B) A salt containing a cationic octahedral Pt(IV) complex. When dissolved in a silver nitrate solution a ppt of AgBr is obtained.

Size: px
Start display at page:

Download "B) A salt containing a cationic octahedral Pt(IV) complex. When dissolved in a silver nitrate solution a ppt of AgBr is obtained."

Transcription

1 CHEM 3030 ASSIGNMENT # 1 Chelates, nomenclature, VBT, CFT Chapter 25 of Petrucci is a prerequisite. 1.Using as many of the following ligands as possible (GLY, OX, DIEN, TRIEN, ACAC, BIPY, water, and bromide ion) construct the complexes described below. No other ligands may be used. Name each compound and draw a clear structure of any isomer. You must show all atoms (including hydrogens) with proper stereochemistry. (Loops or other crudities are not allowed). All chelates must be fully chelated. (ABBREV Glycinate, oxalate, diethylenetriamine, triethylenetetraamine, acetylacetone, 2,2-bipyridine) A) a neutral octahedral Co(III) complex containing a tridentate ligand. B) A salt containing a cationic octahedral Pt(IV) complex. When dissolved in a silver nitrate solution a ppt of AgBr is obtained. C) A potassium salt of an anionic octahedral Cr(III) complex. D) A tetrahedral neutral Zn complex which has optical isomers but no geometric isomers. E) A salt containing square planar Pt(II) as both the cation and anion. 2. Describe the bonding and magnetism for each of the above complexes in terms of VBT, CFT, and MOT. 3 A) List the one or two most common oxidation states in aqueous solution and give the number of d electrons for each. Ti V Cr Mn Fe Co Ni Cu Zn Sn Ag Hg Cd Al Pt B) Deja-Vu. List 20 complexes of the ions above which you actually saw in the CHEM 2030 lab; name each and give the magnetic moment in Bohr magnetons. (See Sorum and Lagowski if needed.) For example the pink Co(H 2 O) 6 2+ and the blue NiCl Write the formula and name the substance or ion present in the confirmatory test for each. Example AgCl, Ni(DMGH) 2 etc. 4. Learn the basics of organic nomenclature and use it to draw the ligands below. a) 1,4,8,11-tetraaza 2,3,9,10 tetramethylcyclotetradeca1,3,8,10 tetra-ene b) 4,7,13,16,21,24-hexa-oxa-1,10-diazabicyclo[8.8.8]hexacosane aka Crypt c) 1,4,7-trimethyl-1,4,7-triazacyclononane 5. Draw Lewis structures to discern geometry and identify lone pairs on these ligands. a) thiocyanate binds through N or S. Does this alter the geometry? b) NO - 2 can be N bonded (nitro) or O bonded (nitrite). - c) dialkyldithiocarbamates S 2 CNR 2 bind through what? denticity? d) show resonance structures for 2,4-pentanedionate ion. e) cyclam is a tetradentate N donor ligand in a 14-membered ring C 10 H 24 N 4 Draw it and contrast its geometry with 4a above. Give its IUPAC name. f) The ligand L = bis(trimethylsilyl)amide favors 3 coordination. ML 3 Why? g) Imidazole is an aromatic nitrogen heterocycle (C 3 H 4 N 2 ) found in histidine. Which nitrogen is the stronger base /better ligand and why? Draw the Lewis structure. HINT : Which N lone pairs are in p orbitals and which in an sp 2 hybrid? Identify the 6π electrons (Huckel 4n+2 rule).

2 CHEM 3030 ASSIGNMENT # 2 NAME 1. Give the ground state term for each. Gas phase ion: Ni 2+ Cr 2+ Cr 3+ Cu + Fe 3+ V 3+ Oct. Complex: Ni 2+ Cr 2+ Cr 3+ Cu + Fe 3+ V 3+ Tet complex: Ni 2+ Cr 2+ Cr 3+ Cu + Fe 3+ V How many microstates make up 4f 3 4 F 2s 1 2p 4 5 D e g 2 t 2g 1 How many microstates make up the lowest energy configuration for a gas phase Cr atom. (You should look up the correct configuration)? What is the ground state term? 3.a) The terms arising from d 6 are 5 D, 3 H, 3 G, 3 F, 3 F, 3 D, 3 P, 3 P, 1 I, 1 G, 1 G, 1 F, 1 D, 1 D, 1 S, 1 S Show that these correctly add up to the total number of microstates = 10!/(4! X 6!). b) The number of microstates with M L = M s =0 will exactly equal the total number of terms arising. Why? See how many of the 16 microstates with M L = M s = 0 for the d 6 case you can come up with. 4.a) Using the electrostatic CFSE calculations tabulated in the handouts, give the CFSE for Ni 2+ in a weak field (2 unpaired electrons) and strong field (diamagnetic where possible) for the following. Weak field : Linear, trigonal, tetrahedral, square pyramidal, trig bipy, octahedral or square planar? strong field : Linear, trigonal, tetrahedral, square pyramidal, trig bipy, octahedral or square planar. 5. Obtain 10Dq from spectra of the M(H 2 O) 6 +n ions in the handout (where easily done) and compare with tabulated values.

3 CHEM 3030 Space Group Exercises ST3A Refer to posted space group tables for C2/c, P2 1 /c, P , Pbcn Pnnm, Pm3m and Fm3m. ( Convention is x down, y across and Z out of page.) 1. C2/c Identify the 8 general positions by labeling the O s in the diagram. Use 1-4 in order listed and 1c-4c for centred objects. 1 =xyz etc. 2. P2 1 /c assign each general position with the symmetry element that generates it from xyz. inversion at origin screw along b at z =1/4 C glide perp to b at b = ¼ P screw parallel to a b and c 3. Note the similar coordinates for Pm3m and Fm3m in space group tables. Deduce the space group for Im3m. Fe crystallizes in Im3m with Z =2. Give location of all atoms. Systematic Absences 1. The reflection 030 has zero intensity. Which of the 7 space groups are possible. 2.EXERCISE : Consult the space group tables for P , Pbcn, and Pnnm. Identify which crystal is consistent with each space group Crystal present 050 absent Crystal present absent Crystal present absent SITE SYMMETRY. 1. In which of the 7 space groups above could the following crystallize with Z =2? with Z =4? The Hermann-Maguin and Schonflies symbols are given to assist you. A. octahedral CrF 6 Oh = m3m B. tetrahedral TiI 4 Td = -43m C. square PtI 4 D 4h = 4/mmm C 2h = 2/m C 2 v = mm2 2. Which of the 7 space groups can accommodate the following with Z =4. A. optically pure d- o(acac) 3 B. racemic Co(acac) 3 3. A. If butane crystallized in Pbcn with Z =4 which rotamers would be expected and where would they lie? B. How or could trans PtL 2 X 2 crystallize in PbCn with Z =4? C. cis PtL 2 X 2 Crystallography Problem Set

4 CaF 2 crystallizes in the cubic space group Fm3m with Z =4, a= A. 1. Obtain the density. 2. Use the space group tables to identify the location of all atoms in the unit cell. 3. Compute the Ca-F bond length and the shortest Ca-Ca distance. 4. Compute the following structure factors F(000), F(100), F(200), F(111), F(123) assuming scattering factors f ca = 20 and f F = Using the structure factor expression prove that a 2 1 along the b axis results in systematic absences (0,k,0) for k odd. 6. Give the coordinates of the points generated by the sequence of operations X,Y,Z (2 1 along b) (Mirror in xz plane) c glide in xz plane X,Y,Z ( 2 along b) inversion at origin mirror in xy plane 7.a) Provide diagrams for the rectangular 2 dimensional space group Cmm. Mirrors are located along both the x and y axes and half way between. As in the handouts one figure shows object locations and the other symmetry elements. Identify the locations of a C2 axis and glide planes also generated. Provide the coordinates of the 8 general positions. B) Diagram a stickman in flatland space group Cmm with Z =4 C) Which of cis or trans dibromoethylene or tetrabromoethylene could crystallize in the 2D space group Cmm with Z = 2? Sketch the unit cell. 8. Show how [Cu(NH 3 ) 4 ][NO 3 ] 2 5H 2 O could crystallize in the two dimensional space group Pmm with Z =1. Use a small square to denote the Cu cation, a triangle for the nitrate ion and a O for the waters. Ignore H s. All moieties lying within or on the edge of the cell must be shown.

5 ST3C. Crystallography Problem Set ANSWERS CaF 2 crystallizes in the cubic space group Fm3m with Z =4, a= A. 1. Obtain the density. density = MW X 4 / (0.603 X a 3 ) = 3.19 gm/cm 3 2. Use the space group tables to identify the location of all atoms in the unit cell. Ca at Wcoff site a, F at Wcf c. 3. Compute the Ca-F bond length and the shortest Ca-Ca distance. Ca-F = sqr(3 x (0.25 x 5.34) 2 ) or 3 1/2 x 5.34/4 = 2.31 Å Ca-Ca = 2 1/2 x 5.34/2 = 3.78 Å 4. Compute the following structure factors F(000), F(100), F(200), F(111), F(123) assuming scattering factors f ca = 20 and f F = 9. SUM over all 4 Ca locations and all 8 F locations. F(000) = 4 x (20+2X9) = 152 electrons F(200) = 4{20) 8(9) = 2 F(100)=F(123) =0 F(111) = Using the structure factor expression prove that a 2 1 along the b axis results in systematic absences (0,k,0) for k odd. see notes 6. Give the coordinates of the points generated by the sequence of operations X,Y,Z (2 1 along b) -x,y+1/2, -z y-1/2,1/2-z (Mirror in xz plane) x, ½-y,-z * c glide in xz plane -x, X,Y,Z ( 2 along b) -x,y, -z inversion at origin x,-y,z mirror in xy plane x,-y,-z * here we use the mirror at y =1/2. if mirror at y=0 then -1/2-y. 7.a) Provide diagrams for the rectangular 2 dimensional space group Cmm. Mirrors are located along both the x and y axes and half way between. As in the handouts one figure shows object locations and the other symmetry elements. Identify the locations of a C2 axis and glide planes also generated. Provide the coordinates of the 8 general positions. (x,y) (-x,y) (x,-y_ (-x,-y) and (½,1/2)+ each of these. B) Diagram a stickman in flatland space group Cmm with Z =4 on either mirror but not both gives 4 locations C) Which of cis or trans dibromoethylene or tetrabromoethylene could crystallize in the 2D space group Cmm with Z = 2? Sketch the unit cell. (for 2D we assume molecule cannot project into third dimension) For Z =2 needs to have 2 mirrors (other than plane of molecule) only tetrabromo. For Z =4 cis or tetra but not trans. 8. Show how [Cu(NH 3 ) 4 ][NO 3 ] 2 5H 2 O could crystallize in the two dimensional space group Pmm with Z =1. Use a small square to denote the Cu cation, a triangle for the nitrate ion and a O for the waters. Ignore H s. All moieties lying within or on the edge of the cell must be shown. Cu on mm site at site origin or ½ ½ NH 3 general at (xn,yn) or two on mirrors at (0,yn) (xn,0) nitrate on mirrors waters in general plus one on other mm site 4+ 1 =5.

6 CHEM 3030 Exploring Ni(stilbenediamine) 2 (Cl 2 CHCOO) 2 crystal structures. Two RES files Ni blue and Ni yellow have been generated from the atom list in the original manuscript by Nyburg. Examine each using the HG software. The space group table for P2 1 /c is posted on the 3030 website. You should be able to generate the one for P-1 yourself. BLUE crystallizes in P2 1 /c. Z =2. 1. Identify the crystal system. Is the Nickel in a general or special position? What symmetry is imposed if any? 2. What is the geometry about the Nickel? 3. How many dichloroacetates are in the asymmetric unit? Is any symmetry imposed on them? Why? 4. How many water oxygens are in the unit cell? 5. How many waters are present in the asymmetric unit? Are they in general or special positions? 6. What are the two most intense reflections in the Xray powder pattern and approximately what angle are they found at? Compute theta for Cu radiation assuming an orthorhombic cell ( angles 90). 7. Assuming Ni scattering dominates show why these two reflections are the most intense (see Eq 2). YELLOW crystallizes in P-1 with Z =3. 1. How do the three nickels differ in geometry in this crystal? Which are in general and which in special positions? 2. What symmetry is imposed in each case. 3. Assuming Ni scattering dominates explain the relative intensity of the 100, 010, and 001 reflections in the x-ray powder pattern. 4. Are the two Ni acetate bonds required to be the same length? Explain 5. Explain the molecular formula in the two cases. blue-nil 2 X 2 4H 2 O and yellow NiL 2 X 2 4/3 water 2/3 ethanol on the basis of the asymmetric unit and number of equivalent positions in each case. 6. Compare the Ni-N bond lengths in the square and octahedral forms. Explain the differences using VBT, CFT, and MOT. 7. Predict the expected magnetism and visible spectra of the two crystals.

Crystal Field Theory

Crystal Field Theory Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield reasonable

More information

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2. CdS Fe 2 3 Cr 2 3 Co 2 3 Ti 2 Mn 3 (P 4 ) 2 Fe 3+ Co 2+ Ni 2+ Cu 2+ Zn 2+ CHEMISTRY 1000 iron copper Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to 12.3 Cr 2 3 Cu 2 Co

More information

Transition Metals and Complex Ion Chemistry

Transition Metals and Complex Ion Chemistry Transition Metals and mplex Ion Chemistry Definitions mplex ion - a metal ion with Lewis bases attached to it through coordinate covalent bonds. A mplex (or ordination compound) is a compound consisting

More information

Crystal Field Theory

Crystal Field Theory 6/4/011 Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield

More information

CHAPTER - 9 ORDINATION COMPOUNDS

CHAPTER - 9 ORDINATION COMPOUNDS CHAPTER - 9 CO-O ORDINATION COMPOUNDS Formulas for coordinationn compounds: Tetraamineaquachloridocobalt (III) chloride ---- [Co(NH 3 ) 4 (H 2 O) Cl]Cl 2 Potassium tetrahydroxozincate (II) ------- K 2

More information

Chapter 25 Transition Metals and Coordination Compounds Part 1

Chapter 25 Transition Metals and Coordination Compounds Part 1 Chapter 25 Transition Metals and Coordination Compounds Part 1 Introduction The transition elements are defined as: those metallic elements that have a partially but incompletely filled d subshell or easily

More information

Chapter 21: Transition Metals and Coordination Chemistry

Chapter 21: Transition Metals and Coordination Chemistry Chapter 21: Transition Metals and Coordination Chemistry Mg, Cr, V, Co Pt Fe complexes O2 Mo and Fe complexes: nitrogen fixation Zn: 150 Cu, Fe: Co: B12 21.1 Transition Metals show great similarities within

More information

Coordination compounds

Coordination compounds Coordination compounds Multiple choice questions 1. In the complex formation, the central metal atom / ion acts as a) Lewis base b) Bronsted base c) Lewis acid d) Bronsted acid 2. The groups satisfying

More information

Section 6 Questions from Shriver and Atkins

Section 6 Questions from Shriver and Atkins Section 6 Questions from Shriver and tkins 4.35 Remember, softness increases as you go down a group, and both Zn and Hg are in Group 12. Hg 2+ is a very soft acid, so it is only realistically able to form

More information

Ch. 23: Transition metals and Coordination Chemistry

Ch. 23: Transition metals and Coordination Chemistry Ch. 23: Transition metals and Coordination Chemistry Learning goals and key skills: Determine the oxidation number and number of d electrons for metal ions in complexes Name coordination compounds given

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University Lecture Presentation Chapter 24 Transition Metals and Coordination Compounds Sherril Soman Grand Valley State University Gemstones The colors of rubies and emeralds are both due to the presence of Cr 3+

More information

Coordination chemistry and organometallics

Coordination chemistry and organometallics Coordination chemistry and organometallics Double salt and Complex salt A salt that keeps its identity only in solid state is called a double salt. In solution they dissociate into component ions. E.g.:

More information

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms Chapter 19 d-metal complexes: electronic structure and spectra Electronic structure 19.1 Crystal-field theory 19.2 Ligand-field theory Electronic-spectra 19.3 electronic spectra of atoms 19.4 electronic

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

The d -Block Elements & Coordination Chemistry

The d -Block Elements & Coordination Chemistry Chapter The d -Block Elements & ordination Chemistry Hill, Petrucci, McCreary & Perry 4 th Ed. The d-block Elements Groups 3-1 in the Periodic chart associated with the filling of the 3d, 4d, 5d electronic

More information

Coordination Chemistry II: Bonding

Coordination Chemistry II: Bonding d x2-y2 b 1g e g d x2-y2 b 1g D 1 t 2 d xy, d yz, d zx D t d d z2, d x2-y2 D o d z2 a 1g d xy D 2 d z2 b 2g a 1g e d z2, d x2-y2 d xy, d yz, d zx d xy b 2g D 3 t 2g e g d yz, d zx e g d yz, d zx 10 Coordination

More information

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o.

If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Crystal Field Stabilization Energy Week 2-1 Octahedral Symmetry (O h ) If you put an electron into the t 2g, like that for Ti 3+, then you stabilize the barycenter of the d orbitals by 0.4 D o. Each additional

More information

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3

Review questions CHAPTER 5. Practice exercises 5.1 F F 5.3 CHAPTER 5 Practice exercises 5.1 S 5.3 5.5 Ethane is symmetrical, so does not have a dipole moment. However, ethanol has a polar H group at one end and so has a dipole moment. 5.7 xygen has the valence

More information

Time: 3 hours INSTRUCTIONS:

Time: 3 hours INSTRUCTIONS: Time: 3 hours INSTRUCTIONS: 1. Show all calculations in order to receive any credit. 2. A periodic table will be given to you. 3. Rough work should be done on the back of the pages. 4. Be sure this exam

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds Co-ordination compounds: a) A coordination compound contains a central metal atom or ion surrounded by number of oppositely

More information

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a.

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a. Transition Metals and Coordination Chemistry 1. In the transition metals section chemical similarities are found within a and across a. 2. What are 2 transition metals that have unique electron configurations?

More information

Chem 1102 Semester 2, 2011!

Chem 1102 Semester 2, 2011! Chem 110 Semester, 011! How is the ligand bonded to the metal? In octahedral complexes, six d sp 3 hybrid orbitals are used by the metal. The metal-ligand bond is a two-electron covalent bond. Mix d z,

More information

Transition Metals and Coordination Chemistry

Transition Metals and Coordination Chemistry Transition Metals and Coordination Chemistry Transition Metals Similarities within a given period and within a given group. Last electrons added are inner electrons (d s, f s). 20_431 Ce Th Pr Pa d U

More information

CHEM N-3 November Transition metals are often found in coordination complexes such as [NiCl 4 ] 2. What is a complex?

CHEM N-3 November Transition metals are often found in coordination complexes such as [NiCl 4 ] 2. What is a complex? CHEM100 014-N-3 November 014 Transition s are often found in coordination complexes such as [NiCl 4 ]. What is a complex? 8 A complex contains a cation surrounded by ligands which bond to the cation using

More information

Chapter 10 Practice Problems

Chapter 10 Practice Problems Chapter 10 Practice Problems Q 10.1 0-1 -1-1 S +2 +2 S S +2 0-1 -1-1 0 C in S - 6 6 1 2 1 2 C in S = 6 4 1 4 0 2 C S 6 0 1 8 2 2 Q 10.2 Correct Answer: B Two oxygen atoms will have a formal charge of 1

More information

Bonding in Transition Metal Compounds Oxidation States and Bonding

Bonding in Transition Metal Compounds Oxidation States and Bonding Bonding in Transition Metal ompounds Oxidation States and Bonding! Transition metals tend to have configurations (n 1)d x ns 2 or (n 1)d x ns 1, Pd having 4d 10 5s 0. K All lose ns electrons first, before

More information

CHEM N-2 November Explain the following terms or concepts. Lewis base. Marks 1

CHEM N-2 November Explain the following terms or concepts. Lewis base. Marks 1 CHEM1612 2014-N-2 November 2014 Explain the following terms or concepts. Lewis base Marks 1 CHEM1612 2014-N-10 November 2014 Give the oxidation number of the indicated atom in the following compounds.

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT penurseware http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 27.1 5.111 ecture 27

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond

Name Date Class STUDY GUIDE FOR CONTENT MASTERY. covalent bond molecule sigma bond exothermic pi bond Covalent Bonding Section 9.1 The Covalent Bond In your textbook, read about the nature of covalent bonds. Use each of the terms below just once to complete the passage. covalent bond molecule sigma bond

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

UNIT 9 Topic: Coordination Compounds

UNIT 9 Topic: Coordination Compounds UNIT 9 Topic: Coordination Compounds 1. State the postulates of Werner s theory of coordination compounds. Postulates: 1. Central metal ion in a complex shows two types of valences - primary valence and

More information

Transition Metal Complexes

Transition Metal Complexes 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 4 - Transition Metal Complexes Transition Metal Complexes: Definitions and Terminology. Isomerism in Transition Metal Complexes: Structural

More information

CO-ORDINATION COMPOUNDS

CO-ORDINATION COMPOUNDS Unit - 9 CO-ORDINATION COMPOUNDS QUESTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term coordination compound? 2. Write the names of counter ions in (i) Hg [Co (SCN and (ii) [Pt(NH 3. 3. Write

More information

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom.

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Unidentate ligands: Ligands with only one donor atom, e.g. NH3, Cl -, F - etc. Bidentate ligands:

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals F325 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

Dr. Fred O. Garces Chemistry 201

Dr. Fred O. Garces Chemistry 201 23.4 400! 500! 600! 800! The relationship between Colors, Metal Complexes and Gemstones Dr. Fred O. Garces Chemistry 201 Miramar College 1 Transition Metal Gems Gemstone owe their color from trace transition-metal

More information

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9 Unit 9 COORDINATION COORDINA COMPOUNDS I. Multiple Choice Questions (Type-I) 1. Which of the following complexes formed by Cu 2+ ions is most stable? (i) Cu 2+ + 4NH 3 [Cu(NH 3 ] 2+, logk = 11.6 (ii) Cu

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 23 Study Guide Concepts 1. In the transition metals, the ns orbital fills before the (n-1)d orbitals. However, the ns orbital

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become acidic

More information

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports

Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports Name CHM 4610/5620 Fall 2017 December 14 FINAL EXAMINATION SOLUTIONS Part I, from the Literature Reports I II III IV V VI VII VIII IX X Total This exam consists of several problems. Rough point values

More information

Chemical Bonds. Chapter 6

Chemical Bonds. Chapter 6 Chemical Bonds Chapter 6 1 Ch. 6 Chemical Bonding I. How and Why Atoms Bond A. Vocabulary B. Chemical Bonds - Basics C. Chemical Bonds Types D. Chemical Bonds Covalent E. Drawing Lewis Diagrams F. Bond

More information

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Chem 324 Midterm 1 Fall 2011 Version 1 Page 1 of 9 Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Name: Answer all questions on the paper (use the back if necessary). There

More information

Structure of Coordination Compounds

Structure of Coordination Compounds Chapter 22 COORDINATION CHEMISTRY (Part II) Dr. Al Saadi 1 Structure of Coordination Compounds The geometry of coordination compounds plays a significant role in determining their properties. The structure

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 2815 1 The aqueous chemistry of cations ydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

Chapter 21 d-block metal chemistry: coordination complexes

Chapter 21 d-block metal chemistry: coordination complexes Chapter 21 d-block metal chemistry: coordination complexes Bonding: valence bond, crystal field theory, MO Spectrochemical series Crystal field stabilization energy (CFSE) Electronic Spectra Magnetic Properties

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic table Elements are divided into four categories 1.Main-group elements 2.Transition metals 3.Lanthanides

More information

Chapter 23 Transition Metals and Coordination Chemistry

Chapter 23 Transition Metals and Coordination Chemistry Lecture Presentation Chapter 23 and Coordination Chemistry James F. Kirby Quinnipiac University Hamden, CT Color Catalysts Magnets 23.1 The 1036 Why are of Interest? Biological roles Coordination compounds

More information

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement.

AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4. (Questions 1-13) Choose the letter that best answers the question or completes the statement. NAME: AP CHEMISTRY CHAPTERS 5 & 6 Problem Set #4 (Questions 1-13) Choose the letter that best answers the question or completes the statement. (Questions 1-2) Consider atoms of the following elements.

More information

CHEM J-2 June 2014

CHEM J-2 June 2014 CHEM1102 2014-J-2 June 2014 Compounds of d-block elements are frequently paramagnetic. Using the box notation to represent atomic orbitals, account for this property in compounds of Co 2+. 2 Co 2+ has

More information

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite.

1. Sodium nitrite is an ionic compound containing a polyatomic ion. Answer the following questions relative to nitrite. Ch 10-11 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Chapter 6 Molecular Structure

Chapter 6 Molecular Structure hapter 6 Molecular Structure 1. Draw the Lewis structure of each of the following ions, showing all nonzero formal charges. Indicate whether each ion is linear or bent. If the ion is bent, what is the

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry 489--Lectures 3 and 4 Fundamentals of Inorganic Chemistry (with special relevance to biological systems) Some slides courtesy of Prof. Xuan Zhao (U. Memphis) and Prof. Yi Lu (U. Illinois) Fundamentals

More information

Coordination Compounds. Compounds containing Transition Metals

Coordination Compounds. Compounds containing Transition Metals Coordination Compounds Compounds containing Transition Metals Coordination Compounds Transition Metals Sc 6 Cu 1st row Y 6 Ag 2nd row La 6 Au 3rd row Properties of metals Not as reactive as group 1 or

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms Name(s): Element: Topics: 1. Substitution reactions: dissociative v. associative 4. Pseudorotation

More information

Crystal Field Theory History

Crystal Field Theory History Crystal Field Theory History 1929 Hans Bethe - Crystal Field Theory (CFT) Developed to interpret color, spectra, magnetism in crystals 1932 J. H. Van Vleck - CFT of Transition Metal Complexes Champions

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic Table Elements are divided into four categories Main-group elements (S-Block) Transition metals 1.

More information

CHEMISTRY 1B Fall, 2015 EXAM 3 VERSION A KEY

CHEMISTRY 1B Fall, 2015 EXAM 3 VERSION A KEY CHEMISTR 1B Fall, 2015 EAM 3 VERSION A KE Use Scantron Form SC982 E and select the letter corresponding to the correct answer. Make sure to put your full name, lab section number, and exam version (under

More information

Chemical Thermodynamics

Chemical Thermodynamics CHAPTER 23. Chemical Thermodynamics 23-1. (a) H 2 O(l) H 2 O(s) (0 C, 1 bar) Because ice is more ordered structurally than liquid water, ice has less positional disorder than liquid water. Thus, when compared

More information

Periodicity HL (answers) IB CHEMISTRY HL

Periodicity HL (answers) IB CHEMISTRY HL Periodicity HL (answers) IB CHEMISTRY HL 13.1 First row d-block elements Understandings: Transition elements have variable oxidation states, form complex ions with ligands, have coloured compounds, and

More information

Transition Metal Chemistry

Transition Metal Chemistry APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Transition Metal Chemistry CHEM261HC/SS1/01 Periodic table Elements are divided into four categories Main-group elements Transition metals 1. Main-group

More information

Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit.

Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit. Inorganic Chemistry 411/511 Final Exam Name 115 minutes; 200 points total Show your work for partial credit. 1 1. Draw the molecular geometry and indicate any deviations from ideal VSEPR coordination angles.

More information

Inorganic Chemistry with Doc M. Fall Semester, 2011 Day 19. Transition Metals Complexes IV: Spectroscopy

Inorganic Chemistry with Doc M. Fall Semester, 2011 Day 19. Transition Metals Complexes IV: Spectroscopy Inorganic Chemistry with Doc M. Fall Semester, 011 Day 19. Transition Metals Complexes IV: Spectroscopy Name(s): lement: Topics: 1. The visible spectrum and the d-orbitals 3. Octahedral fields. Term symbols

More information

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling

Bonding/Lewis Dots Lecture Page 1 of 12 Date. Bonding. What is Coulomb's Law? Energy Profile: Covalent Bonds. Electronegativity and Linus Pauling Bonding/Lewis Dots Lecture Page 1 of 12 Date Bonding What is Coulomb's Law? Energy Profile: Covalent Bonds Electronegativity and Linus Pauling 2.1 H 1.0 Li 0.9 Na 0.8 K 0.8 Rb 0.7 Cs 0.7 Fr 1.5 Be 1.2

More information

Transition Metal Elements and Their Coordination Compounds

Transition Metal Elements and Their Coordination Compounds Fernando O. Raineri Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). Transition Metal Elements and Their Coordination Compounds 2 Compounds. Naming and Geometry. 1 3 p.1046a 4 Fig.

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Chemistry 1B. Fall Lectures Coordination Chemistry

Chemistry 1B. Fall Lectures Coordination Chemistry Chemistry 1B Fall 2013 Lectures 13-14 Coordination Chemistry 1 LISTEN UP!!! WE WILL ONLY COVER LIMITED PARTS OF CHAPTER 19 (940-944;952-954;963-970) 2 good reasons for studying coordination chemistry a

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Crystal Field Theory. 2. Show the interaction between the d-orbital and the negative point charge ligands

Crystal Field Theory. 2. Show the interaction between the d-orbital and the negative point charge ligands 1. What is the crystal field model? Crystal Field Theory It is a model that views complex ions as being held together ionically (this is not actually the case, but it allows for a simplification of the

More information

QUESTIONSHEETS INORGANIC CHEMISTRY REACTIONS OF PERIOD 3 ELEMENTS WITH WATER REACTIONS OF PERIOD 3 ELEMENTS WITH OXYGEN

QUESTIONSHEETS INORGANIC CHEMISTRY REACTIONS OF PERIOD 3 ELEMENTS WITH WATER REACTIONS OF PERIOD 3 ELEMENTS WITH OXYGEN CHEMISTRY QUESTIONSHEETS A2 Level A2 TOPIC 21 INORGANIC CHEMISTRY Questionsheet 1 Questionsheet 2 Questionsheet 3 Questionsheet 4 Questionsheet 5 Questionsheet 6 Questionsheet 7 Questionsheet 8 Questionsheet

More information

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 25 Transition Metals and Coordination Compounds Part 2 Chapter 25 Transition Metals and Coordination Compounds Part 2 Bonding in Coordination Compounds Valence Bond Theory Coordinate covalent bond is between: completely filled atomic orbital and an empty atomic

More information

FACULTY OF SCIENCE AND FACULTY OF ETERNAL STUDIES BACHELOR OF EDUCATION (BED SCI) SCH 304: INORGANIC CHEMISTRY 4 CO-ORDINATION CHEMISTRY.

FACULTY OF SCIENCE AND FACULTY OF ETERNAL STUDIES BACHELOR OF EDUCATION (BED SCI) SCH 304: INORGANIC CHEMISTRY 4 CO-ORDINATION CHEMISTRY. FACULTY OF SCIENCE AND FACULTY OF ETERNAL STUDIES BACHELOR OF EDUCATION (BED SCI) SCH 304: INORGANIC CHEMISTRY 4 CO-ORDINATION CHEMISTRY Written by Dr Lydia W. Njenga Department of chemistry Reviewed by

More information

What Should a Bonding Theory Explain? What Should a Bonding Theory Explain?

What Should a Bonding Theory Explain? What Should a Bonding Theory Explain? What Should a Bonding Theory Explain? In our intro have already outlined some of the properties of transition metal complexes. For a bonding theory to be effective it must address these points. You already

More information

401 Unit 3 Exam Spring 2018 (Buffers, Titrations, Ksp, & Transition Metals)

401 Unit 3 Exam Spring 2018 (Buffers, Titrations, Ksp, & Transition Metals) Seat# : 401 Unit 3 Exam Spring 2018 (Buffers, Titrations, Ksp, & Transition Metals) Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. (3 pts each)

More information

Information Required for Memorization

Information Required for Memorization Information Required for Memorization Your students are required to memorize the following information for Chem 10. This information must not be supplied on Cheat Sheets for your Semester Exams or Final

More information

Chem 105 Final Exam. Here is the summary of the total 225 points plus 10 bonus points. Carefully read the questions. Good luck!

Chem 105 Final Exam. Here is the summary of the total 225 points plus 10 bonus points. Carefully read the questions. Good luck! May 3 rd, 2012 Name: CLID: Score: Chem 105 Final Exam There are 50 multiple choices that are worth 3 points each. There are 4 problems and 1 bonus problem. Try to answer the questions, which you know first,

More information

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite.

Try this one Calculate the ph of a solution containing M nitrous acid (Ka = 4.5 E -4) and 0.10 M potassium nitrite. Chapter 17 Applying equilibrium 17.1 The Common Ion Effect When the salt with the anion of a is added to that acid, it reverses the dissociation of the acid. Lowers the of the acid. The same principle

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation #

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation # Practice Problems: Transition Elements and Coordination Chemistry 1. Complete the valence level orbital notation for the following monatomic ions. KEY CHEM 1B a) Ag + b) Co 3+ 4d 5s 3d 4s c) Fe 3+ d) Cr

More information

Transition Metals. Tuesday 09/22/15. Tuesday, September 22, 15

Transition Metals. Tuesday 09/22/15. Tuesday, September 22, 15 Transition Metals Tuesday 09/22/15 Agenda Topic 13.2 - Colored Complexes Topic 13.1 - First Row Transition Elements handout (this will be classwork for Wednesday & Thursday) The Periodic Table - The Transition

More information

Chapter 6: Chemical Bonding

Chapter 6: Chemical Bonding Chapter 6: Chemical Bonding Learning Objectives Describe the formation of ions by electron loss/gain to obtain the electronic configuration of a noble gas. Describe the formation of ionic bonds between

More information

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation

Chapter 10: Modern Atomic Theory and the Periodic Table. How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Chapter 10: Modern Atomic Theory and the Periodic Table How does atomic structure relate to the periodic table? 10.1 Electromagnetic Radiation Electromagnetic (EM) radiation is a form of energy that exhibits

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

Chapter 21 Transition Metals and Coordination Chemistry

Chapter 21 Transition Metals and Coordination Chemistry Chapter 21 Transition Metals and Coordination Chemistry Some History In the 19 th century, chemists started to prepare colored compounds containing transition metals and other substances like ammonia,

More information

Chm December 2008

Chm December 2008 Inorganic Exam 3 Chm 451 4 December 2008 Name: Instructions. Always show your work where required for full credit. 1. (15 pts) True/False a T F Ionization energy decreases as one moves down from Li to

More information

Chemistry 324 Final Examination

Chemistry 324 Final Examination Chem 324 Final Examination 2008 December 11, 2008 Page 1 of 8 Chemistry 324 Final Examination Thursday, December 11, 2008 Instructor: Dave Berg Answer all questions in the booklet provided; additional

More information

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy

Chapter One MULTIPLE CHOICE QUESTIONS. Topic: General Section: 1.1 Difficulty Level: Easy Chapter ne MULTIPLE CICE QUESTIS Topic: General Section: 1.1 1. Credit for the first synthesis of an organic compound from an inorganic precursor is usually given to: A) Berzelius B) Arrhenius C) Kekule

More information

Chemical Bonds, Molecular Models, and Molecular Shapes

Chemical Bonds, Molecular Models, and Molecular Shapes Chemical Bonds, Molecular Models, and Molecular Shapes PRELAB ASSINGMENT Read the entire laboratory write up and answer the following questions before coming to lab. Read the entire laboratory write up

More information

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10 Main Group and Transition Metal Chemistry: Reading: Moore chapter 22, sections 22.1, 22.6 Questions for Review and Thought: 14, 16, 24, 26, 30, 34, 36, 42, 48, 50, 58, 60. Key ncepts and Skills: definition

More information

Electronic Spectra and Magnetic Properties of Transition Metal Complexes)

Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Subject Chemistry Paper No and Title Module No and Title Module Tag Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal 22: Isomerism part

More information

1. How many electrons, protons and neutrons does 87 Sr 2+ have?

1. How many electrons, protons and neutrons does 87 Sr 2+ have? ***This is a sample exam is lacking some questions over chapter 12 as this is a new chapter for the general chemistry sequence this semester. For a sampling of some chapter 12 problems, see the additional

More information

CHEMISTRY 362 Descriptive Inorganic Chemistry. M. Y. Darensbourg. Examination III. April 19, Name:

CHEMISTRY 362 Descriptive Inorganic Chemistry. M. Y. Darensbourg. Examination III. April 19, Name: CHEMISTRY 362 Descriptive Inorganic Chemistry M. Y. Darensbourg Examination III April 19, 2017 Name: An Aggie does not lie, cheat or steal or tolerate (and BTHO) those who do. Signed: Point Group Assignment

More information

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20 Coordination Chemistry: Bonding Theories Molecular Orbital Theory Chapter 20 Review of the Previous Lecture 1. Discussed magnetism in coordination chemistry and the different classification of compounds

More information