Selectivity of conventional gas sensors, con t:

Size: px
Start display at page:

Download "Selectivity of conventional gas sensors, con t:"

Transcription

1 Selectivity of conventional gas sensors, con t: for ammonia sensor---volatile amines that are strong bases; methylamine, ethylamine, etc.--- R-NH 2 H 2 O ----> R-NH 3 OH - if species are stronger bases than NH 3 --then you can observe larger EMF response to these amines-- Get conversion of internal thin film layer of electrolyte from ammonium chloride, to alkylammonium chloride --usually observe super-nernstian region during this conversion process --if you put alkylammonium chloride electrolyte as inner solution to start, then Nernstian response to volatile amine! E cell R-NH 2 NH 3 log [ ]

2 For sensors---so 2 and NO 2 are significant interferences (stronger acids than ) Also, neutral organic acids can interfere---when outer gas permeable membrane is a silicone rubber type material. Response times---slower than ISEs, and other potentiometric sensors---must reach equlibrium between thin film of electrolyte and sample--- 1 min. at high concentration of dissolved gas min at very low concentraitons Polymer Membrane Electrode Based Gas Sensors -use of inner ISEs that are polymer membrane electrodes to measure ionic form of analyte gas -- e.g., NH 4, HCO 3-, HSO 3-, NO best example is NH 3 sensor using neutral carrier based NH 4 electrode as inner transducer -also novel differential designs---two polymer membrane ISEs---best example: sensor

3 inner electrolyte of ISE buffer electrolyte NH 3 H <-----> NH 4 NH 4 - selective membrane--made with nonactin as neutral carrier NH 3 ph = pk a log ([NH 3 ]/NH 4 ]) fix ph of inner solution with strong buffer; therefore, thin film of electrolyte effectively traps ammonia gas as ammonium ions! always have favorable flux (J = (dc/dx)) (dx = gas permeable membrane thickness)

4 Nonactin-based ammonium sensor has K pot NH4, K =0.1 --not very selective over K --but this does not matter since K cannot permeate the outer gas permeable membrane; Therefore, to optimize detection limits always use inner buffer the does no have K and/or other cations for which the inner membrane electrode does not display high selectivity over!---otherwise, detection limits will be less than optimal! -Because of the buffer trap mechanism---the sensors can have lower detection limits compared to sensors with inner ph electrode as transducer! (e.g., at ph 7.3 inner---for 10-7 M NH 3(g) in sample phase---inner buffer film at equilibrium will have 10-5 M NH 4 ) However--because of trapping effect---gas sensor will only display Nernstian response toward gas provided that ph of inner film buffer does not change---once buffer capacity exceded, response becomes sub-nernstian!

5 0.1 M Tris-HCl, ph 7.5 E cell 0.01 M Tris-HCl, ph 7.5 log [NH 3 ] NH 3 BH <-----> NH 4 B ph film = pka (buffer) log ([B]/[BH]) What about selectivity? only positive interferences from volatile amines if these species --in protonated form--yield significant response from the inner nonactin-based membrane -If binding constant of protonated amine were high with ionophore--then such gases would interfere; fortunately, this is not the case---

6 For polymer membrane electrode with nonactin (and tetrphenylborate counteranion sites), K pot NH4, RNH3 = 10-4 (what must this mean?) However, at high concentration of volatile amines-- you can get negative interference---since such levels will also change ph in thin film within sensor decreasing the equil.level of NH 4 ions formed for a given level of NH 3 gas in the sample phase. Therefore, must be concerned about cumulative effect of both volatile amine and analyte ammonia levels on the ph of the inner buffer electrolyte!! -- Sensor of this type also developed for based on inner carbonate electrode, with improved select. over volatile acidic gases Differential design: Ag/AgCl, NaCl, buffer /polymer ph mem./ sample/ polymer ph mem. / NaHCO 3, NaCl, AgCl/Ag

7 sample buffered internal soln. layer indentical polymer ph sensitive membranes (using TDDA as ionophore) bicarbonate internal --is capable of diffusing through both ph sensing membranes, but only changes the ph behind the membrane in the sensor that has thin film of bicarbonate electrolyte as inner electrolyte. The outer surface of the membranes both respond to the ph of the sample, but this potentiometric response cancels! Note--equation for E cell and Vetter diagram-- --Will derive on blackboard!!

8 DIFFERENTIAL PCO 2 SENSOR Ecell = K log P mv Ag/AgCl bicarbonate soln. H H H HCO HCO 3 3 H polymer ph sensitive membranes CO 2 H Ag/AgCl buffered soln. H H

ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY

ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY ELECTROCHEMICAL TECHNIQUES, OSMOMETRY AND THE PRINCIPLES OF RADIOACTIVITY ELECTROCHEMISTY ELECTROCHEMISTRY IS THE STUDY OF CHEMICAL REACTIONS THAT RESULT IN THE FLOW OF ELECTRONS (CURRENT) OR THE DEVELOPMENT

More information

Chapter 14: Electrodes and Potentiometry

Chapter 14: Electrodes and Potentiometry Yonsei University Chapter 14: Electrodes and Potentiometry The use of electrodes to measure voltages that provide chemical information is called potentiometry (ion-selective electrode, ion-sensing field

More information

Chem 321 Lecture 17 - Potentiometry 10/24/13

Chem 321 Lecture 17 - Potentiometry 10/24/13 Student Learning Objectives Chem 321 Lecture 17 - Potentiometry 10/24/13 Electrodes The cell described in the potentiometric chloride titration (see 10/22/13 posting) consists of a Ag/AgCl reference electrode

More information

CHAPTER 14: ELECTRODES AND POTENTIOMETRY

CHAPTER 14: ELECTRODES AND POTENTIOMETRY CHAPTER 14: ELECTRODES AND POTENTIOMETRY Chapter 14 Electrodes and Potentiometry Potentiometry : The use of electrodes to measure voltages that provide chemical information. (The cell voltage tells us

More information

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor

ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor ph calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases Acid is a proton donor Base is a proton acceptor HCl(aq) + H 2 O(l) H 3 O + (aq) + Cl - (aq) Acid Base Conjugate acid Conjugate

More information

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College

Proton Transfer Acids - Base. Dr. Fred Omega Garces Chemistry 201. Miramar College 16.2 Acids Base Proton Transfer Dr. Fred Omega Garces Chemistry 201 Miramar College Important Notes: K a when H 3 O + is produced, K b when OH is produced 1 Acids Bases; Proton Transfer BrønstedLowry AcidsBases

More information

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3

g. Looking at the equation, one can conclude that H 2 O has accepted a proton from HONH 3 HONH 3 Chapter 14 Acids and Bases I. Bronsted Lowry Acids and Bases a. According to Brønsted- Lowry, an acid is a proton donor and a base is a proton acceptor. Therefore, in an acid- base reaction, a proton (H

More information

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride Acids and Bases Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride gas dissolved in water HCl (aq) Concentrated

More information

Unit 12: Acids & Bases. Aim: What are the definitions and properties of an acid and a base? Properties of an Acid. Taste Sour.

Unit 12: Acids & Bases. Aim: What are the definitions and properties of an acid and a base? Properties of an Acid. Taste Sour. Unit 12: Acids & Bases Aim: What are the definitions and properties of an acid and a base? Mar 23 12:08 PM Properties of an Acid 3. Are electrolytes. (Dissociate and conduct electricity when aq) 2. Turns

More information

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2

Acids and bases, ph and buffers. Dr. Mamoun Ahram Lecture 2 Acids and bases, ph and buffers Dr. Mamoun Ahram Lecture 2 ACIDS AND BASES Acids versus bases Acid: a substance that produces H+ when dissolved in water (e.g., HCl, H2SO4) Base: a substance that produces

More information

From Gen. Chem.: 1. WHAT is an ACID? 2. WHAT is a BASE?

From Gen. Chem.: 1. WHAT is an ACID? 2. WHAT is a BASE? Expt. 1: Biological Buffers Goals: 1. Learn how to use the Henderson-Hasselbach (H-H) eqn. 2. Learn how to prepare buffers. 3. Learn something about physical properties of biological buffers which are

More information

Acid-Base Solutions - Applications

Acid-Base Solutions - Applications Acid-Base Solutions - Applications 1 The Common Ion Effect Consider the equilibrium established when acetic acid, HC 2 H 3 O 2, is added to water. CH 3 COOH(aq) + H 2 O(l) CH 3 COO - (aq) + H 3 O + (aq)

More information

Chapter 10 - Acids & Bases

Chapter 10 - Acids & Bases Chapter 10 - Acids & Bases 10.1-Acids & Bases: Definitions Arrhenius Definitions Acids: substances that produce hydrogen ions when dissolved in H 2 O Common Strong Acids: Common Weak acids: Organic carboxylic

More information

CHEM 109A Organic Chemistry

CHEM 109A Organic Chemistry CHEM 109A Organic Chemistry https://labs.chem.ucsb.edu/zakarian/armen/courses.html Chapter 2 Acids and Bases Central to Understanding Organic Chemistry Draw the conjugate acid of each of the following:

More information

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017

Acids, Bases and ph Preliminary Course. Steffi Thomas 14/09/2017 Acids, Bases and ph Preliminary Course Steffi Thomas ssthomas@tcd.ie 14/09/2017 Outline What are acids and bases? Can we provide a general definition of acid and base? How can we quantify acidity and basicity?

More information

Chem 1046 Lecture Notes Chapter 17

Chem 1046 Lecture Notes Chapter 17 Chem 1046 Lecture Notes Chapter 17 Updated 01-Oct-2012 The Chemistry of Acids and Bases These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Book Material. Additional material that

More information

Chemistry Instrumental Analysis Lecture 22. Chem 4631

Chemistry Instrumental Analysis Lecture 22. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 22 Measures potential under very low currents. The cell is 2 half cells. Consist of a reference electrode, indicator electrode, and potential measuring device.

More information

AP Study Questions

AP Study Questions Name: Class: Date: AP 17.1-17.2 Study Questions True/False Indicate whether the statement is true or false. 1. The extent of ionization of a weak electrolyte is increased by adding to the solution a strong

More information

Unit 2 Electrochemical methods of Analysis

Unit 2 Electrochemical methods of Analysis Unit 2 Electrochemical methods of Analysis Recall from Freshman Chemistry: Oxidation: Loss of electrons or increase in the oxidation number Fe 2 e - Fe 3 Reduction: Gain of electrons or decreases in the

More information

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water.

IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. IB Chemistry ABS Introduction An acid was initially considered a substance that would produce H + ions in water. The Brønsted-Lowry definition of an acid is a species that can donate an H + ion to any

More information

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers

10/16/17 ACIDS AND BASES, DEFINED WATER IS AMPHOTERIC OUTLINE. 9.1 Properties of Acids and Bases. 9.2 ph. 9.3 Buffers ACIDS AND BASES, DEFINED A hydrogen atom contains a proton and an electron, thus a hydrogen ion (H + ) is a proton: Acids: Proton (H + ) transfer between molecules is the basis of acid/base chemistry Ø

More information

General terms relevant to ion-selective electrodes

General terms relevant to ion-selective electrodes 8.3.2.1 General terms relevant to ion-selective electrodes Activity, Activity coefficient and Concentration See sections 1.3.8, 1.3.10 and 3.3. Calibration plot This is a plot of the cell emf, E (i.e.

More information

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, ,

HW #10: 10.38, 10.40, 10.46, 10.52, 10.58, 10.66, 10.68, 10.74, 10.78, 10.84, 10.88, 10.90, , Chemistry 121 Lectures 20 & 21: Brønstead-Lowry Acid/Base Theory Revisited; Acid & Base Strength - Acids & Bases in Aqueous Solution; Acid Dissociation Constants and the Autoionization of Water; ph or

More information

Functional Genomics Research Stream. Lecture: February 24, 2009 Buffer & Reagent Production, ph

Functional Genomics Research Stream. Lecture: February 24, 2009 Buffer & Reagent Production, ph Functional Genomics Research Stream Lecture: February 24, 2009 Buffer & Reagent Production, ph Agenda State of the Union Acid / Base Theory Buffers in Physiology Buffers in the Laboratory Assignment Six

More information

Supporting Information for: Potentiometric Sensing Array for Monitoring Aquatic Systems

Supporting Information for: Potentiometric Sensing Array for Monitoring Aquatic Systems Electronic Supplementary Material (ESI) for Environmental Science: Processes & Impacts. This journal is The Royal Society of Chemistry 2015 Supporting Information for: Potentiometric Sensing Array for

More information

Where does Physical Chemistry fit into your course in Dentistry?

Where does Physical Chemistry fit into your course in Dentistry? Where does Physical Chemistry fit into your course in Dentistry? Acidogenic bacteria in dental plaque can rapidly metabolise certain carbohydrates to acid endproducts. In the mouth, the resultant change

More information

CET Q UESTIONS QUESTIONS

CET Q UESTIONS QUESTIONS CET QUESTIONS ON ELECTROCHEMISTRY 1. Electrolytic and metallic conductance differs from 1. Electrolytic and metallic conductance increases with increase of temperature 2. Electrolytic conductance increases

More information

CH 1020 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

CH 1020 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster CH 1020 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster *In addition to reviewing this study guide, you should i) consult the Chapter Objectives

More information

Acid Base Equilibria

Acid Base Equilibria Acid Base Equilibria Acid Ionization, also known as acid dissociation, is the process in where an acid reacts with water to produce a hydrogen ion and the conjugate base ion. HC 2 H 3 O 2(aq) H + (aq)

More information

Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from

Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from Chemistry 40S Acid-Base Equilibrium (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 Lesson 1: Defining Acids and Bases Goals: Outline the historical development of acid base theories.

More information

Let's compare the ph of the weak nitrous acid with the ph of a strong acid like nitric acid:

Let's compare the ph of the weak nitrous acid with the ph of a strong acid like nitric acid: 144 Compare: - Weak acid HNO : ph of 0.10 M solution = 2.17 Let's compare the ph of the weak nitrous acid with the ph of a strong acid like nitric acid: The stronger the acid: - the lower the ph of a solution

More information

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Acids and Bases. Chapter 15. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids and Bases Chapter 15 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain

More information

Chapter 16 - Acids and Bases

Chapter 16 - Acids and Bases Chapter 16 - Acids and Bases 16.1 Acids and Bases: The Brønsted Lowry Model 16.2 ph and the Autoionization of Water 16.3 Calculations Involving ph, K a and K b 16.4 Polyprotic Acids 16.1 Acids and Bases:

More information

Membrane Electrodes. Several types

Membrane Electrodes. Several types Membrane Electrodes Electrical connection Several types - Glass membrane electrode - Liquid membrane electrode - Solid State membrane electrode - Permeable membrane electrode seal 0.1 M HCl Filling solution

More information

Monoprotic Acid/Base Equilibria. Monoprotic Acid/Base Equilibria

Monoprotic Acid/Base Equilibria. Monoprotic Acid/Base Equilibria Monoprotic Acid/Base Equilibria Strong acids and bases: What is the ph of 0.10 M HCl? How do you calculate it? Why? Concentration (F) 0.10 (10-1 ) 0.01 (10-2 ) 0.001 (10-3 ) 0.0001 (10-4 ) 0.00001 (10-5

More information

10.1 Acids and Bases in Aqueous Solution

10.1 Acids and Bases in Aqueous Solution 10.1 Acids and Bases in Aqueous Solution Arrhenius Definition of Acids and Bases An acid is a substance that gives hydrogen ions, H +, when dissolved in water. In fact, H + reacts with water and produces

More information

Chapter 21. Potentiometry

Chapter 21. Potentiometry Chapter 21 Potentiometry 1 Potentiometric methods Potentiometric methods of analysis are based on measuring the potential of electrochemical cells without drawing appreciable currents. Applications: Determine

More information

4 + SO 4 NH 4 NH3 + H + SO H 2 O HSO OH - H 2 O H + + OH - NaNO 3 Na + -

4 + SO 4 NH 4 NH3 + H + SO H 2 O HSO OH - H 2 O H + + OH - NaNO 3 Na + - Chemistry Spring 014 Exam : Chapters 6-7 Name 80 Points Complete problem 1 and four of problems -6. CLEARLY mark the problem you do not want graded. You must show your work to receive credit for problems

More information

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species

A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species 3 ACID AND BASE THEORIES: A) Arrhenius Acids produce H+ and bases produce OH not always used because it only IDs X OH as basic species B) Bronsted and Lowry Acid = H + donor > CB = formed after H + dissociates

More information

D. Ammonia can accept a proton. (Total 1 mark)

D. Ammonia can accept a proton. (Total 1 mark) 1. Which statement explains why ammonia can act as a Lewis base? A. Ammonia can donate a lone pair of electrons. B. Ammonia can accept a lone pair of electrons. C. Ammonia can donate a proton. D. Ammonia

More information

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration

Lecture 10. Professor Hicks Inorganic Chemistry II (CHE152) Scale of [H 3 O + ] (or you could say [H + ]) concentration Lecture 10 Professor Hicks Inorganic Chemistry II (CHE152) ph Scale of [H 3 O + ] (or you could say [H + ]) concentration More convenient than scientific notation ph = log [H 3 O + ] still not sure? take

More information

Understanding the shapes of acid-base titration curves AP Chemistry

Understanding the shapes of acid-base titration curves AP Chemistry Understanding the shapes of acidbase titration curves AP Chemistry Neutralization Reactions go to Completion Every acidbase reaction produces another acid and another base. A neutralization reaction is

More information

Oxidation & Reduction II. Suggested reading: Chapter 5

Oxidation & Reduction II. Suggested reading: Chapter 5 Lecture 1 Oxidation & Reduction II Suggested reading: Chapter 5 Recall from Last time: Redox Potentials The Nernst equation: E cell E 0 RT F ln Q Cell Potential and ph For the H + /H couple at 1 bar and

More information

Strong and Weak. Acids and Bases

Strong and Weak. Acids and Bases Strong and Weak Acids and Bases Strength of Acids H2SO4 HSO4 - + H + HNO3 NO3 - + H + Strong Acids HCl Cl - + H + H3PO4 H2PO4 - + H + Phosphoric acid Moderate Acid CH3COOH CH3COO - + H + Acetic acid HF

More information

Principles Of Acid-Base Balance

Principles Of Acid-Base Balance Principles Of Acid-Base Balance I. Introduction A. For normal body function the free H+ concentration [H+] or ph must be kept within a narrow normal range. Some reasons why: 1. The proton "pump" within

More information

REACTIONS OF ACIDS. J:\Science\Chemistry\Stage 1 Notes\Acids & Bases\Reactionsofacids.doc

REACTIONS OF ACIDS. J:\Science\Chemistry\Stage 1 Notes\Acids & Bases\Reactionsofacids.doc REACTIONS OF ACIDS 1. Acids taste sour We do not attempt to taste strong acids as they are too dangerous. They do taste sour, but then they proceed to destroy cells on your tongue and mouth. If you vomit,

More information

Today. Complex Equilibria. Approximations when do your previous formulas fail?

Today. Complex Equilibria. Approximations when do your previous formulas fail? Today Complex Equilibria Approximations when do your previous formulas fail? In short hand notation what is dimethylamine? A. HA B. A - C. B D. BH + Amines are like ammonia with other substituents instead

More information

potassium formate? In short hand notation what is dimethylamine? Today Complex Equilibria Approximations when do your previous formulas fail?

potassium formate? In short hand notation what is dimethylamine? Today Complex Equilibria Approximations when do your previous formulas fail? In short hand notation what is dimethylamine? Today Complex Equilibria A. HA Approximations when do your previous formulas fail? B. A - C. B D. BH + Amines are like ammonia with other substituents instead

More information

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol

A 95 g/mol B 102 /mol C 117 g/mol D 126 g/mol E 152 g/mol Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete.

More information

More reaction types. combustions and acid/base neutralizations

More reaction types. combustions and acid/base neutralizations More reaction types combustions and acid/base neutralizations Combustion reactions C x H y + O 2(g) CO 2(g) + H 2 O (l) + E If the hydrocarbon contains nitrogen as well C x H y N z + O 2(g) CO 2(g) + H

More information

( 1 ) Concept of acid / base

( 1 ) Concept of acid / base Section 6.2 Ionic Equilibrium Unit 628 ( 1 ) Concept of acid / base The best definition of acids and bases is that proposed by T.M. Lowry and also, independently by J.N. Bronsted in 1923. BronstedLowry

More information

Chapter 14. Objectives

Chapter 14. Objectives Section 1 Properties of Acids and Bases Objectives List five general properties of aqueous acids and bases. Name common binary acids and oxyacids, given their chemical formulas. List five acids commonly

More information

Chapter 15 - Acids and Bases Fundamental Concepts

Chapter 15 - Acids and Bases Fundamental Concepts Chapter 15 - Acids and Bases Fundamental Concepts Acids and Bases: Basic Definitions Properties of Acids Sour Taste React with active metals (Al, Zn, Fe) to yield H 2 gas: Corrosive React with carbonates

More information

AP Chemistry Chapter 14 Review Packet Multiple Choice Questions: 2. What is the equilibrium constant for the following reaction?

AP Chemistry Chapter 14 Review Packet Multiple Choice Questions: 2. What is the equilibrium constant for the following reaction? AP Chemistry Chapter 14 Review Packet Multiple Choice Questions: Name 1. For the stepwise dissociation of aqueous H 3 PO 4, which of the following is NOT a conjugate acid-base pair? a. HPO 4 and PO 4 3

More information

ACIDS, BASES & SALTS DR. RUCHIKA YADU

ACIDS, BASES & SALTS DR. RUCHIKA YADU ACIDS, BASES & SALTS DR. RUCHIKA YADU Properties of Acids Acid is a compound which yields hydrogen ion (H+), when dissolved in water. Acid is sour to the taste and corrosive in nature. The ph value of

More information

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS

AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS AP CHEMISTRY NOTES 10-1 AQUEOUS EQUILIBRIA: BUFFER SYSTEMS THE COMMON ION EFFECT The common ion effect occurs when the addition of an ion already present in the system causes the equilibrium to shift away

More information

CET Q UESTIONS QUESTIONS

CET Q UESTIONS QUESTIONS CET QUESTIONS ON ELECTROCHEMISTRY 1. Electrolytic and metallic conductance differs from 1. Electrolytic and metallic conductance increases with increase of temperature 2. Electrolytic conductance increases

More information

Acid/Base Definitions

Acid/Base Definitions Acids and Bases Acid/Base Definitions Arrhenius Model Acids produce hydrogen ions in aqueous solutions Bases produce hydroxide ions in aqueous solutions Bronsted-Lowry Model Acids are proton donors Bases

More information

Chapter 15 Acid Base Equilibria

Chapter 15 Acid Base Equilibria Buffer Solutions The ph changes by a large amount even when a small amount of acid or base is added to pure water: Chapter 15 Acid Base Equilibria A buffer solution is a solution which resists a change

More information

14-Jul-12 Chemsheets A

14-Jul-12 Chemsheets A www.chemsheets.co.uk 14-Jul-12 Chemsheets A2 009 1 BRONSTED-LOWRY ACIDS & BASES Bronsted-Lowry acid = proton donor (H + = proton) Bronsted-Lowry base = proton acceptor (H + = proton) Bronsted-Lowry acid-base

More information

PRACTICAL 3 ph AND BUFFERS

PRACTICAL 3 ph AND BUFFERS PRACTICAL 3 ph AND BUFFERS ph and Buffers Structure 3.1 Introduction 3.2 ph and Buffers: Basic Concept 3.2.1 ph 3.2.2 Buffers and Buffer Solutions 3.3 Methods for Determining ph Experiment 1: Measurement

More information

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge)

Atoms. Smallest particles that retain properties of an element. Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge) Basic Chemistry Atoms Smallest particles that retain properties of an element Made up of subatomic particles: Protons (+) Electrons (-) Neutrons (no charge) Examples of Atoms electron proton neutron Hydrogen

More information

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a.

Chapter 17 Answers. Practice Examples [H3O ] 0.018M, 1a. HF = M. 1b. 30 drops. 2a. Chapter 17 Answers Practice Examples 1a. + [HO ] 0.018M, 1b. 0 drops [HF] = 0.8 M. [H O + ] = 0.10 M, HF = 0.97 M. a. + HO 1.10 M, CHO = 0.150 M. b. 15g NaCHO a. The hydronium ion and the acetate ion react

More information

GENERAL INSTRUCTIONS GENERAL PREPARATION

GENERAL INSTRUCTIONS GENERAL PREPARATION GENERAL INSTRUCTIONS Introduction The Van London-pHoenix Company Ammonium Ion Selective Electrode is used to quickly, simply, accurately, and economically measure potassium in aqueous solutions. Required

More information

Method Abstract. Flow Solution Fluoride, USGS by ISE and FIA

Method Abstract. Flow Solution Fluoride, USGS by ISE and FIA Scope Summary Interferences Fluoride, USGS by ISE and FIA This method is used for the determination of fluoride in drinking water, surface water, and domestic and industrial wastes according to USGS Method

More information

CHAPTER 8 CHEMICAL EQUILIBRIUM SHORT QUESTION WITH ANSWERS Q.1 What is weak electrolyte? A compound which is only partially ionized in aqueous solution is called as weak electrolyte.e.g CH 3 COOH(Acetic

More information

Acid-Base Chemistry & Organic Compounds. Chapter 2

Acid-Base Chemistry & Organic Compounds. Chapter 2 Acid-Base Chemistry & Organic Compounds Chapter 2 Brønsted Lowry Acids & Bases! Brønsted-Lowry Acid: Proton (H + ) Donor! Brønsted-Lowry Base: Proton (H + ) Acceptor! General reaction: HA + B: A - + BH

More information

Acids, Bases, Salts, Buffers

Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers Acids, Bases, Salts, Buffers An acid is any solute that dissociates in a solution and releases hydrogen ions, thereby lowering ph Since a hydrogen ion consist solely of a proton,

More information

CHAPTER 14 ACIDS AND BASES

CHAPTER 14 ACIDS AND BASES CHAPTER 14 ACIDS AND BASES Topics Definition of acids and bases Bronsted-Lowry Concept Dissociation constant of weak acids Acid strength Calculating ph for strong and weak acids and bases Polyprotic acids

More information

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14

-log [H+][OH-] = - log [1 x ] Left hand side ( log H + ) + ( log OH - ) = ph + poh Right hand side = ( log 1) + ( log ) = 14 ph + poh = 14 Autoionization of Water H 2 O H + + OH - K = [H + ][OH - ]/[H 2 O] = 1.802 x 10-16 Concentration of [H 2 O] is so HIGH autoionization is just a drop in the bucket, so [H 2 O] stays constant at 55.5 M,

More information

Chem 103 Exam #1. Identify the letter of the choice that best completes the statement or answers the question. Multiple Choice

Chem 103 Exam #1. Identify the letter of the choice that best completes the statement or answers the question. Multiple Choice Chem 103 Exam #1 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following can act as a Bronsted-Lowry base, but not as a Bronsted-Lowry

More information

5.111 Lecture Summary #22 Wednesday, October 31, 2014

5.111 Lecture Summary #22 Wednesday, October 31, 2014 5.111 Lecture Summary #22 Wednesday, October 31, 2014 Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in 5 th ed. (10.13, 10.18-10.19, 11.1-11.3 in 4 th ed.) Reading for Lecture #23: Sections

More information

Find the ph and the degree of ionization for an 0.10 M solution of formic acid:

Find the ph and the degree of ionization for an 0.10 M solution of formic acid: 148 Find the ph and the degree of ionization for an 0.10 M solution of formic acid: Value of Ka from Ebbing, page A-13 Define "x" as the change in hydronium ion concentration Assume "x" is small compared

More information

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations

Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Ch. 17 Applications of Aqueous Equilibria: Buffers and Titrations Sec 1 The Common-Ion Effect: The dissociation of a weak electrolyte decreases when a strong electrolyte that has an ion in common with

More information

CO 2 and the carbonate system. 1/45

CO 2 and the carbonate system.  1/45 CO 2 and the carbonate system http://eps.mcgill.ca/~courses/c542/ 1/45 The Atmospheric CO 2 -Climate Connection From: http://www.google.ca/imgres?imgurl=http:/ /www.tallbergfoundation.org/ From: Ruddiman,

More information

Cell Biology. Water, Acids, Bases and Buffers. Water makes up 70-99% of the weight of most living organisms Water

Cell Biology. Water, Acids, Bases and Buffers. Water makes up 70-99% of the weight of most living organisms Water Cell Biology Water, Acids, Bases and Buffers WATER CHEMISTRY Water makes up 70-99% of the weight of most living organisms Water Hydrogen bonded to Oxygen by covalent bond Polar molecule (electrons find

More information

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions.

Lecture 12. Acid/base reactions. Equilibria in aqueous solutions. Lecture 12 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

AP Chapter 15 & 16: Acid-Base Equilibria Name

AP Chapter 15 & 16: Acid-Base Equilibria Name AP Chapter 15 & 16: Acid-Base Equilibria Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 15 & 16: Acid-Base Equilibria 2 Warm-Ups (Show

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

3/24/11. Introduction! Electrogenic cell

3/24/11. Introduction! Electrogenic cell March 2011 Introduction Electrogenic cell Electrode/electrolyte interface Electrical double layer Half-cell potential Polarization Electrode equivalent circuits Biopotential electrodes Body surface electrodes

More information

ph of natural waters

ph of natural waters ph of natural waters Na 2 CO 3 10H 2 O (natron) 2 Na + + CO 3 + 10H 2 O 4FeS 2 + 15O 2 + 14H 2 O 4 Fe(OH) 3 + 16H + + 8SO 4 4NaAlSi 3 O 8 + 11H 2 O 4Na + + 4OH - + Al 4 Si 4 O 10 (OH) 8 + 8Si(OH) 4 In

More information

Chapter 16 Acid-Base Equilibria

Chapter 16 Acid-Base Equilibria Page 1 of 20 Chapter 16 Acid-Base Equilibria 16.1 Acids and Bases: A Brief Review Acids: taste sour and cause certain dyes to change color. Bases: taste bitter and feel soapy. Arrhenius concept o acids

More information

Equilibri acido-base ed equilibri di solubilità. Capitolo 16

Equilibri acido-base ed equilibri di solubilità. Capitolo 16 Equilibri acido-base ed equilibri di solubilità Capitolo 16 The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

More information

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model:

Last week, we discussed the Brønsted Lowry concept of acids and bases. According to this model: Last week, we discussed the Brønsted Lowry concept of acids and bases This model is not limited to aqueous solutions; it can be extended to reactions in the gas phase! According to this model: Acids are

More information

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +.

In the Brønsted-Lowry system, a Brønsted-Lowry acid is a species that donates H + and a Brønsted-Lowry base is a species that accepts H +. 16.1 Acids and Bases: A Brief Review Arrhenius concept of acids and bases: an acid increases [H + ] and a base increases [OH ]. 16.2 BrønstedLowry Acids and Bases In the BrønstedLowry system, a BrønstedLowry

More information

READING A. INTRODUCTION CHE425L POTENTIOMETRY WITH K + ION-SELECTIVE ELECTRODE. Skoog, Holler and Crouch: Chapter 23 and Appendix 3.

READING A. INTRODUCTION CHE425L POTENTIOMETRY WITH K + ION-SELECTIVE ELECTRODE. Skoog, Holler and Crouch: Chapter 23 and Appendix 3. CHE425L POTENTIOMETRY WITH K + ION-SELECTIVE ELECTRODE READING Skoog, Holler and Crouch: Chapter 23 and Appendix 3. A. INTRODUCTION Potentiometry is a static electroanalytical method in which the potential

More information

Equilibrium principles in aqueous systems are limited to qualitative descriptions and/or calculations involving:

Equilibrium principles in aqueous systems are limited to qualitative descriptions and/or calculations involving: NCEA Chemistry 3.6 Aqueous Systems AS 91392 Demonstrate understanding of equilibrium principles in aqueous systems Aqueous systems are limited to those involving sparingly soluble ionic solids Equilibrium

More information

Properties of Acids and Bases

Properties of Acids and Bases Chapter 15 Aqueous Equilibria: Acids and Bases Properties of Acids and Bases Generally, an acid is a compound that releases hydrogen ions, H +, into water. Blue litmus is used to test for acids. Blue litmus

More information

Potentials and Thermodynamics of Cells (Ch. 2)

Potentials and Thermodynamics of Cells (Ch. 2) Potentials and Thermodynamics of Cells (Ch. 2) Basic Electrochemical Thermodynamics: potential vs. chemical information Reversibility Free energy Half-potential and cell potential Nernst equation Electrochemical

More information

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions.

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions. DEFINITIONS: ACIDS AND BASES Arrhenius Definition An acid in aqueous solution produces H + ions. A base in aqueous solution produces OH - ions. Bronsted Lowry Theory An acid is a proton donor A base is

More information

Problem 1. What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )?

Problem 1. What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )? Problem 1 What is the ph of a 291mL sample of 2.993M benzoic acid (C 6 H 5 COOH) (K a =6.4x10-5 )? Problem 2 A 489mL sample of 0.5542M HNO 3 is mixed with 427mL sample of NaOH (which has a ph of 14.06).

More information

Ion Chromatography. Anion Exchange. Chromatography Ion Exchange Theory. Dr. Shulamit Levin

Ion Chromatography. Anion Exchange. Chromatography Ion Exchange Theory. Dr. Shulamit Levin Ion Exchange Chromatography Chromatographic Process BA Mobile phase Stationary Phase A Shula Levin Bioforum B Distribution: K = C s/c m B shulal@zahav.net.il http://shulalc.co.il/ A Elution through the

More information

Kotz 7 th ed. Section 18.3, pp

Kotz 7 th ed. Section 18.3, pp Lecture 15 Acid/base reactions. Equilibria in aqueous solutions. Titrations Kotz 7 th ed. Section 18.3, pp.821-832. In a titration a solution of accurately known concentration is added gradually added

More information

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions

AP Chemistry. CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect Buffered Solutions. Composition and Action of Buffered Solutions AP Chemistry CHAPTER 17- Buffers and Ksp 17.1 The Common Ion Effect The dissociation of a weak electrolyte is decreased by the addition of a strong electrolyte that has an ion in common with the weak electrolyte.

More information

Chapter Outline. Ch 8: Aqueous Solutions: Chemistry of the Hydrosphere. H 2 S + Cu 2+ CuS(s) + 2H + (Fe, Ni, Mn also) HS O 2 HSO 4

Chapter Outline. Ch 8: Aqueous Solutions: Chemistry of the Hydrosphere. H 2 S + Cu 2+ CuS(s) + 2H + (Fe, Ni, Mn also) HS O 2 HSO 4 Ch 8: Aqueous Solutions: Chemistry of the Hydrosphere H 2 S + Cu 2+ CuS(s) + 2H + (Fe, Ni, Mn also) HS - + 2 O 2 HSO 4 - + energy (supports life) Figure taken from Principles of Biochemistry, 2nd Ed. By

More information

Chapter 10. Acids, Bases, and Salts

Chapter 10. Acids, Bases, and Salts Chapter 10 Acids, Bases, and Salts Topics we ll be looking at in this chapter Arrhenius theory of acids and bases Bronsted-Lowry acid-base theory Mono-, di- and tri-protic acids Strengths of acids and

More information

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base.

A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. 1 A buffer is a an aqueous solution formed from a weak conjugate acid-base pair that resists ph change upon the addition of another acid or base. after addition of H 3 O + equal concentrations of weak

More information

2 Ionic and Covalent Bonding

2 Ionic and Covalent Bonding CHAPTER 6 2 Ionic and Covalent Bonding SECTION The Structure of Matter KEY IDEAS As you read this section, keep these questions in mind: Why do atoms form bonds? How do ionic bonds and covalent bonds differ?

More information

DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES

DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES Chemistry 112 Laboratory: Chemistry of Acids & Bases Page 73 DATA SHEETS AND CALCULATIONS FOR ACIDS & BASES Name Partner s Name Grade and Instructor Comments Part 1: Experimental Measurement Determining

More information

Analysis of cations and anions by Ion- Selective Electrodes (ISEs)

Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Analysis of cations and anions by Ion- Selective Electrodes (ISEs) Purpose: The purpose of this assignment is to introduce potentiometric measurements of ionic species by ion selective electrodes (ISEs)

More information