also science enthusiasts more generally. We have tried to keep the information correct and up-to-date. However, any reliance on such information is strictly at your own risk. This refers to the availability of the commercial products shown and also to those places where web sites are given. Web addresses can change quite rapidly, but we have made sure that the sites given in the text are available at the time of printing of this book. These web sites are not under our control. We have also tried to get written permission for the use of all pictures (relating to radiation detection, radiation instruments and other topics) which are shown in this book. Not in all cases did the companies providing such instruments or information respond to our request for permission to show their products. If any material in this book is being described or referred to improperly or incompletely, we would be grateful to be informed so that we can consider this for future editions of the book. Claus Grupen Mark Rodgers v

6 Preface Like taxes, radioactivity has long been with us and in increasing amounts; it is not to be hated and feared, but accepted and controlled. Radiation is dangerous, let there be no mistake about that but the modern world abounds in dangerous substances and situations too numerous to mention, Consider radiation as something to be treated with respect, avoided when practicable, and accepted when inevitable. Ralph Lapp Radiation is everywhere. In this book, we are concerned with ionising radiation, i.e. radiation that can ionise ordinary atoms, such as the rays which come from radioactive decay. Almost everything is radioactive. Radiation emerges from the soil, it is in the air, and our planet is continuously being bombarded with energetic cosmic radiation. Even the human body is radioactive: about 9000 decays of unstable nuclei occur per second in a normal human body. In the early days of the Earth, when our planet formed from the debris of the early solar system, the radiation level was much higher. It is possible that the origin, development and biodiversity of life have been positively influenced by ionising radiation. Since the early twentieth century, mankind has been able to artificially create radioactive nuclei: particularly so since the discovery of nuclear fission in the late 1930s. As early as 1905, Pierre Curie remarked that radium in the hands of criminals could be a disaster. Also, Louis de Broglie noted in his Nobel lecture in 1927 that he did not know whether science in the hands of humans is a good or a bad thing. The bombing of Hiroshima and Nagasaki in 1945 with nuclear weapons clearly demonstrated the disastrous effect of ionising radiation. The Nobel laureate for medicine, Maurice H.F. Wilkins, said contemplatively: We have now reached the point where it is an open question as to whether doing more science is a good thing. The nuclear accidents near Harrisburg at the Three Mile Island reactor (1979), in Chernobyl (1986), Tokaimura (1999) and Fukushima (2011) clearly demonstrated that nuclear fission requires high-quality safety systems. vii

7 viii Preface It is in the nature of humans to try to further our understanding of the world around us. No law will stop people undertaking research which might carry them into new domains, and there will always be a risk that a new technology will be misused. Therefore, it is important to understand the results of research and to explain the advantages and possible risks to everybody who is interested. There are of course great benefits to be gained from nuclear energy and ionising radiation, particularly in (fission) power plants and in nuclear medicine (both diagnosis and therapy). Also nuclear fusion, the energy source of the stars, may well solve all of mankind s energy problems in less than a century. The use and abuse of radiation concerns, among others, physicists, engineers, lawyers and healthcare professionals, as well as the general public. Everyone should be able to judge on the application of radioactivity in various fields himself without referring to experts. This book was originally published as a longer, more technical volume called Introduction to Radiation Protection. That book itself originated from a series of lectures that one of the authors (C.G.) gave over a period of more than 40 years. The text was first published in German by Vieweg and updated later in editions by Springer. It has also been translated into English and Japanese. A translation into Turkish is in preparation. This book would not have been possible without the help of a large number of people. In particular, the help of Dr. Tilo Stroh and Dr. Ulrich Werthenbach was invaluable in the creation of the earlier versions. We thank Dr. Cornelius Grupen for injecting ideas for the book, particularly on the structure of the material. In addition, M.R. would like to thank his wife Clare for her help and encouragement, and C.G. wants to thank his wife Heidemarie for her continuous support and patience. The aim of this more accessible book is to simplify the complicated physics and mathematics of the original version so that interested members of the public will be able to judge on possible dangers of ionising radiation. There is often an antipathy and distrust when ionising radiation is discussed. Occasionally this distrust is justified, especially when irresponsible discharges of radioactive waste into the environment are concerned. However, we are surrounded by radiation from many different sources, especially from the natural environment: the food that we eat and the air that we breathe are to a certain extent radioactive. This unavoidable radiation serves as a good starting point for comparison when discussing additional radiation from technical installations, and we can keep in mind that most of the additional radiation results from diagnostics and therapy in medicine. We have tried to make the field of radioactivity accessible to the layman with illustrations and examples that hopefully appeal to general experience. The aim of this book is to improve the understanding of the basics of radioactivity and to assess the radiation risks in comparison to the risks that we are used to taking every day without any consideration. Claus Grupen (Siegen, Germany) and Mark Rodgers (Leeds, UK), October 2016

8 Contents 1 Why Should I Read This Book? What Are Radioactivity and Radiation? Radioactivity Activity and Half-Life Radiation Doses Weighting Factors Avoiding Doses Summary Putting doses in context What Does Radiation Do? Interactions of Charged Particles Interactions of Neutrons Interactions of Photons Summary How Can We Make Radiation? Charged Particle Sources Photon Sources Neutron Sources Cosmic-Ray Sources Medical Applications Radioisotope Batteries Summary What Are X Rays? Medical X Rays X-Ray Crystallography Inspection and Quality Control Systems X Rays in Art Sources of Unwanted X Rays Summary ix

9 x Contents 6 Is Radioactivity Everywhere? Cosmic Rays Terrestrial Radiation Incorporation of Radioisotopes Radiation Exposures from Technical Installations Specific Environmental Exposures Exposures from Air Travel Exposures from Smoking Exposures from Water Questionable Applications in Medicine Summary What Does Radiation Do to Us? Early Effects Delayed Radiation Damage Genetic Damage Radiosensitivity Decorporation Non-Human Organisms Radiation-Absorbing Fungi Radiation Risk Factors Low Radiation Doses Eradication of Insect Pests Metabolism of Plutonium Summary How Can We Use Radioactivity Productively? Nuclear Fission Reactors Fusion Reactors Inertial Fusion Fusion by Magnetic Confinement The First Nuclear Reactor Natural Nuclear Reactors Summary How Can We Use Radioactivity Destructively? Summary What Happens When It Goes Wrong? Smaller-Scale Radiation Incidents Summary What About Non-Ionising Radiation? Microwaves Ultraviolet Light Lasers Summary

10 Contents xi 12 How Can We Stay Safe? Waste Storage Waste Transmutation Packaging and Transport Storage and Security of Radioactive Substances Handling of Unsealed Radioactive Sources Mitigating the Consequences of Accidents Arrangements for Fire Fighting Protection of Air, Water, and Soil Summary What Have We Learned? Appendices A How Can We Detect Radiation? A.1 Ionisation Chambers A.2 Proportional Counters A.3 Geiger-Müller Counters A.4 Solid-State Detectors A.5 Scintillators A.6 Neutron Counters A.7 Personal Dosimeters A.8 Accident Dosimetry A.9 Overview of Radiation Detector Types Summary B How is Radiation Protection Organised? B.1 National Regulations B.2 Radiation Protection Inside Organisations B.2.1 Licensing B.2.2 Bookkeeping B.2.3 Instruction and Training B.2.4 Medical Supervision B.2.5 Handling of Incidents B.2.6 Disposing of Radioactive Waste Summary C Periodic Table of Elements D Further Reading Glossary Index

Semantics of the Probabilistic Typed Lambda Calculus

Semantics of the Probabilistic Typed Lambda Calculus Semantics of the Probabilistic Typed Lambda Calculus Dirk Draheim Semantics of the Probabilistic Typed Lambda Calculus Markov Chain Semantics, Termination Behavior, and Denotational Semantics Dirk Draheim

More information

Radiation Therapy Study Guide

Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review 123 Radiation Therapy Study Guide Amy Heath Radiation Therapy Study Guide A Radiation Therapist s Review Amy Heath, MS, RT(T) University

More information

Non-Western Theories of International Relations

Non-Western Theories of International Relations Non-Western Theories of International Relations Alexei D. Voskressenski Non-Western Theories of International Relations Conceptualizing World Regional Studies Alexei D. Voskressenski MGIMO University Moscow,

More information

Doubt-Free Uncertainty In Measurement

Doubt-Free Uncertainty In Measurement Doubt-Free Uncertainty In Measurement Colin Ratcliffe Bridget Ratcliffe Doubt-Free Uncertainty In Measurement An Introduction for Engineers and Students Colin Ratcliffe United States Naval Academy Annapolis

More information

Igor Emri Arkady Voloshin. Statics. Learning from Engineering Examples

Igor Emri Arkady Voloshin. Statics. Learning from Engineering Examples Statics Igor Emri Arkady Voloshin Statics Learning from Engineering Examples Igor Emri University of Ljubljana Ljubljana, Slovenia Arkady Voloshin Lehigh University Bethlehem, PA, USA ISBN 978-1-4939-2100-3

More information

Springer Atmospheric Sciences

Springer Atmospheric Sciences Springer Atmospheric Sciences More information about this series at http://www.springer.com/series/10176 Ewa Łupikasza The Climatology of Air- Mass and Frontal Extreme Precipitation Study of meteorological

More information

Tritium: Fuel of Fusion Reactors

Tritium: Fuel of Fusion Reactors Tritium: Fuel of Fusion Reactors Tetsuo Tanabe Editor Tritium: Fuel of Fusion Reactors 123 Editor Tetsuo Tanabe Interdisciplinary Graduate School of Engineering Sciences Kyushu University Fukuoka Japan

More information

Dynamics and Control of Lorentz-Augmented Spacecraft Relative Motion

Dynamics and Control of Lorentz-Augmented Spacecraft Relative Motion Dynamics and Control of Lorentz-Augmented Spacecraft Relative Motion Ye Yan Xu Huang Yueneng Yang Dynamics and Control of Lorentz-Augmented Spacecraft Relative Motion 123 Ye Yan College of Aerospace Science

More information

Multivariable Calculus with MATLAB

Multivariable Calculus with MATLAB Multivariable Calculus with MATLAB Ronald L. Lipsman Jonathan M. Rosenberg Multivariable Calculus with MATLAB With Applications to Geometry and Physics Ronald L. Lipsman Department of Mathematics University

More information

Solid Phase Microextraction

Solid Phase Microextraction Solid Phase Microextraction Gangfeng Ouyang Ruifen Jiang Editors Solid Phase Microextraction Recent Developments and Applications 123 Editors Gangfeng Ouyang School of Chemistry Sun Yat-sen University

More information

Astronomers Universe. More information about this series at

Astronomers Universe. More information about this series at Astronomers Universe More information about this series at http://www.springer.com/series/6960 ThiS is a FM Blank Page John Wilkinson The Solar System in Close-Up John Wilkinson Castlemaine, Victoria Australia

More information

Topics in Algebra and Analysis

Topics in Algebra and Analysis Radmila Bulajich Manfrino José Antonio Gómez Ortega Rogelio Valdez Delgado Topics in Algebra and Analysis Preparing for the Mathematical Olympiad Radmila Bulajich Manfrino Facultad de Ciencias Universidad

More information

Non-Instantaneous Impulses in Differential Equations

Non-Instantaneous Impulses in Differential Equations Non-Instantaneous Impulses in Differential Equations Ravi Agarwal Snezhana Hristova Donal O Regan Non-Instantaneous Impulses in Differential Equations 123 Ravi Agarwal Department of Mathematics Texas A&M

More information

Dynamics Formulas and Problems

Dynamics Formulas and Problems Dynamics Formulas and Problems Dietmar Gross Wolfgang Ehlers Peter Wriggers Jörg Schröder Ralf Müller Dynamics Formulas and Problems Engineering Mechanics 3 123 Dietmar Gross Division of Solid Mechanics

More information

SpringerBriefs in Probability and Mathematical Statistics

SpringerBriefs in Probability and Mathematical Statistics SpringerBriefs in Probability and Mathematical Statistics Editor-in-chief Mark Podolskij, Aarhus C, Denmark Series editors Nina Gantert, Münster, Germany Richard Nickl, Cambridge, UK Sandrine Péché, Paris,

More information

Electrochemical Science for a Sustainable Society

Electrochemical Science for a Sustainable Society Electrochemical Science for a Sustainable Society Kohei Uosaki Editor Electrochemical Science for a Sustainable Society A Tribute to John O M Bockris 123 Editor Kohei Uosaki National Institute for Materials

More information

ThiS is a FM Blank Page

ThiS is a FM Blank Page Acid-Base Diagrams ThiS is a FM Blank Page Heike Kahlert Fritz Scholz Acid-Base Diagrams Heike Kahlert Fritz Scholz Institute of Biochemistry University of Greifswald Greifswald Germany English edition

More information

SpringerBriefs in Statistics

SpringerBriefs in Statistics SpringerBriefs in Statistics For further volumes: http://www.springer.com/series/8921 Jeff Grover Strategic Economic Decision-Making Using Bayesian Belief Networks to Solve Complex Problems Jeff Grover

More information

Experimental Techniques in Nuclear and Particle Physics

Experimental Techniques in Nuclear and Particle Physics Experimental Techniques in Nuclear and Particle Physics Stefaan Tavernier Experimental Techniques in Nuclear and Particle Physics 123 Prof. Stefaan Tavernier Vrije Universiteit Brussel Fak. Wetenschappen

More information

SpringerBriefs in Mathematics

SpringerBriefs in Mathematics SpringerBriefs in Mathematics Series Editors Nicola Bellomo Michele Benzi Palle E.T. Jorgensen Tatsien Li Roderick Melnik Otmar Scherzer Benjamin Steinberg Lothar Reichel Yuri Tschinkel G. George Yin Ping

More information

Advanced Calculus of a Single Variable

Advanced Calculus of a Single Variable Advanced Calculus of a Single Variable Tunc Geveci Advanced Calculus of a Single Variable 123 Tunc Geveci Department of Mathematics and Statistics San Diego State University San Diego, CA, USA ISBN 978-3-319-27806-3

More information

Particle Acceleration and Detection

Particle Acceleration and Detection Particle Acceleration and Detection Series Editors Alexander Chao SLAC Menlo Park, CA USA Frank Zimmermann CERN SL-Division AP Group Genève Switzerland Katsunobu Oide KEK High Energy Accelerator Research

More information

Fundamentals of Mass Determination

Fundamentals of Mass Determination Fundamentals of Mass Determination Michael Borys Roman Schwartz Arthur Reichmuth Roland Nater Fundamentals of Mass Determination 123 Michael Borys Fachlabor 1.41 Physikalisch-Technische Bundesanstalt Bundesallee

More information

Atomic Structure and Radioactivity

Atomic Structure and Radioactivity Atomic Structure and Radioactivity Models of the atom know: Plum pudding model of the atom and Rutherford and Marsden s alpha experiments, being able to explain why the evidence from the scattering experiment

More information

Quantum Biological Information Theory

Quantum Biological Information Theory Quantum Biological Information Theory Ivan B. Djordjevic Quantum Biological Information Theory Ivan B. Djordjevic Department of Electrical and Computer Engineering University of Arizona Tucson, AZ, USA

More information

Theoretical Physics 4

Theoretical Physics 4 Theoretical Physics 4 Wolfgang Nolting Theoretical Physics 4 Special Theory of Relativity 123 Wolfgang Nolting Inst. Physik Humboldt-UniversitRat zu Berlin Berlin, Germany ISBN 978-3-319-44370-6 ISBN 978-3-319-44371-3

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Springer Series on Atomic, Optical, and Plasma Physics

Springer Series on Atomic, Optical, and Plasma Physics Springer Series on Atomic, Optical, and Plasma Physics Volume 51 Editor-in-chief Gordon W. F. Drake, Department of Physics, University of Windsor, Windsor, ON, Canada Series editors James Babb, Harvard-Smithsonian

More information

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name:

Wallace Hall Academy Physics Department. Radiation. Pupil Notes Name: Wallace Hall Academy Physics Department Radiation Pupil Notes Name: Learning intentions for this unit? Be able to draw and label a diagram of an atom Be able to state what alpha particles, beta particles

More information

Core Questions Physics unit 4 - Atomic Structure

Core Questions Physics unit 4 - Atomic Structure Core Questions Physics unit 4 - Atomic Structure No. Question Answer 1 What did scientists think about atoms before the discovery of the They were tiny spheres that could not be broken up electron? 2 Which

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Fundamentals of Electrical Circuit Analysis

Fundamentals of Electrical Circuit Analysis Fundamentals of Electrical Circuit Analysis Md. Abdus Salam Quazi Mehbubar Rahman Fundamentals of Electrical Circuit Analysis 123 Md. Abdus Salam Electrical and Electronic Engineering Programme Area, Faculty

More information

4.4 Atomic structure Notes

4.4 Atomic structure Notes 4.4 Atomic structure Notes Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand

More information

Springer Biographies

Springer Biographies Springer Biographies More information about this series at http://www.springer.com/series/13617 Wolfgang W. Osterhage Galileo Galilei At the Threshold of the Scientific Age 123 Wolfgang W. Osterhage Wachtberg,

More information

UNITEXT La Matematica per il 3+2. Volume 87

UNITEXT La Matematica per il 3+2. Volume 87 UNITEXT La Matematica per il 3+2 Volume 87 More information about this series at http://www.springer.com/series/5418 Sandro Salsa Gianmaria Verzini Partial Differential Equations in Action Complements

More information

CISM International Centre for Mechanical Sciences

CISM International Centre for Mechanical Sciences CISM International Centre for Mechanical Sciences Courses and Lectures Volume 580 Series editors The Rectors Elisabeth Guazzelli, Marseille, France Franz G. Rammerstorfer, Vienna, Austria Wolfgang A. Wall,

More information

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON

Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Ch 17 Radioactivity & Nuc. Chemistry Study Guide Accelerated Chemistry SCANTRON Name No-Calculators Allowed /65 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

Radiation Awareness Training. Stephen Price Office of Research Safety

Radiation Awareness Training. Stephen Price Office of Research Safety Radiation Awareness Training Stephen Price Office of Research Safety Purpose This training is intended for Clemson University Faculty, Staff or Students who do not work directly with radioactive materials

More information

Springer Proceedings in Mathematics & Statistics. Volume 206

Springer Proceedings in Mathematics & Statistics. Volume 206 Springer Proceedings in Mathematics & Statistics Volume 206 Springer Proceedings in Mathematics & Statistics This book series features volumes composed of selected contributions from workshops and conferences

More information

SpringerBriefs in Agriculture

SpringerBriefs in Agriculture SpringerBriefs in Agriculture More information about this series at http://www.springer.com/series/10183 Marina Dermastia Assunta Bertaccini Fiona Constable Nataša Mehle Grapevine Yellows Diseases and

More information

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 21. Nuclear Chemistry. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 21, Inc. James F. Kirby Quinnipiac University Hamden, CT Energy: Chemical vs. Chemical energy is associated with making and breaking chemical bonds. energy is enormous in comparison.

More information

Publication of the Museum of Nature South Tyrol Nr. 11

Publication of the Museum of Nature South Tyrol Nr. 11 Publication of the Museum of Nature South Tyrol Nr. 11 ThiS is a FM Blank Page Erika Pignatti Sandro Pignatti Plant Life of the Dolomites Vegetation Tables Erika Pignatti Sandro Pignatti Rome Italy Publication

More information

Astronomers Universe

Astronomers Universe Astronomers Universe More information about this series at http://www.springer.com/series/6960 David H. Lyth The History of the Universe 123 David H. Lyth Physics Lancaster University Lancaster, United

More information

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY

PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY PHYSICS A2 UNIT 2 SECTION 1: RADIOACTIVITY & NUCLEAR ENERGY THE ATOMIC NUCLEUS / NUCLEAR RADIUS & DENSITY / PROPERTIES OF NUCLEAR RADIATION / INTENSITY & BACKGROUND RADIATION / EXPONENTIAL LAW OF DECAY

More information

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance

P7 Radioactivity. Student Book answers. P7.1 Atoms and radiation. Question Answer Marks Guidance P7. Atoms and radiation a radiation from U consists = particles, radiation from lamp = electromagnetic waves, radiation from U is ionising, radiation from lamp is non-ionising b radioactive atoms have

More information

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie

Radioactivity One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie 1 Nuclear Chemistry Radioactivity 2 One of the pieces of evidence for the fact that atoms are made of smaller particles came from the work of Marie Curie (1876-1934). She discovered radioactivity or radioactive

More information

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks)

How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Q1. The diagram shows an atom. How many protons are there in the nucleus of the atom?... What is the mass number of the atom?... (Total 2 marks) Page 1 of 53 Q2. The picture shows a man at work in a factory

More information

R A D I A T I O N P R O T E C T I O N a n d t h e N R C

R A D I A T I O N P R O T E C T I O N a n d t h e N R C R A D I A T I O N P R O T E C T I O N and the NRC Radiation is all around us. It is naturally present in our environment and has been since before the birth of this planet. Radiation occurs in nature,

More information

Unit 5 Physical Science Radioactivity Answer Key

Unit 5 Physical Science Radioactivity Answer Key Unit 5 Physical Science Radioactivity Answer Key Page 198 1. True 2. False: The higher the frequency is, the higher the energy is. 3. True 4. False: Energy increases as frequency increases. 5. False: The

More information

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896.

Ch Radioactivity. Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Ch. 10 - Radioactivity Henry Becquerel, using U-238, discovered the radioactive nature of elements in 1896. Radioactivity the process in which an unstable atomic nucleus emits charged particles and energy

More information

Lecture Notes in Mathematics 2156

Lecture Notes in Mathematics 2156 Lecture Notes in Mathematics 2156 Editors-in-Chief: J.-M. Morel, Cachan B. Teissier, Paris Advisory Board: Camillo De Lellis, Zurich Mario di Bernardo, Bristol Alessio Figalli, Austin Davar Khoshnevisan,

More information

Aim:How can we determine the particles emitted from radioactive

Aim:How can we determine the particles emitted from radioactive Aim:How can we determine the particles emitted from radioactive decay? Nuclear Stability: The larger (more massive) a nucleus is, the harder it is for it to stay together. Natural transmutation (natural

More information

Springer Series in Statistics

Springer Series in Statistics Springer Series in Statistics Series editors Peter Bickel, CA, USA Peter Diggle, Lancaster, UK Stephen E. Fienberg, Pittsburgh, PA, USA Ursula Gather, Dortmund, Germany Ingram Olkin, Stanford, CA, USA

More information

Challenges and Advances in Computational Chemistry and Physics

Challenges and Advances in Computational Chemistry and Physics Challenges and Advances in Computational Chemistry and Physics Volume 25 Series editor Jerzy Leszczynski Department of Chemistry and Biochemistry Jackson State University, Jackson, MS, This book series

More information

Chapter 10. Section 10.1 What is Radioactivity?

Chapter 10. Section 10.1 What is Radioactivity? Chapter 10 Section 10.1 What is Radioactivity? What happens when an element undergoes radioactive decay? How does radiation affect the nucleus of an unstable isotope? How do scientists predict when an

More information

There are no stable isotopes of elements above atomic number 83.

There are no stable isotopes of elements above atomic number 83. Nuclear Chemistry Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation. All

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Parviz Ghavami Mechanics of Materials An Introduction to Engineering Technology Parviz Ghavami Harlingen, TX, USA ISBN 978-3-319-07571-6 ISBN 978-3-319-07572-3 (ebook) DOI 10.1007/978-3-319-07572-3

More information

Signaling and Communication in Plants

Signaling and Communication in Plants Signaling and Communication in Plants Series editor František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany More information about this series

More information

Public Participation as a Tool for Integrating Local Knowledge into Spatial Planning

Public Participation as a Tool for Integrating Local Knowledge into Spatial Planning Public Participation as a Tool for Integrating Local Knowledge into Spatial Planning Tal Berman Public Participation as a Tool for Integrating Local Knowledge into Spatial Planning Planning, Participation,

More information

[2]

[2] 1 Fossil fuel power stations generate electricity. Nuclear power stations also generate electricity. (a) Many people think that nuclear power stations are a greater risk to people than fossil fuel power

More information

Wei Gao. Editor. Graphene Oxide. Reduction Recipes, Spectroscopy, and Applications

Wei Gao. Editor. Graphene Oxide. Reduction Recipes, Spectroscopy, and Applications Graphene Oxide Wei Gao Editor Graphene Oxide Reduction Recipes, Spectroscopy, and Applications Editor Wei Gao The Department of Textile Engineering Chemistry & Science, College of Textiles North Carolina

More information

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars.

Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. 1 (a) Nuclear fission is used in nuclear power stations to generate electricity. Nuclear fusion happens naturally in stars. (i) Explain briefly the difference between nuclear fission and nuclear fusion.

More information

Section 3: Nuclear Radiation Today

Section 3: Nuclear Radiation Today : Nuclear Radiation Today Preview Key Ideas Bellringer Where is Radiation? Beneficial Uses of Nuclear Radiation Risks of Nuclear Radiation Nuclear Power Key Ideas Where are we exposed to radiation? What

More information

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay

Name Date Class. alpha particle radioactivity gamma ray radioisotope beta particles radiation X-ray radioactive decay Name Date _ Class _ Nuclear Chemistry Section.1 Nuclear Radiation In your textbook, read about the terms used to describe nuclear changes. Use each of the terms below just once to complete the passage.

More information

The table shows the average background radiation dose from various sources that a person living in Britain receives in one year.

The table shows the average background radiation dose from various sources that a person living in Britain receives in one year. ## The table shows the average background radiation dose from various sources that a person living in Britain receives in one year. Source of background radiation Average amount each year in dose units

More information

21/11/ /11/2017 Atomic Structure AQA Physics topic 4

21/11/ /11/2017 Atomic Structure AQA Physics topic 4 Atomic Structure AQA Physics topic 4 4.1 Atoms and Isotopes The structure of the atom ELECTRON negative, mass nearly nothing The nucleus is around 10,000 times smaller then the atom! NEUTRON neutral, same

More information

Advanced Courses in Mathematics CRM Barcelona

Advanced Courses in Mathematics CRM Barcelona Advanced Courses in Mathematics CRM Barcelona Centre de Recerca Matemàtica Managing Editor: Carles Casacuberta More information about this series at http://www.springer.com/series/5038 Giovanna Citti Loukas

More information

Ch 22 Radioactivity Nuclear Chemistry

Ch 22 Radioactivity Nuclear Chemistry AMHS AP Chemistry Name Period S T A T I O N 1 Q U I Z O N P E O P L E Match the people with the following ideas. Each name may be used once, more than once, or not at all. a) Albert Einstein b) Marie Curie

More information

Nuclear Magnetic Resonance Data

Nuclear Magnetic Resonance Data Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology New Series / Editor in Chief: W. Martienssen Group III: Condensed Matter Volume 35 Nuclear Magnetic Resonance Data

More information

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age

NUCLEAR CHEMISTRY. LAST TOPIC OF THE YEAR!! Name: CHANGING THE NUCLEUS OF AN ATOM. 1 P age NUCLEAR CHEMISTRY CHANGING THE NUCLEUS OF AN ATOM LAST TOPIC OF THE YEAR!! Name: 1 P age Why do unstable isotopes undergo nuclear reactions? Do Now: Draw Bohr models of three different isotopes of carbon

More information

Lecture Notes in Mathematics 2209

Lecture Notes in Mathematics 2209 Lecture Notes in Mathematics 2209 Editors-in-Chief: Jean-Michel Morel, Cachan Bernard Teissier, Paris Advisory Board: Michel Brion, Grenoble Camillo De Lellis, Zurich Alessio Figalli, Zurich Davar Khoshnevisan,

More information

Minoru Ozima. Geohistory. Global Evolution of the Earth. English by Judy Wakabayashi. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Minoru Ozima. Geohistory. Global Evolution of the Earth. English by Judy Wakabayashi. Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Minoru Ozima Geohistory Global Evolution of the Earth English by Judy Wakabayashi Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Professor Dr. MINORU OZIMA Geophysical Institute University

More information

Advanced Structured Materials

Advanced Structured Materials Advanced Structured Materials Volume 26 Series editors Andreas Öchsner, Southport Queensland, Australia Lucas F.M. da Silva, Porto, Portugal Holm Altenbach, Magdeburg, Germany More information about this

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 21 REVIEW Nuclear Chemistry SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Based on the information about the three elementary particles in the text, which has

More information

Hiromitsu Yamagishi Netra Prakash Bhandary Editors. GIS Landslide

Hiromitsu Yamagishi Netra Prakash Bhandary Editors. GIS Landslide GIS Landslide Hiromitsu Yamagishi Netra Prakash Bhandary Editors GIS Landslide 123 Editors Hiromitsu Yamagishi Shin Engineering Consultant Co. Ltd. Sapporo Japan Netra Prakash Bhandary Ehime University

More information

Stochastic and Infinite Dimensional Analysis

Stochastic and Infinite Dimensional Analysis Trends in Mathematics Christopher C. Bernido Maria Victoria Carpio-Bernido Martin Grothaus Tobias Kuna Maria João Oliveira José Luís da Silva Editors Stochastic and Infinite Dimensional Analysis Stochastic

More information

Statics and Influence Functions From a Modern Perspective

Statics and Influence Functions From a Modern Perspective Statics and Influence Functions From a Modern Perspective Friedel Hartmann Peter Jahn Statics and Influence Functions From a Modern Perspective 123 Friedel Hartmann Department of Civil Engineering University

More information

RADIOACTIVITY. An atom consists of protons, neutrons and electrons.

RADIOACTIVITY. An atom consists of protons, neutrons and electrons. RADIOACTIVITY An atom consists of protons, neutrons and electrons. - Protons and neutrons are inside the nucleus - Electrons revolve around the nucleus in specific orbits ATOMIC NUMBER: - Total number

More information

Lecture PowerPoint. Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 31 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Statics and Mechanics of Structures

Statics and Mechanics of Structures Statics and Mechanics of Structures Steen Krenk Jan Høgsberg Statics and Mechanics of Structures Prof. Steen Krenk Department of Mechanical Engineering Technical University of Denmark Kongens Lyngby,

More information

Generalized Locally Toeplitz Sequences: Theory and Applications

Generalized Locally Toeplitz Sequences: Theory and Applications Generalized Locally Toeplitz Sequences: Theory and Applications Carlo Garoni Stefano Serra-Capizzano Generalized Locally Toeplitz Sequences: Theory and Applications Volume I 123 Carlo Garoni Department

More information

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it!

Revision checklist. Step Learning outcome Had a look Nearly there Nailed it! Radioactivity a Atomic models Describe the structure of an atom (in terms of nucleus and electrons). State where most of the mass of an atom is found. State the sizes of atoms and small molecules. Describe

More information

Nuclear Reaction and Radiation Detectors

Nuclear Reaction and Radiation Detectors King Saud University College of Applied Studies and Community Service Department of Natural Sciences Nuclear Reaction and Radiation Detectors General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa

More information

Chapter 32 Applied Nucleonics

Chapter 32 Applied Nucleonics Chapter 32 Applied Nucleonics GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms, and use each term

More information

Geotechnologies and the Environment

Geotechnologies and the Environment Geotechnologies and the Environment Volume 14 Series editors Jay D. Gatrell, Vice Provost & Professor of Geography and Environmental Studies, Offi ce of Academic Affairs, Bellarmine University, Louisville,

More information

Nuclear Physics. Physical Phase Change Material still has the same chemical properties. Types of Changes

Nuclear Physics. Physical Phase Change Material still has the same chemical properties. Types of Changes Nuclear Physics Project 2013 Nuclear Physics Chapters 39 and 40 Phase One Prepare a Position Poster In groups of 2 or 3, choose a topic from Chapter 39/40 that has economic, political, environmental or

More information

2) Estimate your annual radiation dose from background radiation.

2) Estimate your annual radiation dose from background radiation. Cabrillo College Physics 2B Radioactivity Name What to explore and learn An amazing discovery was made about 100 years ago: that some kind of rays came out of matter which could penetrate through solid

More information

Ahsan Habib Khandoker Chandan Karmakar Michael Brennan Andreas Voss Marimuthu Palaniswami. Poincaré Plot Methods for Heart Rate Variability Analysis

Ahsan Habib Khandoker Chandan Karmakar Michael Brennan Andreas Voss Marimuthu Palaniswami. Poincaré Plot Methods for Heart Rate Variability Analysis Ahsan Habib Khandoker Chandan Karmakar Michael Brennan Andreas Voss Marimuthu Palaniswami Poincaré Plot Methods for Heart Rate Variability Analysis Poincaré Plot Methods for Heart Rate Variability Analysis

More information

Students ScoreBooster Video Tutorials. JAMB (UTME), WAEC (SSCE, GCE), NECO, and NABTEB EXAMS. Chemistry.

Students ScoreBooster Video Tutorials. JAMB (UTME), WAEC (SSCE, GCE), NECO, and NABTEB EXAMS. Chemistry. Students ScoreBooster Video Tutorials on JAMB (UTME), WAEC (SSCE, GCE), NECO, and NABTEB EXAMS Chemistry Nuclear Chemistry-II (JAMB (UTME)) Presented by Saheed Adewale Lateef [B.Eng. (ChE)] Learning Outcomes

More information

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons.

The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. 4.4 Atomic structure Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the

More information

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science

Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Part 12- Physics Paper 1 Atomic Structure Application Questions Triple Science Internal energy and energy transfers Internal energy and energy transfers Changes of state and the particle model Particle

More information

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation.

The sources include Am-241 which emits alpha radiation, Sr-90 which emits beta radiation and Co-60 which emits gamma radiation. 1 The physics department in a college has a number of radioactive sources which are used to demonstrate the properties of ionising radiations. The sources include Am-241 which emits alpha radiation, Sr-90

More information

Nuclear Chemistry Review Packet

Nuclear Chemistry Review Packet Name Date Nuclear Chemistry Review Packet 1. The ratio of stability is (1) proton : neutron (2) neutron : proton (3) proton : positron (4) beta : proton 2. Which nuclear reaction is classified as alpha

More information

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation

sample What happens when we are exposed to radiation? 1.1 Natural radiation Cosmic radiation 1.1 Natural radiation 3 1 What happens when we are exposed to radiation? 1.1 Natural radiation For as long as humans have walked the earth, we have continually been exposed to naturally-occurring radiation.

More information

Differentiating Chemical Reactions from Nuclear Reactions

Differentiating Chemical Reactions from Nuclear Reactions Differentiating Chemical Reactions from Nuclear Reactions 1 CHEMICAL Occurs when bonds are broken or formed. Atoms remained unchanged, though may be rearranged. Involves valence electrons Small energy

More information

Supervised assessment: Ionising radiation

Supervised assessment: Ionising radiation Physics 27 Sample assessment instrument and indicative Supervised assessment: Ionising radiation This sample is intended to inform the design of assessment instruments in the senior phase of learning.

More information

Nuclear Science Merit Badge Workbook

Nuclear Science Merit Badge Workbook Merit Badge Workbook This workbook can help you but you still need to read the merit badge pamphlet. This Workbook can help you organize your thoughts as you prepare to meet with your merit badge counselor.

More information

Günter Zschornack Handbook of X-Ray Data

Günter Zschornack Handbook of X-Ray Data Günter Zschornack Handbook of X-Ray Data Günter Zschornack Handbook of X-Ray Data With 113 Figures and 161 Tables 123 Ass.-Prof. Dr. rer. nat. habil. Günter Zschornack Technische Universität Dresden Institut

More information

Chapter 7 - Radioactivity. Science 10 P

Chapter 7 - Radioactivity. Science 10 P Chapter 7 - Radioactivity Science 10 P286-328 What is Radiation? Radiation is: anything that radiates away from something. Radiation may be in the form of: particles (neutrons, alpha particles, and beta

More information

Chapter 18 Nuclear Chemistry

Chapter 18 Nuclear Chemistry Chapter 8 Nuclear Chemistry 8. Discovery of radioactivity 895 Roentgen discovery of radioactivity X-ray X-ray could penetrate other bodies and affect photographic plates led to the development of X-ray

More information