OCN400 Problem Set #1 Winter 2015 Due: 9:30 a.m., Monday, Jan 12

Size: px
Start display at page:

Download "OCN400 Problem Set #1 Winter 2015 Due: 9:30 a.m., Monday, Jan 12"

Transcription

1 OCN400 Problem Set #1 Winter 2015 Due: 9:30 a.m., Monday, Jan What determines if an ion is a major ion in seawater? (5) - Major ions are those that contribute to salinity. - If salinity can be determined to parts per thousand (g/kg) or 1 mg/kg (ppm) a major element is any ion with a concentration greater than 1 ppm. 2. Why do chemical oceanographers prefer to use mole units rather than weight units (like grams)? (5) Because when thinking about the stoichiometry of reactions it is atoms or moles that react not weight or grams 3. Why do chemical oceanographers prefer to use concentration units of moles /kg rather than moles/ltr? (5) Water is compressible (the amount of material in a liter of seawater is dependent on pressure and temperature). The mass of water in a liter varies with depth but a kg is always a kg. 4. Some elements in seawater are considered to be conservative. a) Propose a definition that would apply to conservative elements in seawater. (5) Conservative elements in seawater are those whose distributions are controlled by physical processes only (like mixing), and are not affected by chemical and biological processes. Also acceptable: elements that follow the law of conservative ratios. b) Which of the major elements in seawater are considered conservative? (5) Na +, K +, Cl -, SO4 2-, Br-, B(OH)3 (or B), and F - Approx. 1 point off for a missing or incorrect species. c) Molybdenum (Mo) is a trace element that has been proposed to be conservative in seawater. How would you design a study to show that this is true? (5) Collect seawater samples from a variety of locations and depths across a known salinity gradient. Measure concentrations of Mo in each sample and plot versus salinity, potential temperature or some other conservative property. If the points fall on a straight line, Mo could be considered conservative.

2 5. Methane is an important greenhouse gas. Global methane reservoirs and fluxes are shown below (from Bill Reeburgh; a) Is the concentration of atmospheric methane (CH 4 ) at steady state? (5) No. The sources and sinks of methane to the atmosphere are not in balance. Sources = 500 Tg CH 4 y -1 Sinks = 460 Tg CH 4 y -1 (There is a net increase of 40 Tg methane per year in the atmosphere.) b) How does the flux of CH 4 (as Pg C y -1 ) from the ocean to the atmosphere compare with that of CO 2 from Sarmiento and Gruber? (5) Total Methane flux from the ocean = 10 Tg CH4 y-1 (10 Tg CH4 y-1)(12 mass units C/16 mass units CH4) = 7.5 Tg C y-1 (0.001 Pg/1 Tg) = PgC per year Total pre-industrial flux of C in S&G is 70.6 Pg C y-1 The C from CH4 is 0.01% (100*( PgC y-1/70.6 PgC y-1)) of the total preindustrial C flux.

3 6. Trace Metal profiles Two part answers for each. a. What would be the general distribution characteristics of a trace metal influenced by: b. How would the profiles differ from the Atlantic to the Pacific influenced by: i) nutrient like (5) a. Concentrations are depleted in the surface and enriched in the deep ocean. (Concentrations are low in the euphotic zone where primary production of organic material consumes most available nutrients. Concentrations increase at depth as nutrients are remineralized.) b. Concentrations are greater in the Pacific (deep water has been out of contact with the surface ocean for a longer amount of time, allowing more time for nutrients to accumulate). ii) hydrothermal inputs (5) a. There would be a mid-depth concentration maximum (around approximately 2500m, or the depth of a nearby ocean ridge crest) b. Differences would not arise strictly due to basin differences or water age, but rather with proximity to hydrothermal vents. iii) scavenging by particles settling through the ocean water column (5) a. Concentrations are high in the surface (have a near surface maximum) and are depleted in the deep ocean. (Elements are adsorbed onto particles that sink through the water column.) b. Concentrations are greater in the Atlantic (deep water has had more time to be scavenged, and therefore concentrations are depleted as water ages).

4 7. A chemical oceanographer is sitting home on Saturday night and decides to entertain herself by making synthetic seawater with chemicals she has around the house (being a chemist, her available household chemicals are wide ranging). She wants to make a solution containing the six most abundant ions in close approximation to their natural seawater concentrations. Her plan is to weigh out the necessary chemicals into a laundry tub and then to add Seattle tap water (which is so dilute that it can be considered like distilled water) until the final weight of the solution is 1 kilogram. She had recently taken OCN400 thus her goal is to have the following ionic concentrations based on Slide 4 of the Lecture 2 pwerpoint: Ion mmol kg -1 (seawater solution) Na Mg Ca K + 10 Cl SO 4 28 She has the following chemicals at home. NaCl common spice (Morton Table Salt) MgSO 4 fertilizer, foot soaks (Epsom salts) CaCl 2 drying agent, preservative (Dri-Z-Air) HCl liquid, stolen from lab KOH lye Mg(OH) 2 laxative (Milk of Magnesia) a) How many grams of each chemical should she add to get the correct ionic concentrations (note: H + and OH - will end up balancing, making H + + OH - = H 2 O)? (15) First you need to find the molar mass of each of the salts. You can look this up for the compounds themselves, or add up atomic masses from a periodic table of the elements (e.g. for NaCl = (22.99 g/mol Na) + (35.45 g/mol Cl) = g/mol NaCl): NaCl(s) g/mol (or mg/mmol) MgSO4(s) g/mol CaCl2(s) g/mol KOH(s) g/mol Mg(OH)2 (s) g/mol HCl g/mol Now you want to find the mass of each of these compounds needed to make a solution with the given ion concentrations (mmol/kg). Start with the ions that are only in one of the salts: Na, Ca, K, SO4 (469 mmol Na+)(1 mol Na+/1000 mmol)(1mol NaCl/1 mol Na+)(58.44 mg NaCl/mmol) = mg NaCl = g NaCl

5 As a shortcut, we can use equivalent units of mg/mmol for each molecular weight, but the main unit conversion concepts remain: (10 mmol Ca 2+)(110.98mg CaCl2/mmol) = mg CaCl2 = 1.11 g CaCl2 (10 mmol K+)(56.10 mg KOH /mmol) = mg KOH = 0.56 g KOH (28 mmol SO42-)( mg MgSO4/mmol) = mg MgSO4= 3.37 g MgSO4 Next, you make up the difference in the remaining two ions by accounting for what has already been added with the other salts: Add: 53 mmol Mg2+ 28 mmol Mg2+ from MgSO4 = 25 mmol Mg2+ (25 mmol Mg2+)(58.32 mg Mg(OH)2/mmol) = 1458 mg = 1.46 g Mg(OH)2 Add: 546 mmol Cl- 469 mmol Cl- from NaCl 2(10 mmol Cl- from CaCl2) = 57mmol Cl- (57mmol Cl-)(36.46 mg HCl /mmol) = mg = 2.08 g HCl b) Assuming complete dissolution, what will be the molarity (mol/ltr) of each ionic species (use a density of g cm -3 for pure water at room temperature) (10) Total mass of solution = 1000 g Total mass of salts = 27.41gNaCl gCaCl gKOH gMgSO g Mg(OH) g HCl = g salt Mass of water = Mass of solution mass of salt = 1000 g solution g salt = g water Density of pure water = g cm-3 = g/ml g water(1 ml /0.993 g) (1 L/1000 ml) = L Molarity = mols of solute/l solution (469 mmol Na+)(1 mol Na+/1000 mmol)/ L = M (53 mmol Mg2+)(1 mol Mg2+/1000 mmol) )/ L = M (10 mmol Ca2+)(1 mol Ca2+/1000 mmol) )/ L = M (10 mmol K+)(1 mol K+/1000 mmol) )/ L = M (546 mmol Cl-)(1 mol Cl-/1000 mmol) )/ L = M (28 mmol SO42-)(1 mol SO42-/1000 mmol) )/ L = M Including water formed from H and OH is okay. You do end up with excess OH (slightly basic, like seawater) If you assumed that your solution was the same density of the DI water you added, -2 points.

Fall 2014 Due: 10:30 a.m., Tuesday, Sept 16

Fall 2014 Due: 10:30 a.m., Tuesday, Sept 16 GEOL330/634 Fall 2014 Due: 10:30 a.m., Tuesday, Sept 16 Problem Set #1 Key 1. What determines if an ion is a major ion in seawater? (5) Major ions are those that contribute to salinity. If salinity can

More information

Fall 2016 Due: 10:30 a.m., Tuesday, September 13

Fall 2016 Due: 10:30 a.m., Tuesday, September 13 Geol 330_634 Problem Set #1_Key Fall 2016 Due: 10:30 a.m., Tuesday, September 13 1. Why is the surface circulation in the central North Pacific dominated by a central gyre with clockwise circulation? (5)

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS TYPES OF CHEMICAL REACTIONS Precipitation Reactions Compounds Soluble Ionic Compounds 1. Group 1A cations and NH 4 + 2. Nitrates (NO 3 ) Acetates (CH 3 COO ) Chlorates (ClO 3 ) Perchlorates (ClO 4 ) Solubility

More information

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Example 4.1 Stoichiometry During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction: Suppose that a particular plant consumes 37.8 g of CO 2

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Quantitative aspects of chemical change. sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016

Quantitative aspects of chemical change. sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016 Quantitative aspects of chemical change sdfgsfgfgsgf Grade 10 Physical Science CAPS 2016 The mole concept The mole concept Atoms are small chemists know this. But somewhere along the line they have to

More information

Chapter. Measuring Concentration. Table of Contents

Chapter. Measuring Concentration. Table of Contents Measuring Concentration Table of Contents Introduction 1. Percent Concentration 2. Molarity 3. Preparation of a with a Desired Concentration Measuring Concentration Warm Up How do you classify solutions

More information

Review of Chemistry 11

Review of Chemistry 11 Review of Chemistry 11 HCl C 3 H 8 SO 2 NH 4 Cl KOH H 2 SO 4 H 2 O AgNO 3 PbSO 4 H 3 PO 4 Ca(OH) 2 Al(OH) 3 P 2 O 5 Ba(OH) 2 CH 3 COOH 1. Classify the above as ionic or covalent by making two lists. Describe

More information

Chapter 4. Chemical Quantities and Aqueous Reactions

Chapter 4. Chemical Quantities and Aqueous Reactions Lecture Presentation Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry: How Much Carbon Dioxide? The balanced chemical equations for fossilfuel combustion reactions provide the

More information

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole

Lecture 11 - Stoichiometry. Lecture 11 - Introduction. Lecture 11 - The Mole. Lecture 11 - The Mole. Lecture 11 - The Mole Chem 103, Section F0F Unit IV - Stoichiometry of Formulas and Equations Lecture 11 The concept of a mole, which is a very large group of atoms or molecules Determining the formulas for a compound Stoichiometry

More information

1 L = L = 434 ml

1 L = L = 434 ml CHEM 101A ARMSTRONG SOLUTIONS TO TOPIC B PROBLEMS 1) We do not need to calculate the original molarity of the solution; all we need is the number of moles of K + in 7.50 g of K 2 CO 3 : 7.50 g K 2 CO 3

More information

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3.

Lecture 6 - Determinants of Seawater Composition. Sets up electric dipole because O is more electronegative A o. Figure 3. 12.742 - Marine Chemistry Fall 2004 Lecture 6 - Determinants of Seawater Composition Prof. Scott Doney What is seawater? Water Dissolved inorganic salts (major ions) Trace species, organics, colloids,

More information

1.22 Concentration of Solutions

1.22 Concentration of Solutions 1.22 Concentration of Solutions A solution is a mixture formed when a solute dissolves in a solvent. In chemistry we most commonly use water as the solvent to form aqueous solutions. The solute can be

More information

Chapter 2 Overview. Chapter 2 Overview

Chapter 2 Overview. Chapter 2 Overview Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

Lecture 4 What Controls the Composition of Seawater

Lecture 4 What Controls the Composition of Seawater Lecture 4 What Controls the Composition of Seawater Seawater is salty! Why? What controls the composition of seawater? Do Chemical Equilibrium reactions control the composition of the Ocean? What is meant

More information

Concentration of Solutions

Concentration of Solutions CHAPTER 4 Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table compares these three ways

More information

chem 101 Lec 6b Winter 10 2/13/10 page 1 of 1 Chem 101 lecture 6b

chem 101 Lec 6b Winter 10 2/13/10 page 1 of 1 Chem 101 lecture 6b chem 101 Lec 6b Winter 10 2/13/10 page 1 of 1 Chem 101 lecture 6b Admin: Return tests last time: 0) Thermal analysis 1) liquid solutions 2) net ionic equations (review) 3) acids Today: 1) Bases 2) Lecture:

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

Chapter 9: Solutions

Chapter 9: Solutions 9.1 Mixtures and Solutions Chapter 9: Solutions Heterogeneous mixtures are those in which the mixing is not uniform and have regions of different composition. Homogeneous mixtures are those in which the

More information

4. Aqueous Solutions. Solution homogeneous mixture of two components

4. Aqueous Solutions. Solution homogeneous mixture of two components 4. Aqueous Solutions Solution homogeneous mixture of two components Many chemical reactions occur in solution Solutions in water called aqueous Definitions Solute component(s) in smaller amount 2 types:

More information

2 examples: Mg 2+ Rivers [Mg!! ]! (v r ) [Mg 2+ ] SW. **Answers with OR without vent effluent arrow are acceptable, since [Mg] in vent fluid is zero.

2 examples: Mg 2+ Rivers [Mg!! ]! (v r ) [Mg 2+ ] SW. **Answers with OR without vent effluent arrow are acceptable, since [Mg] in vent fluid is zero. OCN400 Winter 2015 PS2 - Key 1. You might think it is well known, but there is some debate about what controls the magnesium concentration in seawater. The main input is rivers (see Power Point Lecture

More information

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix?

Module 2: Solutions The Science of Mixing : Have you ever been in a wrong mix? PART 1 Name: All matter around us exists in a mixed state. Chemists look at the atomic level and try to explain why certain matters mix homogeneously (uniformly) and certain types of matters (or compounds)

More information

Solution Concentration

Solution Concentration Solution Concentration solution: homogeneous mixture of substances present as atoms, ions, and/or molecules solute: component present in smaller amount solvent: component present in greater amount Note:

More information

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units )

Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) Mole: base unit for an amount of substance A mole contains Avogadro s number (N A ) of particles (atoms, molecules, ions, formula units ) N A 6.0 10 mol -1 1 mol substance contains N A Molar mass (g/mol)

More information

Chapter 15. Solutions

Chapter 15. Solutions Chapter 15 Solutions Key Terms for this Chapter Make sure you know the meaning of these: Solution Solute Solvent Aqueous solution Solubility Saturated Unsaturated Supersaturated Concentrated Dilute 15-2

More information

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Types of Chemical Reactions and Solution Stoichiometry Chapter 6 Table of Contents (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7) (6.8) Water, the common solvent The nature of aqueous solutions: Strong

More information

I hope you aren't going to tear open the package and count the nails. We agree that. mass of nails = 1340 g g = g

I hope you aren't going to tear open the package and count the nails. We agree that. mass of nails = 1340 g g = g The Mole Concept Counting by weighing The size of molecule is so small that it is physically difficult if not impossible to directly count out molecules. this problem is solved using a common trick. Atoms

More information

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq)

Steward Fall 08. Moles of atoms/ions in a substance. Number of atoms/ions in a substance. MgCl 2(aq) + 2 AgNO 3(aq) 2 AgCl (s) + Mg(NO 3 ) 2(aq) Dealing with chemical stoichiometry Steward Fall 08 of Not including volumetric stoichiometry of Chapter 6.0x10 A 6.0x10 Mol/mol ratio from balanced equation B 6.0x10 6.0x10 s, Equations, and Moles: II

More information

For Practice 4.1 Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCl, according to the reaction:

For Practice 4.1 Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCl, according to the reaction: Stoichiometry For Practice 4.1 Magnesium hydroxide, the active ingredient in milk of magnesia, neutralizes stomach acid, primarily HCl, according to the reaction: What mass of HCl, in grams, is neutralized

More information

Solution. Types of Solutions. Concentration and Solution Stoichiometry

Solution. Types of Solutions. Concentration and Solution Stoichiometry Concentration and Solution Stoichiometry Solution homogenous mixture of 2 or more pure substances only one perceptible phase species do not react chemically Types of Solutions solid liquid gas Solutions

More information

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Chapter 4: Types of Chemical Reactions and Solution Stoichiometry Chapter 4: Types of Chemical Reactions and Solution Stoichiometry 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition of Solutions (MOLARITY!)

More information

Chapter 3 Stoichiometry

Chapter 3 Stoichiometry Chapter 3 Sep 22 1:45 PM Average atomic mass: The weighted average of all isotopes of a specific element. Takes into consideration abundance of each isotope. (% x M 1 ) + (% x M 2 ) +... Sep 22 1:45 PM

More information

Stoichiometry ( ) ( )

Stoichiometry ( ) ( ) Stoichiometry Outline 1. Molar Calculations 2. Limiting Reactants 3. Empirical and Molecular Formula Calculations Review 1. Molar Calculations ( ) ( ) ( ) 6.02 x 10 23 particles (atoms or molecules) /

More information

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent

Name Class Date. Symbol Meaning How to prepare Percentage % Moles solute per liter of solution. Moles solute per kilogram of solvent Skills Worksheet Problem Solving Concentration of Solutions There are three principal ways to express solution concentration in chemistry percentage by mass, molarity, and molality. The following table

More information

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Types of Chemical Reactions and Solution Stoichiometry Chapter 4 Table of Contents 4.1 Water, the Common Solvent 4.2 The Nature of Aqueous Solutions: Strong and Weak Electrolytes 4.3 The Composition

More information

Chapter 3: Chemical Reactions and the Earth s Composition

Chapter 3: Chemical Reactions and the Earth s Composition Chapter 3: Chemical Reactions and the Earth s Composition Problems: 3.1-3.3, 3.5, 3.11-3.86, 3.95-3.115, 3.119-3.120, 3.122, 3.125-3.128, 3.132, 3.134, 3.136-3.138-3.141 3.2 The Mole Stoichiometry (STOY-key-OM-e-tree):

More information

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g CHAPTER Practice Questions.1 1 Mg, O, H and Cl (on each side).. BaCl (aq) + Al (SO ) (aq) BaSO (s) + AlCl (aq).5 0.15 mol 106 g mol 1 = 1. g 15.0 g Fe O mol Fe 55.8 g mol Fe = 10.9 g 1 159.7 g mol FeO

More information

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry

Class XI Chapter 1 Some Basic Concepts of Chemistry Chemistry Question 1.1: Calculate the molecular mass of the following: (i) H 2 O (ii) CO 2 (iii) CH 4 (i) H 2 O: The molecular mass of water, H 2 O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen) = [2(1.0084)

More information

Lab 8 Dynamic Soil Systems I: Soil ph and Liming

Lab 8 Dynamic Soil Systems I: Soil ph and Liming Lab 8 Dynamic Soil Systems I: Soil ph and Liming Objectives: To measure soil ph and observe conditions which change ph To distinguish between active acidity (soil solution ph) and exchangeable acidity

More information

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent. Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 15 SOLUTIONS Day Plans for the day Assignment(s) for the day 1 Begin Chapter 15

More information

Salinity. foot = 0.305m yard = 0.91m. Length. Area m 2 square feet ~0.09m2. Volume m 3 US pint ~ 0.47 L fl. oz. ~0.02 L.

Salinity. foot = 0.305m yard = 0.91m. Length. Area m 2 square feet ~0.09m2. Volume m 3 US pint ~ 0.47 L fl. oz. ~0.02 L. Length m foot = 0.305m yard = 0.91m Area m 2 square feet ~0.09m2 Volume m 3 US pint ~ 0.47 L, L (liters) fl. oz. ~0.02 L Speed m/s mph Acceleration m/s 2 mph/s Weight kg, gram pound ~0.45kg Temperature

More information

Problem Set III Stoichiometry - Solutions

Problem Set III Stoichiometry - Solutions Chem 121 Problem set III Solutions - 1 Problem Set III Stoichiometry - Solutions 1. 2. 3. molecular mass of ethane = 2(12.011) + 6(1.008) = 30.07 g 4. molecular mass of aniline = 6(12.011) + 7(1.008) +

More information

Solutions. Heterogenous Mixture (Not a Solution) Ice Water (w/ Ice Cubes) Smog Oil and Water

Solutions. Heterogenous Mixture (Not a Solution) Ice Water (w/ Ice Cubes) Smog Oil and Water Solutions Unit 6 1 Solutions Homogenous Mixture (Solution) two or more substances mixed together to have a uniform composition, its components are not distinguishable from one another Heterogenous Mixture

More information

COLLIGATIVE PROPERTIES

COLLIGATIVE PROPERTIES COLLIGATIVE PROPERTIES Depend on the number of solute particles in solution but not on the identity of the solute Vapor pressure lowering Boiling point elevation Freezing point depression Osmotic pressure

More information

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop.

Limiting Reactants. In other words once the reactant that is present in the smallest amount is completely consumed the reaction will stop. In any type of chemical reaction, the amount of product that can be produced is determined by the reactant which is in the smallest amount. In any type of chemical reaction, the amount of product that

More information

Section EXAM II Total Points = 150. October 15, Each student is responsible for following directions. Read this page carefully.

Section EXAM II Total Points = 150. October 15, Each student is responsible for following directions. Read this page carefully. Name Chemistry 11100 Test 55 Section EXAM II Total Points = 150 TA Monday, 6:30 PM October 15, 2012 Directions: 1. Each student is responsible for following directions. Read this page carefully. 2. Write

More information

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual Ch 4 Chemical Reactions Ionic Theory of Solutions - Ionic substances produce freely moving ions when dissolved in water, and the ions carry electric current. (S. Arrhenius, 1884) - An electrolyte is a

More information

(4) Give an example of important reactions that are responsible for the composition of river water.

(4) Give an example of important reactions that are responsible for the composition of river water. Lecture 12 Global Biogeochemical Cycles (1) If rivers are the chief source of the dissolved salts in seawater, why is seawater not simply a concentrated version of average composition of all rivers? The

More information

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37

Ch 1-6 Working With Numbers; Scientific Notation pp Ch 1-5 to 1-6 Significant Figures pp 22-37 Ch 1-5 to 1-6 Significant Figures pp 22-37 Know how significant digits are found and used in calculations. Ch 1-6 Working With Numbers; Scientific Notation pp 30-32 Know how to use the calculator exponent

More information

Lecture 3 questions Temperature, Salinity, Density and Circulation

Lecture 3 questions Temperature, Salinity, Density and Circulation Lecture 3 questions Temperature, Salinity, Density and Circulation (1) These are profiles of mean ocean temperature with depth at various locations in the ocean which in the following (a, b, c) figures

More information

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g.

Lecture 5. Percent Composition. etc. Professor Hicks General Chemistry II (CHE132) Percent Composition. (aka percent by mass) 100 g. Lecture 5 Professor Hicks General Chemistry II (CHE132) Percent Composition (aka percent by mass) % by mass component 1 = mass component 1 mass sample 100% sample component 1 100 g sample component 1 component

More information

Salinity. See Appendix 1 of textbook x10 3 = See Appendix 1 of textbook

Salinity. See Appendix 1 of textbook x10 3 = See Appendix 1 of textbook Length Area Volume m m m foot = 0.305m yard = 0.91m square feet ~0.09m2 US pint ~ 0.47 L fl. oz. ~0.02 L Speed m/s mph Acceleration m/s mph/s Weight kg, gram pound ~0.45kg Temperature o o See Appendix

More information

Chapter 4 Chemical Quantities and Aqueous Reactions

Chapter 4 Chemical Quantities and Aqueous Reactions Chapter 4 Chemical Quantities and Aqueous Reactions Reaction Stoichiometry the numerical relationships between chemical amounts in a reaction is called stoichiometry the coefficients in a balanced chemical

More information

The following practice examination contains 38 questions. The actual examination will also contain 38 questions valued at 3 points/question.

The following practice examination contains 38 questions. The actual examination will also contain 38 questions valued at 3 points/question. Chem 121 Exam 3 Practice Winter 2018 The following practice examination contains 38 questions. The actual examination will also contain 38 questions valued at 3 points/question. Name: KEY G = H T S PV

More information

Solution Stoichiometry

Solution Stoichiometry Chapter 8 Solution Stoichiometry Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Chapter 4 Types of Chemical Reaction and Solution Stoichiometry Water, the Common Solvent One of the most important substances on Earth. Can dissolve many different substances. A polar molecule because

More information

SOLUTIONS. Engr. Yvonne Ligaya F. Musico

SOLUTIONS. Engr. Yvonne Ligaya F. Musico SOLUTIONS SOLUTION A homogeneous mixture of two or more substances, the relative proportion of which may vary within certain limits. COMPONENTS OF SOLUTION SOLUTE component which is in small quantity SOLVENT

More information

Composition stoichiometry the relative ratios of different elements within one particular compound or molecule

Composition stoichiometry the relative ratios of different elements within one particular compound or molecule Chapter 2: Composition stoichiometry the relative ratios of different elements within one particular compound or molecule : Reaction stoichiometry the relative ratios between different substances as they

More information

Practice Test Unit A Stoichiometry Name Per

Practice Test Unit A Stoichiometry Name Per Practice Test Unit A Stoichiometry Name Per This is practice - Do NOT cheat yourself of finding out what you are capable of doing. Be sure you follow the testing conditions outlined below. DO NOT USE A

More information

Chapter 2 Overview. Chapter 2 Overview

Chapter 2 Overview. Chapter 2 Overview Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information

The Water Molecule. Draw the Lewis structure. H O H. Covalent bonding. Bent shape

The Water Molecule. Draw the Lewis structure. H O H. Covalent bonding. Bent shape Water & Solutions 1 The Water Molecule Draw the Lewis structure. H O H Covalent bonding. Bent shape 2 Water What determines whether a molecule is polar? Is water a polar molecule? d- d+ d+ 1. Oxygen is

More information

Chapter 3. Molecules, Moles, and Chemical Equations

Chapter 3. Molecules, Moles, and Chemical Equations Chapter 3 Molecules, Moles, and Chemical Equations Law of Conservation of Matter Matter is neither created nor destroyed. In chemistry the number of atoms going into a chemical reaction must be the same

More information

Mass Relationships in Chemical Reactions

Mass Relationships in Chemical Reactions Mass Relationships in Chemical Reactions Chapter 3 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Micro World atoms & molecules Macro World grams Atomic mass

More information

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions

Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 12 Properties of Solutions Basic Concepts of Chemistry Notes for Students [Chapter 12, page 1] Chapter 12 Properties of Solutions Section 12 1: The Nature of Aqueous Solutions 1) Sec 12 1.1 Mixtures of Two Liquids When two liquids

More information

Concentration of Solutions

Concentration of Solutions Solutions We carry out many reactions in solutions Remember that in the liquid state molecules move much easier than in the solid, hence the mixing of reactants occurs faster Solute is the substance which

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 4.1 - The Mole Concept The Atomic Mass Unit You need to know the atomic mass unit and the relative atomic mass. In Unit C3.3, 1 atomic mass unit

More information

LISTA DE EXERCÍCIOS AULA 06/10/2016

LISTA DE EXERCÍCIOS AULA 06/10/2016 LISTA DE EXERCÍCIOS AULA 06/10/2016 1- Sodium hypochlorite, the active ingredient in Clorox, can be made by the following reaction: 2 NaOH(aq) + Cl 2 (g) NaCl(aq) + NaClO(aq) + H 2 O(l) If chlorine gas

More information

Chapter 5: The Water We Drink

Chapter 5: The Water We Drink Chapter 5: The Water We Drink Water 70% of the Earth s surface is covered by water The human body is 50-75% water The human brain is 75% water Blood is 83% water Lungs are 90% water Bones (!) are 22% water

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred: Temperature change Different coloured materials

More information

Formulas and Models 1

Formulas and Models 1 Formulas and Models 1 A molecular formula shows the exact number of atoms of each element in the smallest unit of a substance An empirical formula shows the simplest whole-number ratio of the atoms in

More information

Chapter 3. Mass Relationships in Chemical Reactions

Chapter 3. Mass Relationships in Chemical Reactions Chapter 3 Mass Relationships in Chemical Reactions In this chapter, Chemical structure and formulas in studying the mass relationships of atoms and molecules. To explain the composition of compounds and

More information

Properties of Solutions

Properties of Solutions Properties of Solutions Reading: Ch 11, section 8 Ch 12, sections 1-8 * = important homework question Homework: Chapter 11: 85*, 87 Chapter 12: 29, 33, 35, 41, 51*, 53, 55, 63*, 65, 67*, 69, 71, 75*, 79*,

More information

Solution Concentration. Solute Solvent Concentration Molarity Molality ph

Solution Concentration. Solute Solvent Concentration Molarity Molality ph Solution Concentration Solute Solvent Concentration Molarity Molality ph http://en.wikipedia.org/wiki/homogeneou Lets Review Mixture: A mixture is a chemical substance which is a homogeneous or heterogeneous

More information

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.)

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) Ocean 421 Your Name Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.) 1. Due to the water molecule's (H 2 O) great abundance in

More information

Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11)

Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11) C h e m i s t r y 1 A : C h a p t e r 3 P a r t B P a g e 1 Chapter 3: Molecules, Compounds and Chemical Equations: (continue and finish chapter 3: 8-11) Homework: Read Chapters 3. Work out sample/practice

More information

You may remove this page. ph + poh = 14. ph = -log[h+], [H+] = 10-pH qlost = -qgained

You may remove this page. ph + poh = 14. ph = -log[h+], [H+] = 10-pH qlost = -qgained You may remove this page. ph = -log[h+], [H+] = 10-pH 1 2 / ph + poh = 14 0.693 q = mc T q = nlr HLR qlost = -qgained JBA 2018 Chemistry Exam 3 Name: Score: /100 = /80 Multiple choice questions are worth

More information

2. Remember the honor system. No notes, books, stored information in calculators, or external help is allowed.

2. Remember the honor system. No notes, books, stored information in calculators, or external help is allowed. Chem 5 Test #1 Fall 2003 Name General instructions: 1. Don t panic! Write down what you know and what you need to figure out. Think about all relevant equalities. Make sure to keep track of units. Check

More information

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples:

Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds Examples: Ionic equations, calculations involving concentrations, stoichiometry MUDr. Jan Pláteník, PhD Molecule smallest particle of a substance having its chemical properties Atoms connected via covalent bonds

More information

CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY

CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY CHAPTER THREE CHEMICAL EQUATIONS & REACTION STOICHIOMETRY 1 Chapter Three Goals 1. Chemical Equations. Calculations Based on Chemical Equations. Percent Yields from Chemical Reactions 4. The Limiting Reactant

More information

CHEMISTRY Midterm #2 October 26, Pb(NO 3 ) 2 + Na 2 SO 4 PbSO 4 + 2NaNO 3

CHEMISTRY Midterm #2 October 26, Pb(NO 3 ) 2 + Na 2 SO 4 PbSO 4 + 2NaNO 3 CHEMISTRY 123-02 Midterm #2 October 26, 2004 The total number of points in this exam is 100. The total exam time is 50 min. Good luck! PART I: MULTIPLE CHOICE (Each multiple choice question has a 2-point

More information

LESSON ASSIGNMENT. After completing this lesson, you should be able to:

LESSON ASSIGNMENT. After completing this lesson, you should be able to: LESSON ASSIGNMENT LESSON 4 Equivalent Solutions. TEXT ASSIGNMENT Paragraphs 4-1 through 4-11. LESSON OBJECTIVE After completing this lesson, you should be able to: 4-1. Calculate the gram equivalent weight,

More information

10) On a solubility curve, the points on the curve indicate a solution. 11) Values on the graph a curve represent unsaturated solutions.

10) On a solubility curve, the points on the curve indicate a solution. 11) Values on the graph a curve represent unsaturated solutions. Unit 11 Solutions- Funsheets Part A: Solubility Curves- Answer the following questions using the solubility curve below. Include units! 1) What mass of each solute will dissolve in 100mL of water at the

More information

Equation Writing for a Neutralization Reaction

Equation Writing for a Neutralization Reaction Equation Writing for a Neutralization Reaction An Acid-Base reaction is also called a Neutralization reaction because the acid (generates H + or H 3 O + ) and base (generates OH ) properties of the reactants

More information

EPSS 15 Introduction to Oceanography Spring The Physical and Chemical Properties of Seawater

EPSS 15 Introduction to Oceanography Spring The Physical and Chemical Properties of Seawater EPSS 15 Introduction to Oceanography Spring 2017 The Physical and Chemical Properties of Seawater The focus of the Lab this week is seawater--its composition, physical and chemical properties. Seawater

More information

How many carbon atoms are in 1 mol of sucrose (C 12 H 22 O 11 )? A) 7.23 x B) 6.02 x C) 5.02 x D) 12 E) 342

How many carbon atoms are in 1 mol of sucrose (C 12 H 22 O 11 )? A) 7.23 x B) 6.02 x C) 5.02 x D) 12 E) 342 Question 1 How many carbon atoms are in 1 mol of sucrose (C 12 H 22 O 11 )? A) 7.23 x 10 24 B) 6.02 x 10 23 C) 5.02 x 10 22 D) 12 E) 342 3-1 Question 2 Calculate the mass % of hydrogen in ammonium bicarbonate.

More information

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5

Nanoscale pictures: Figs. 5.1, 5.4, and 5.5 Solutions and concentration Solution: a homogeneous mixture of two or more substances. Example: water, sugar, flavor mixture (Coke). The substances are physically combined, not chemically combined or bonded

More information

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 4 Homework Questions TEXTBOOK HOMEWORK Chapter 3 3.68 Calculate each of the following quantities: (a) Mass (g) of solute in 185.8 ml of 0.267 M calcium acetate (b) Molarity of 500. ml

More information

1) REACTIONs: a) Al4C3(s) + H2O (l)=> Al(OH)3 (s) + CH4 (g) Solution : Al4C3(s) + 12 H2O (l)=> 4Al(OH)3 (s) + 3CH4 (g)

1) REACTIONs: a) Al4C3(s) + H2O (l)=> Al(OH)3 (s) + CH4 (g) Solution : Al4C3(s) + 12 H2O (l)=> 4Al(OH)3 (s) + 3CH4 (g) 1) REACTIONs: a) Al4C3(s) + H2O (l)=> Al(OH)3 (s) + CH4 (g) Balance the reaction. Describe the chemical process represented by this reaction. Write the name of each single reactant and product. First,

More information

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3

5. Pb(IO 3) BaCO 3 8. (NH 4) 2SO 3 Chemistry 11 Solution Chemistry II Name: Date: Block: 1. Ions in Solutions 2. Solubility Table 3. Separating Ions Ions in Solutions Ionization Equation - Represents the salt breaking apart into ions. Practice:

More information

Basic Concepts of Chemistry and Chemical Calculations. The ratio of the average mass factor to one twelfth of the mass of an atom of carbon-12

Basic Concepts of Chemistry and Chemical Calculations. The ratio of the average mass factor to one twelfth of the mass of an atom of carbon-12 Basic Concepts of Chemistry and Chemical Calculations Relative Atomic mass: The relative atomic mass is defined as the ratio of the average atomic mass factor to the unified atomic mass unit. (Or) The

More information

JOHN BURKE HIGH SCHOOL

JOHN BURKE HIGH SCHOOL JOHN BURKE HIGH SCHOOL Chemistry 2202 Midterm Examination January, 2013 Instructions: Part I: Multiple Choice: Choose the best answer to each item. Place all answers on the Answer Sheet provided. 40 marks

More information

WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30

WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30 Electrolytes WEEK 10: 30 OCT THRU 05 NOV; LECTURES 28-30 Learning Objectives Know the difference between a molecular compound and an ionic compound Know the definition of electrolyte. Know the difference

More information

Ch 4-5 Practice Problems - KEY

Ch 4-5 Practice Problems - KEY Ch 4-5 Practice Problems - KEY The following problems are intended to provide you with additional practice in preparing for the exam. Questions come from the textbook, previous quizzes, previous exams,

More information

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file)

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Section 3.1: Solubility Rules (For Ionic Compounds in Water) Section 3.1.1: Introduction Solubility

More information

CHE105 SU17 Exam 2. Question #: 1. Question #: 2

CHE105 SU17 Exam 2. Question #: 1. Question #: 2 CHE105 SU17 Exam 2 Your Name: Your ID: Question #: 1 The percent yield of a reaction is 68.9%. What is the actual yield for this reaction, if the theoretical yield is 26.0 grams? Actual yield = 1 g Report

More information

SW Density = kg/l at 20 o C (Pilson 1998)

SW Density = kg/l at 20 o C (Pilson 1998) Composition of SW To Date We Have Covered: Descriptive Oceanography (Millero chapter 1) Special Properties of H 2 O (Millero chapter 4) Ion-Water & Ion-Ion Interactions (Millero chap 4) Continuing Coverage

More information

64 previous solution

64 previous solution 64 previous solution mole fraction (definition) 1 - Convert 29.6 grams sodium sulfate to moles. We already did this to find molality, so we can re-use the number. 2 - This is the total moles of both sodium

More information

CHEMISTRY 101 EXAM 1 FORM 1J

CHEMISTRY 101 EXAM 1 FORM 1J CHEMISTRY 101 EXAM 1 SECTIONS 540-550 Dr. Joy Heising FORM 1J September 26, 2003 Directions: 1. This examination consists of two parts: 17 multiple choice questions (4 points each) in Part 1 and 3 free

More information

Chapter 2 Overview. ! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules

Chapter 2 Overview. ! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules Chapter 2 Overview! all matter, whether liquid, solid, or gas,consists of atoms, which form molecules! the identity of an atom and its chemical behavior is strictly defined by the number of electrons in

More information