C. Mahidol, N. Chimnoi and D. Chokchaichamnankit S. Techasakul. Faculty of Science

Size: px
Start display at page:

Download "C. Mahidol, N. Chimnoi and D. Chokchaichamnankit S. Techasakul. Faculty of Science"

Transcription

1 Identification of Volatile Constituents in Artabotrys hexapetalus Flowers Using Simple Headspace Solvent-Trapping Technique in Combination with Gas Chromatography-Mass Spectrometry and Retention C. Mahidol, N. Chimnoi and D. Chokchaichamnankit S. Techasakul Chulabhorn Research Institute Department of Chemistry Bangkok Faculty of Science Thailand Kasetsart University Bangkok Thailand Keywords: esters, odor, solid-phase microextraction, hydrodistillation, solvent extraction Abstract The compositions of the volatiles from Artabotrys hexapetalus flowers were investigated. These volatiles were obtained by simple headspace-solvent trapping technique with dichloromethane as the trapping solvent. The investigation was performed in combination of gas chromatography-mass spectrometry (EI and PCI) and retention indices. Seventeen components were identified with ethyl acetate (47.3%), ethyl isobutanoate (9.2%), isobutyl acetate (26.8%) and ethyl butanoate (9.7%) as the major components. The extract was also compared with those obtained by solid-phase microextraction (SPME), solvent extraction and hydrodistillation. The odor of the solution from this technique was similar to that of the fresh flowers and differed from that obtained by solvent extraction and hydrodistillation. INTRODUCTION Artabotrys hexapetalus is widely distributed throughout the southern part of China and also in the southern part of Asia. In China, its roots and fruits are used for treating malaria and scrofula, respectively (Wong and Brown, 2002). The odor from flowers is sweet and fresh; however, in our knowledge, this is the first report to investigate the volatile components in this flower. The volatile components from this flower are released only in the morning (~5-8 a.m.) and in the evening (~6-8 p.m.); therefore, the on-site sampling and preconcentration method are required. The objective of this work was to develop the method for extraction and identification of the volatile components from this flower. MATERIALS AND METHODS Artabotrys hexapetalus flowers were sampled about 5-6 a.m. and extracted as soon as possible. In the simple headspace-solvent trapping technique, approximately 30 g of fresh flowers were placed in a 500 ml erlenmyer flask. Air was flushed through the flask inlet with the aid of an aquarium pump. Then the headspace vapor was passed through a round-bottom flask contained 20 ml of dichloromethane (J.T.Baker, USA) as shown in Fig. 1. The sampling peroid was 3 h. After that, the solution volume was reduced to 4 ml with the aid of rotary evaporator. In the hydrodistillation, approximately 100 g of fresh flowers were hydrodistilled for 4 h in a simple distillation apparatus. Then, the distillate was extracted with 200 x 3 ml of hexane (J.T.Baker, USA), dry over anhydrous sodium sulfate (Fluka, Switzerland) and concentrated to 4 ml with the aid of rotary evaporator. In the solvent extraction, approximately 10 g of fresh flowers were extracted with 50 ml of hexane (J.T.Baker, USA) for 30 min under ultrasonication and left at room temperature for 3 h. The extract was dried over anhydrous sodium sulfate (J.T.Baker, Switzerland) and concentrated to 1 ml with the aid of rotary evaporator. In solid-phase microextraction, approximately 18 g of fresh flowers were placed in the glass bottle with a rubber septum. The extraction was performed on 100 µm layer of Proc. WOCMAP III, Vol. 3: Perspectives in Natural Product Chemistry Eds. K.H.C. Başer, G. Franz, S. Cañigueral, F. Demirci, L.E. Craker and Z.E. Gardner Acta Hort. 677, ISHS

2 polydimethyl siloxane fiber (PDMS) (Supelco, USA) for 1 h. Then the fiber was desorbed in the GC injector at 220 C for 10 min. The identification was performed on the GC-MS system (Varian 3400GC, USA and ITS40 Mass spectrometer, Finnigan MAT, USA) with electron impact at 70 ev and positive chemical ionization (PCI) by using methane (>99.97%, AIRCO, USA) as the reagent gas. DB-5 (30 m x 0.25 mm I.D., 0.25 µm film thickness, J&W Scientific, USA) was used for separation. The injection volume was 0.5 µl in split mode (1:10). The temperature program was used as follows: the initial temperature was 35 C for 3 min, which was increased to 260 C at 4 C min -1 and held at this temperature for 10 min. The injector and transferline temperature was set at 220 C. Helium (99.999%, Praxair, Thailand) was used as the carrier gas with 15 psi. head pressure. The volatile components were analyzed by using both NIST Mass Spectral Search Program (National Institute of Standards and Technology, USA) and retention indices. The retention indices were calculated according to equation 1 (van den Dool and Kratz, 1963) I = 100Z + [(t R(x) t R(z) )/(t R(z+1) t R(z) )] x 100 (1) I = retention indices, t R = retention time, x = substance of interest and z, z+1 = n-alkanes with z and z+1 carbon atom emerging before and after substance x, respectively. RESULTS AND DISCUSSION The identification of the volatile components was performed by using both mass spectral library and retention indices (RI). Identification using mass spectral library alone is not always possible since some structural molecular fragment cannot be distinguished solely on the basis of MS data, for instance differences in the number or position of carbon skeleton branchings, isomeric systems, etc. Therefore, to increase the reliability of the analytical results, it is necessary to utilize both MS data and retention indices identities as the identification criteria (Shellie et al., 2002). To confirm the molecular weight of the components, positive chemical ionization (PCI) was performed. Four different extraction methods were chosen to extract the volatile components from Artabotrys hexapetalus flowers i.e. hydrodistillation, solvent extraction, solid-phase microextraction and simple headspace solvent-trapping technique. The compositions and relative amounts for each extraction method are reported in Table 1 while GC-MS chromatograms are shown in Fig. 2. Hydrodistillation and solvent extraction are common methods for extraction of volatile components from plants. In hydrodistillation, thirty one components were identified together with five unidentified ones. The major components were β- caryophyllene (10.1%), β-gurjunene (30.0%) and globulol (13.8%). In solvent extraction, thirty one components were identified together with two unidentified ones. The major components were 3-methylbutanol (5.7%), 2-methylbutanol (3.9%), ethyl butanoate (3.1%), isopentyl acetate (12.6%), 2-methylbutyl acetate (7.7%), limonene (5.7%), linalool (7.7%), benzeneethanol (5.3%) and two unidentified components (13.9%). Two alternative extraction methods, simple headspace solvent-trapping technique and SPME, were also performed, both methods based on headspace extraction. In the simple headspace solvent-trapping extraction technique, the headspace vapor of the fresh flowers was flushed with air and collected in dichloromethane. Seventeen components were identified with ethyl acetate (47.3%), ethyl isobutanoate (9.2%), isobutyl acetate (26.8%) and ethyl butanoate (9.7%) as the major components. In the SPME, the headspace vapor of the fresh flowers was absorbed on the viscous liquid, polydimethyl siloxane (PDMS) and directly injected into the GC-MS. Thirtynine components were identified together with three unidentified ones. Ethyl acetate (12.8%), ethyl isobutanoate (4.9%), isobutyl acetate (39.5%), ethyl 2-methyl butanoate (2.3%), ethyl isovalerate (11.3%), ethyl 3-methyl-2-butenoate (6.8%), isobutyl isovalerate (2.1%) and β- caryophyllene (5.4%) were found to be the major components. 44

3 Comparison of the identified components in the four extraction methods, we found that sesquiterpenes and sesquiterpenic alcohols were the major components in hydrodistillation. Alcohols, esters, monoterpenes, monoterpenic alcohols and aromatic alcohol were the major components in solvent extraction while esters were the major components in headspace solvent-trapping technique and SPME. The odor from two extraction methods, hydrodistillation and solvent extraction, were very green which different very much from that of the fresh flowers. It is likely that the enzymatic processes that were used for the odor formation and release were denatured by means of the high temperature in hydrodistillation and the organic solvent used in solvent extraction process. Therefore, the components which gave the significant odor could not be accumulated so the strong green odor was obtained instead together with the relative high boiling point components, sesquiterpenes and sesquiterpenic alcohols (Tava et al., 2000). In contrast, the headspace methods, the simple headspace solvent-trapping technique and SPME, were operated under the mild conditions, without using high temperature and organic solvent, which have less effect on the enzymatic processes. Therefore, the relative low boiling point components, esters, were obtained as the major components in both methods. In addition, the odor of the solution from the headspace solvent-trapping technique was similar to that of the fresh flowers. Although esters were obtained as the major components from the both methods, some difference in the relative amount of each component could be observed. This may be because the difference in the absorption selectivity between dichloromethane and PDMS fiber and/or the sampling time. CONCLUSIONS The use of simple headspace solvent-trapping technique in combination with GC- MS and retention indices allowed us to identify the compositions of the volatile components from Artabotrys hexapetalus flowers and the odor of the obtaining solution was similar to that of the fresh flowers. These results support the advantage of the headspace extraction, the compositions from this method is more representative because it is closer to that of the atmosphere around the flowers as mentioned in the previous works (Ishizaka et al., 2002; Tava et al., 2000). Furthermore, the simplicity and the use of just only few pieces of apparatus and small amount of organic solvent allow us to sampling on-sites easily. These are considered as the positive features supporting the choice of the simple headspace solventtrapping technique. Literature Cited Acree, T.E. June Adams, R.P Identification of Essential Oils by Ion Trap Mass Spectroscopy, Academic Press, San Diego. van Den Dool, H. and Kratz, P.D A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 11: Ishizaka, H., Yamada, H. and Sasaki, K Volatile compounds in the flowers of Cyclamen persicum, C. purpurascens and their hybrids. Ser. Hort. 94: Shellie, R., Mondello, L., Marriott, P. and Dugo, G Characterization of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J. Chromatogr. A 970: Tava, A., Pecetti, L., Povolo, M. and Contarini, G A Comparison between two systems of Volatile Sampling in Flowers of Alfalfa (Medicago sativa L.). Phytochem. Anal. 11: Wang, Y., Yao, X., Zhang, X., Zhang, R., Liu, M. Hu, Z. and Fan, B The prediction for gas chromatographic retention indices of saturated esters on stationary 45

4 phases of different polarity. Talanta 57: Wong, H. and Brown, G.D Beta-Methoxy-gamma-methylene-alpha,betaunsaturated-gamma-butyrolactones from Artabotrys hexapetalus. Phytochemistry 59(1): Xiangmin, Z. and Peichang, L Unified equation between kováts indices on different stationary phases for select types of compounds. J. Chromatogr. A 731:

5 Tables Table 1. Compositions of the volatile components from Artabotrys hexapetalus flowers. No. Components Retention (RI) References Retention (RI ref ) Hydro distillation Peak area of the GC-MS chromatogram (%) Solvent Simple headspace extraction solvent-trapping Solid-phase micro extraction (SPME) technique 1 Ethyl acetate Methyl isobutanoate ND Ethyl propanoate Propyl acetate Methyl butanoate Methyl butanol Methyl butanol Ethyl isobutanoate Isobutyl acetate Methyl isovalerate ND 11 Ethyl methacrylate Methylallyl acetate Ethyl butanoate Methyl 3-methyl-2-butenoate Ethyl 2-butenoate Ethyl 2-methyl butanoate Ethyl isovalerate Isobutyl propanoate Methyl 3-hydroxy methylbutanoate 20 Isopentyl acetate Methylbutyl acetate Isobutyl isobutanoate Ethyl 3-methyl-2-butenoate

6 No. Components Retention (RI) References Retention (RI ref ) Hydro distillation Peak area of the GC-MS chromatogram (%) Solvent Simple headspace Solid-phase extraction solvent-trapping micro extraction technique (SPME) 24 α-pinene Ethyl 3-hydroxybutanoate Ethyl 3-hydroxy methylbutanoate 27 Benzaldehyde Isobutyl butanoate Sabinene (5H)-Furanone,3-methyl β-myrcene Ethyl hexanoate Unidentified compound Isobutyl isovalerate Limonene ,8-Cineole E-Ocimene Methyl,2-butenoic acid,isopropyl ester 39 Linalool Benzeneethanol α-terpineol α-cubebene Unidentified compound α-copaene β-elemene Unidentified compound Unidentified compound

7 No. Componenrs Retention (RI) References retention indices (RI ref ) Hydro distillation Peak area of the GC-MS chromatogram (%) Solvent Simple headspace extraction solvent-trapping Solid-phase micro extraction (SPME) technique 48 α-gurjunene β-caryophyllene β-gurjunene Unidentified compound α-caryrophyllene Unidentified compound γ-muurolene α-curcumene Germacrene D Germacrene B Pentadecane α-muurolene γ-cadinene δ-cadinene Unidentified compound Unidentified compound Spathulenol Globulol Unidentified compound Cubenol Unidentified compound tau-muurolol δ-cadinol α-cadinol ND = not detect; 1 (Acree, 2002); 2 (Zhang and Lu, 1996); 3 (Adams, 1989); 4 Retention index was calculated according to the equation I = AI + BN + C (Zhang and Lu, 1996) on the basis of DB-1 retention index (Wang et al., 2002). 49

8 Figures Fig. 1. Schematic of the simple solvent-trapping device. Fig. 2. Typical GC-MS Total Ion Chromatogram of the volatile components from Artabotrys hexapetalus flowers. The numbers refer to those in Table 1. A, B, C and D are the chromatograms obtained from hydrodistillation, solvent extraction, simple headspace solvent-trapping technique and solid-phase microextraction, respectively. 50

Phytochemical Analysis of the Essential Oil from Aerial parts of Pulicaria undulata (L.) Kostel from Sudan

Phytochemical Analysis of the Essential Oil from Aerial parts of Pulicaria undulata (L.) Kostel from Sudan Ethnobotanical Leaflets 13: 467-71, 2009. Phytochemical Analysis of the Essential Oil from Aerial parts of Pulicaria undulata (L.) Kostel from Sudan Hatil Hashim EL-Kamali 1, Mohammed Omer Yousif 2, Osama

More information

CERTIFICATE OF ANALYSIS - GC PROFILING

CERTIFICATE OF ANALYSIS - GC PROFILING Date : March 07, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18B20-PLG28-1-CC Customer identification : Copaiba Type : Resin Source : officinalis Customer : Plant

More information

Gas Chromatography. A schematic diagram of a gas chromatograph

Gas Chromatography. A schematic diagram of a gas chromatograph Gas Chromatography In gas liquid chromatography (GLC) partition of solutes occurs between a mobile gas phase (the "carrier gas") and a stationary liquid phase present in the column. The gas-phase concentration

More information

GC/MS BATCH NUMBER: CB7102

GC/MS BATCH NUMBER: CB7102 GC/MS BATCH NUMBER: CB7102 ESSENTIAL OIL: COPAIBA OLEORESIN ORGANIC BOTANICAL NAME: COPAIFERA OFFICINALIS ORIGIN: BRAZIL KEY CONSTITUENTS PRESENT IN THIS BATCH OF COPAIBA OLEORESIN ORGANIC OIL % β-caryophyllene

More information

IJPRD, 2011; Vol 3(7): October 2011 (51-55) International Standard Serial Number

IJPRD, 2011; Vol 3(7): October 2011 (51-55) International Standard Serial Number IJPRD, 2011; Vol 3(7): October 2011 (51-55) International Standard Serial Number 0974 9446 ----------------------------------------------------------------------------------------------------------------------------------------------------------------

More information

Rapid Analysis of Food and Fragrances Using High-Efficiency Capillary GC Columns. Application. Authors. Abstract. Introduction

Rapid Analysis of Food and Fragrances Using High-Efficiency Capillary GC Columns. Application. Authors. Abstract. Introduction Rapid Analysis of Food and Fragrances Using High-Efficiency Capillary GC Columns Application Food, Flavors and Fragrances Authors Mark Sinnott and Simon Jones Agilent Technologies, Inc. 9 Blue Raving Road

More information

Case 1:13-cv WBH Document Filed 12/30/16 Page 406 of 519. Exhibit 53

Case 1:13-cv WBH Document Filed 12/30/16 Page 406 of 519. Exhibit 53 Case 1:13-cv-03675-WBH Document 108-7 Filed 12/30/16 Page 406 of 519 Exhibit 53 Case 1:13-cv-03675-WBH Document 108-7 Filed 12/30/16 Page 407 of 519 JOURNAL OF GUIZHOU INSTITUTE OF TECHNOLOGY Vol. 25,

More information

Discovering the Scent of Celery: HS-SPME, GC-TOFMS, and Retention Indices for the Characterization of Volatiles

Discovering the Scent of Celery: HS-SPME, GC-TOFMS, and Retention Indices for the Characterization of Volatiles Discovering the Scent of Celery: HS-SPME, GC-TOFMS, and Retention Indices for the Characterization of Volatiles LECO Corporation; Saint Joseph, Michigan USA Key Words: GC-TOFMS, GC-MS, Pegasus BT, HS-SPME,

More information

Determination of Volatile Substances Proof of Food Adulteration

Determination of Volatile Substances Proof of Food Adulteration ANALYSIS OF FOOD AND NATURAL PRODUCTS LABORATORY EXERCISE Determination of Volatile Substances Proof of Food Adulteration (method: gas chromatography with mass spectrometric detection) Exercise guarantor:

More information

Determination of releasable 2,4,6-trichloroanisole in wine by cork stoppers (Resolution OIV-Oeno 296/2009)

Determination of releasable 2,4,6-trichloroanisole in wine by cork stoppers (Resolution OIV-Oeno 296/2009) Method OIV-MA-AS315-16 Type IV method Determination of releasable in wine by cork stoppers (Resolution OIV-Oeno 296/2009) 1 SCOPE: The method of determination of releasable (TCA) by cork stoppers measures

More information

GC/MS BATCH NUMBER: T50100

GC/MS BATCH NUMBER: T50100 GC/MS BATCH NUMBER: T50100 ESSENTIAL OIL: TURMERIC BOTANICAL NAME: CURCUMA LONGA ORIGIN: INDIA KEY CONSTITUENTS PRESENT IN THIS BATCH OF TURMERIC OIL % Ar-TURMERONE 51.2 -TURMERONE 12.1 -TURMERONE 11.8

More information

Essential Oil composition from the aerial parts of Haplophyllum linifolium (L.) G. Don fil.

Essential Oil composition from the aerial parts of Haplophyllum linifolium (L.) G. Don fil. ISSN: 0214-4565 Essential Oil composition from the aerial parts of Haplophyllum linifolium (L.) G. Don fil. Ana IÑIGO, Jesús PALÁ-PAÚL, María José PÉREZ-ALONSO & Arturo VELASCO-NEGUERUELA Departamento

More information

UNIQUE SOLUTION FOR FLAVOUR AND FRAGRANCE IDENTIFICATION BY MEANS OF GC-MS (TOF) / CONDENSED PHASE FTIR

UNIQUE SOLUTION FOR FLAVOUR AND FRAGRANCE IDENTIFICATION BY MEANS OF GC-MS (TOF) / CONDENSED PHASE FTIR UNIQUE SOLUTION FOR FLAVOUR AND FRAGRANCE IDENTIFICATION BY MEANS OF GC-MS (TOF) / CONDENSED PHASE FTIR APPLICATION NOTE Authors: Margita Utczàs * William W. Carson ** Luigi Mondello * *Chromaleont *DANI

More information

10/27/10. Chapter 27. Injector typically 50 C hotter than oven

10/27/10. Chapter 27. Injector typically 50 C hotter than oven Sample and solvent are vaporized onto the head of a column Vaporized solvent and solute are carried through the column by an inert gas (mobile phase) The mobile phase does not interact with compounds of

More information

Gas Chromatography (GC)

Gas Chromatography (GC) Gas Chromatography (GC) Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11541 Saudi Arabia Office: AA53

More information

HIGH SPEED GC-TOFMS FOR ESSENTIAL OILS PROFILING IN ROUTINE QUALITY ASSESSMENT

HIGH SPEED GC-TOFMS FOR ESSENTIAL OILS PROFILING IN ROUTINE QUALITY ASSESSMENT HIGH SPEED GC-TOFMS FOR ESSENTIAL OILS PROFILING IN ROUTINE QUALITY ASSESSMENT APPLICATION NOTE Authors: Daniela Cavagnino DANI Instruments SpA viale Brianza, 87 Cologno Monzese Milano Italy Fast GC-TOFMS

More information

Enhanced odour profiling of strawberries using TD GC TOF MS

Enhanced odour profiling of strawberries using TD GC TOF MS Application Released: April 213 Application Note 515 Enhanced odour profiling of strawberries using TD GC TOF MS Summary This Application Note describes the application of a BenchTOF time-of-flight mass

More information

Headspace Technology for GC and GC/MS: Features, benefits & applications

Headspace Technology for GC and GC/MS: Features, benefits & applications Headspace Technology for GC and GC/MS: Features, benefits & applications Karima Baudin Oct 2015 Why use Headspace? Very Simple no to minimum sample prep Robust enhance uptime Non-detectable carry-over

More information

Separation and Characterization of Indian and Australian Sandalwood Oils

Separation and Characterization of Indian and Australian Sandalwood Oils APPLICATION BRIEF Gas Chromatography/ Mass Spectrometry Authors: David Scott PerkinElmer, Inc. Shelton, CT Separation and Characterization of Indian and Australian Sandalwood Oils Introduction Sandalwood

More information

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY

DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY DEHYDRATION OF ALCOHOLS-GAS CHROMATOGRAPHY OBJECTIVE In this lab, one will examine the phosphoric acid catalyzed dehydration of 2-methylcyclohexanol. Gas chromatography will be used to monitor the outcome

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

GC-MS Studies of the Plant Clematis Gouriana

GC-MS Studies of the Plant Clematis Gouriana GC-MS Studies of the Plant Clematis Gouriana J.Arul Hency Sheela Assistant professor of Chemistry, Bharath University, Chennai 600073, India ABSTRACT: The aim of the present study was to investigate the

More information

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco INTRODUCTION For this lab, students attempted to synthesize

More information

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester

4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NP 4023 Synthesis of cyclopentanone-2-carboxylic acid ethyl ester from adipic acid diethyl ester NaEt C 10 H 18 4 Na C 2 H 6 C 8 H 12 3 (202.2) (23.0) (46.1) (156.2) Classification Reaction types and substance

More information

Spectra Library Electron Capture Negative Ion (ECNI) Mass Spectra of Selected Polybrominated Diphenyl Ethers (PBDEs)

Spectra Library Electron Capture Negative Ion (ECNI) Mass Spectra of Selected Polybrominated Diphenyl Ethers (PBDEs) Spectra Library Electron Capture Negative Ion (ECNI) Mass Spectra of Selected Polybrominated Diphenyl Ethers (PBDEs) The following 63 mass spectra were measured by gas chromatography (GC) (6890N, Agilent

More information

Ch24. Gas Chromatography (GC)

Ch24. Gas Chromatography (GC) Ch24. Gas Chromatography (GC) 24.1 What did they eat in the year 1000? From 13 C content of cholesterol in ancient bone 13 C : 1.1%, 12 C: 98.9% 13 C/ 12 C ratio types of plants Bones of 50 people in Barton-on-Humber

More information

Experiments and Statistical Analysis of Supercritical Carbon Dioxide Extraction

Experiments and Statistical Analysis of Supercritical Carbon Dioxide Extraction FU-004 Chiang Mai J. Sci. 2008; 35(1) 109 Chiang Mai J. Sci. 2008; 35(1) : 109-115 www.science.cmu.ac.th/journal-science/josci.html Contributed Paper Experiments and Statistical Analysis of Supercritical

More information

The leaf essential oil of Abies grandis (Doug. ex D. Don) Lindl. (Pinaceae): revisited 38 years later

The leaf essential oil of Abies grandis (Doug. ex D. Don) Lindl. (Pinaceae): revisited 38 years later Phytologia (Jan 2, 2015) 97(1) 1 The leaf essential oil of Abies grandis (Doug. ex D. Don) Lindl. (Pinaceae): revisited 38 years later Robert P. Adams Biology Department, Baylor University, Box 97388,

More information

This document is a preview generated by EVS

This document is a preview generated by EVS INTERNATIONAL STANDARD ISO 25157 First edition 2013-04-15 Essential oil of rose, Chinese Kushui type (Rosa sertata Rosa rugosa) Huile essentielle de rose, type chinois Kushui (Rosa sertata Rosa rugosa)

More information

ADVANTAME (TENTATIVE)

ADVANTAME (TENTATIVE) ADVANTAME (TENTATIVE) SYNONYMS INS No. 969 New tentative specifications prepared at the 77th JECFA (2013) and published in FAO JECFA Monographs 14 (2013). An ADI of 0-5 mg/kg body weight was established

More information

Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodüki St., Lublin, Poland 2

Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, 1 Chodüki St., Lublin, Poland 2 Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 72 No. 3 pp. 507ñ515, 2015 ISSN 0001-6837 Polish Pharmaceutical Society EFFECTIVENESS OF THE DERYNG AND CLEVENGER-TYPE APPARATUS IN ISOLATION OF VARIOUS

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography

Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography 2003 The Japan Society for Analytical Chemistry 1365 Determination of Benzene, Toluene, Ethylbenzene and Xylene in River Water by Solid-Phase Extraction and Gas Chromatography Mohammad A. MOTTALEB,* Mohammad

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

GC-FTIR Analysis of Lemon Extract: Gram-Schmidt Chromatogram. Solvent Peak(2.20) H 3 C CH Air Peak(2.08)

GC-FTIR Analysis of Lemon Extract: Gram-Schmidt Chromatogram. Solvent Peak(2.20) H 3 C CH Air Peak(2.08) 4.20 Application Note #8 Complex Mixtures for Complex Tastes 0.13 GC-FTIR Analysis of Lemon Extract: Gram-Schmidt The Summary 0.12 0.11 0.10 3 C Solvent Peak(2.20) 3 C The demand for pure and natural flavorings

More information

Chiral characterization of monoterpenes present in the volatile fraction of Myrtus communis L. growing in Algeria

Chiral characterization of monoterpenes present in the volatile fraction of Myrtus communis L. growing in Algeria 2011 International Conference on Biology, Environment and Chemistry IPCBEE vol.24 (2011) (2011)IACSIT Press, Singapoore Chiral characterization of monoterpenes present in the volatile fraction of Myrtus

More information

α-thujone (6.0%) were the major components identified in the volatile oil of A.

α-thujone (6.0%) were the major components identified in the volatile oil of A. Iranian Journal of Pharmaceutical Sciences 2004:1(1): 33-37 Original Article Composition of the Volatile Oils of Three Different Species of Artemisia Mohammad Hassanzadeh Khayyat a, *, Hamid Karimi b a

More information

Boiling Point ( C) Boiling Point ( F)

Boiling Point ( C) Boiling Point ( F) Technical Data of Cannabinoids Solvents Chemical Formula FW (g/mol) Boiling Point ( C) Boiling Point ( F) Melting Point ( C) Density (g/ml) Solubility in Water (g/100 g) Flash Point ( C) Isopropyl alcohol

More information

AppNote 7/2003. Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances

AppNote 7/2003. Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances G L O B A L A N A L Y T I C A L S O L U T I O N S AppNote 7/2003 Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances Vanessa R. Kinton,

More information

DETERMINATION OF BIOACTIVE VOLATILE ORGANIC COMPONENTS OF LIPPIA CITRIODORA

DETERMINATION OF BIOACTIVE VOLATILE ORGANIC COMPONENTS OF LIPPIA CITRIODORA Digest Journal of Nanomaterials and Biostructures Vol. 6, No 1, January-March 2010, p. 319-323 DETERMINATION OF BIOACTIVE VOLATILE ORGANIC COMPONENTS OF LIPPIA CITRIODORA USING ULTRASONIC ASSISTED WITH

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Headspace Hanging Drop Liquid Phase Microextraction and GC-MS for the Determination of Linalool from Evening Primrose Flowers

Headspace Hanging Drop Liquid Phase Microextraction and GC-MS for the Determination of Linalool from Evening Primrose Flowers 1996 Bull. Korean Chem. Soc. 2005, Vol. 26, No. 12 Nam-Sun Kim et al. Headspace Hanging Drop Liquid Phase Microextraction and GC-MS for the Determination of Linalool from Evening Primrose Flowers Nam-Sun

More information

AppNote 4/2008. Automated Dynamic Headspace Sampling of Aqueous Samples Using Replaceable Adsorbent Traps KEYWORDS ABSTRACT

AppNote 4/2008. Automated Dynamic Headspace Sampling of Aqueous Samples Using Replaceable Adsorbent Traps KEYWORDS ABSTRACT AppNote 4/2008 Automated Dynamic Headspace Sampling of Aqueous Samples Using Replaceable Adsorbent Traps John R. Stuff, Jacqueline A. Whitecavage Gerstel, Inc., 701 Digital Drive, Suite J, Linthicum, MD

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J. A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones Jin-Quan Yu, a and E. J. Corey b * a Department of Chemistry, Cambridge University, Cambridge CB2 1EW, United

More information

Determination of Off-Odor Compounds in Drinking Water Using an SPME Device with Gas Chromatography and Mass Spectrometry

Determination of Off-Odor Compounds in Drinking Water Using an SPME Device with Gas Chromatography and Mass Spectrometry Application Note Environmental Determination of Off-Odor Compounds in Drinking Water Using an SPME Device with Gas Chromatography and Mass Spectrometry Authors Ye Kong and Zhe Cao Agilent Technologies,

More information

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. YC/T Translated English of Chinese Standard: YC/T

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. YC/T Translated English of Chinese Standard: YC/T Translated English of Chinese Standard: YC/T207-2006 www.chinesestandard.net Email: Sales@ChineseStandard.net ICS 65.160 X 85 Record Number: 19371-2007 Tobacco Industry Standard of the People s Republic

More information

Applying the Technology of the TurboMatrix 650 ATD to the Analysis of Liquid Accelerants in Arson Investigation

Applying the Technology of the TurboMatrix 650 ATD to the Analysis of Liquid Accelerants in Arson Investigation Applying the Technology of the TurboMatrix 650 ATD to the Analysis of Liquid Accelerants in Arson Investigation Introduction Fire investigation involves many different types of analyses from crime scene

More information

Detection of Chemical Warfare Agents by Transportable GC/MS

Detection of Chemical Warfare Agents by Transportable GC/MS Detection of Chemical Warfare Agents by Transportable GC/MS Application Note Gas Chromatography/Mass Spectrometry Author Robert V. Mustacich Agilent Technologies, Inc. 5301 Stevens Creek Boulevard Santa

More information

AppNote 7/2003. Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances KEYWORDS

AppNote 7/2003. Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances KEYWORDS AppNote 7/2003 Coupling Retention Time Locked Methods and Libraries to Automated SPME or SBSE for Analysis of Flavors and Fragrances Vanessa R. Kinton, Edward A. Pfannkoch, Jacqueline A. Whitecavage, John

More information

Effect of Column Length on Forecasted Retention Times and Carbon Numbers in an Isothermal and Temperature-programmed Gas Chromatography

Effect of Column Length on Forecasted Retention Times and Carbon Numbers in an Isothermal and Temperature-programmed Gas Chromatography ESEACH ATICLE ScienceAsia 25 (1999) : 173-177 Effect of Column Length on Forecasted etention Times and Carbon Numbers in an Isothermal and Temperature-programmed Gas Chromatography Suwimol Nilratnisakorn,

More information

GC/MS Application Note

GC/MS Application Note GC/MS Application Note Determination of Odor Compounds in Water by SPME Arrow Gas Chromatography/Mass Spectrometry www.palsystem.com Determination of Odor Compounds in Water by SPME Arrow Gas Chromatography/Mass

More information

H 3 CO H 3 CO S CH 3

H 3 CO H 3 CO S CH 3 FENITROTHION 35 H 3 CO P H 3 CO S O CH 3 NO 2 ISO common name Chemical name Fenitrothion O,O-Dimethyl O-4-nitro-m-tolyl phosphorothioate (IUPAC) O,O-Dimethyl O-(3-methyl-4-nitrophenyl)- phosphorothioate

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

Chemical Analysis Problem

Chemical Analysis Problem Chemical Analysis Problem Hair analysis is frequently used for the long-term monitoring of drug and alcohol users. You are working at a forensics laboratory and have been given the task of developing a

More information

2401 Gas (liquid) Chromatography

2401 Gas (liquid) Chromatography 2401 Gas (liquid) Chromatography Chromatography Scheme Gas chromatography - specifically gas-liquid chromatography - involves a sample being vaporized and injected onto the head of the chromatographic

More information

(a) Name the alcohol and catalyst which would be used to make X. (2)

(a) Name the alcohol and catalyst which would be used to make X. (2) 1 The chemical X is an ester with formula CH 3 COOC(CH 3 ) 3 which occurs in raspberries and pears. It can be prepared in the laboratory by refluxing ethanoic acid with an alcohol in the presence of a

More information

Method for the determination of dimethyl sulfate

Method for the determination of dimethyl sulfate German Social Accident Insurance Deutsche Gesetzliche Unfallversicherung Analytical Subcommittee of the Chemistry Board of Experts* Carcinogenic substances Order number: BGI 505-7-05 Established methods:

More information

SPE AND GC MS INVESTIGATION OF ORGANIC CONTAMINANTS IN ATMOSPHERIC PRECIPITATION

SPE AND GC MS INVESTIGATION OF ORGANIC CONTAMINANTS IN ATMOSPHERIC PRECIPITATION ACTA CHROMATOGRAPHICA, NO. 17, 2006 SPE AND GC MS INVESTIGATION OF ORGANIC CONTAMINANTS IN ATMOSPHERIC PRECIPITATION M. J. Fabiańska *, U. Skręt, and W. E. Krawczyk Department of Earth Science, University

More information

GC Instruments. GC Instruments - Sample Introduction

GC Instruments. GC Instruments - Sample Introduction GC Instruments 1 Fairly simple instrumentation Maintaining constant average pressure is important! Pressure controls flow rate T influences retention (k ) Flow rate monitoring Changing flow rate changes

More information

CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY

CHAPTER 8 ISOLATION AND CHARACTERIZATION OF PHYTOCONSTITUENTS BY COLUMN CHROMATOGRAPHY 146 CHAPTER 8 ISLATIN AND CHARACTERIZATIN F PHYTCNSTITUENTS BY CLUMN CHRMATGRAPHY 8.1 INTRDUCTIN Column chromatography is an isolation technique in which the phytoconstituents are being eluted by adsorption.

More information

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS

THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS International Gas Union Research Conference 14 THE NEW QUANTITATIVE ANALYTICAL METHOD FOR ULTRATRACE SULFUR COMPOUNDS IN NATURAL GAS Main author Hironori IMANISHI Tokyo Gas Co., Ltd. JAPAN himanishi@tokyo-.co.jp

More information

Characterisation of allergens in cosmetics by GC GC TOF MS with Select-eV variable-energy electron ionisation

Characterisation of allergens in cosmetics by GC GC TOF MS with Select-eV variable-energy electron ionisation Application Released: January 214 Application Note 522 Characterisation of allergens in cosmetics by GC GC TF MS with Select-eV variable-energy electron ionisation Summary This Application Note shows that

More information

CHEM 304 Experiment Prelab Coversheet

CHEM 304 Experiment Prelab Coversheet CHEM 304 Experiment Prelab Coversheet Name: Justin Arthur Student Date: 08/27/2014 Exp. #: JAS-11 Title: Isolation of Eugenol from the Steam Distillation of Cloves Purpose: To isolate eugenol from cloves

More information

EVALUATION OF A GC-MS METHOD FOR THE ANALYSIS OF OREGANO ESSENTIAL OIL COMPOSITION

EVALUATION OF A GC-MS METHOD FOR THE ANALYSIS OF OREGANO ESSENTIAL OIL COMPOSITION UDC 633.11 (497.11) Research paper EVALUATION OF A GC-MS METHOD FOR THE ANALYSIS OF OREGANO ESSENTIAL OIL COMPOSITION Ivan LJ. Milovanović 1, Aleksandra Č. Mišan 1, Marijana B. Sakač 1, Ivana S. Čabarkapa

More information

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION

AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION AN INTEGRATED SYSTEM USING TEMPERATURE BASED SAMPLING FOR POLYMER CHARACTERIZATION Paper # 164-8P Pittsburgh Conference 24 T. Wampler, C. Zawodny, L. Mancini CDS Analytical, Inc 465 Limestone Road, Oxford,

More information

GAS CHROMATOGRAPHY (GC)

GAS CHROMATOGRAPHY (GC) GAS CHROMATOGRAPHY (GC) Pre-Lab Questions Questions are to be answered before the beginning of the laboratory. The answers are due at the beginning of each experiment (the questions are for credit and

More information

Team members. Institutions

Team members. Institutions Team members Mirian Michereff Embrapa Maria C. Blassioli-Moraes Embrapa Haruna Braimah CSIR/Crops Research Institute Raúl A. Laumann Embrapa Christine Woodcock Rothamsted Research- UK Michael A. Birkett

More information

AppNote 15/2012. Large Volume Injection with Solvent Venting - Application to Trace Detection of Analytes in Water INTRODUCTION

AppNote 15/2012. Large Volume Injection with Solvent Venting - Application to Trace Detection of Analytes in Water INTRODUCTION AppNote 15/2012 Large Volume Injection with Solvent Venting - Application to Trace Detection of Analytes in Water A. Hoffmann, K. MacNamara Gerstel GmbH & Co. KG, Eberhard-Gerstel-Platz 1, D-45473 Mülheim

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

Analysis of Fast Moving Consumer Goods (FMCG) using GCMS with static and dynamic headspace (HS)

Analysis of Fast Moving Consumer Goods (FMCG) using GCMS with static and dynamic headspace (HS) PO-CON1789E Analysis of Fast Moving Consumer Goods (FMCG) using GCMS with static and dynamic headspace (HS) ASMS 2017 TP 280 Dheeraj Handique, Ankush Bhone, Durvesh Sawant, Prashant Hase, Sanket Chiplunkar,

More information

Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry

Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry Quantitative analysis of mitragynine in human urine by high performance liquid chromatography-tandem mass spectrometry Shijun Lua, Buu N. Trana, Jamie L. Nelsenb, Kenneth M. Aldousa. Journal of Chromatography

More information

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas

Product Brief. - Hydrocarbons alkanes, alkenes, alkynes, dienes including natural gas, refinery gas, liquified petroleum gas Agilent Porous Polymer PLOT Columns: New Products, Expanded Uses, Prices Cut in Half! Product Brief Need improved resolution of small volatile compounds? Didn't try a PLOT column due to high price, short

More information

U.S. EPA Method 8270 for multicomponent analyte determination

U.S. EPA Method 8270 for multicomponent analyte determination ENVIRONMENTAL application note U.S. EPA Method 8270 for multicomponent analyte determination Elaine A. LeMoine and Herman Hoberecht Introduction Multicomponent analytes are compounds that yield several

More information

637. Thiamethoxam. HPLC method

637. Thiamethoxam. HPLC method 637. Thiamethoxam HPLC method CIPAC Collaborative Trial according to CIPAC Information Sheet N o 293 Dr. Sven Adolph Syngenta Crop Protection Münchwilen AG CH-4333 Münchwilen Switzerland May 212 page 1

More information

Sensitive Detection of 2-MIB and Geosmin in Drinking Water

Sensitive Detection of 2-MIB and Geosmin in Drinking Water Sensitive Detection of -MIB and Geosmin in Drinking Water Application Note Environmental Author Yean-Woong You Agilent Technologies, Inc. Seoul, Korea Abstract An automated SPME extraction method for easy

More information

BRIEFING. Pharmacopeial Discussion Group Sign Off Document Attributes EP JP USP Definition Loss on drying Readily carbonizable substances

BRIEFING. Pharmacopeial Discussion Group Sign Off Document Attributes EP JP USP Definition Loss on drying Readily carbonizable substances BRIEFING Saccharin, NF 22 page 2825 and page 1711 of PF 29(5) [Sept. Oct. 2003]. The United States Pharmacopeia is the coordinating pharmacopeia for the international harmonization of the compendial standards

More information

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID

Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID Asian Journal of Chemistry Vol. 21, No. 3 (2009), 1739-1746 Simultaneous Estimation of Residual Solvents (Isopropyl Alcohol and Dichloromethane) in Dosage Form by GC-HS-FID PRAVEEN KUMAR BALIYAN*, R.P.

More information

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost Gas Chromatography Like other methods of chromatography, a partitioning of molecules must occur between the stationary phase and the mobile phases in order to achieve separation. This is the same equilibrium

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Dehydration of Alcohols-Gas Chromatography

Dehydration of Alcohols-Gas Chromatography Dehydration of Alcohols-Gas Chromatography OBJECTIVE In this lab, we will examine the phosphoric acid catalyzed dehydration of 2-methylcyclohexanol. Gas chromatography will be used to monitor the outcome

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Analysis of Sulfur-Containing Flavor Compounds By GC/MS With A PFPD

Analysis of Sulfur-Containing Flavor Compounds By GC/MS With A PFPD Analysis of Sulfur-Containing Flavor Compounds By GC/MS With A Application Note 19060203 Keywords Coffee Essential Oil Flavor Fragrance Gas Chromatograph (GC) Sulfur Compounds Abstract Sulfur compounds

More information

Headspace Solid Phase Microextraction/Gas Chromatography for Determination of Aldehydes

Headspace Solid Phase Microextraction/Gas Chromatography for Determination of Aldehydes Headspace Solid Phase Microextraction/Gas Chromatography for Determination of Aldehydes Winyu Chitsamphandhvej 1*, Panthira Ketkeaw 1, Praphatpong Nonsung 1 and Pichan Chiamchunkoop 1 ABSTRACT A headspace

More information

Analysis of Terpenes in Cannabis Using the Agilent 7697A/7890B/5977B Headspace GC-MSD System

Analysis of Terpenes in Cannabis Using the Agilent 7697A/7890B/5977B Headspace GC-MSD System Analysis of Terpenes in Cannabis Using the Agilent 7697A/789B/977B Headspace GC-MSD System Faster Analysis Time = Greater Productivity Application Note Cannabis, Food Authors Ronald Honnold, Robert Kubas,

More information

Journal of Chromatography A

Journal of Chromatography A Journal of Chromatography A, 1200 (2008) 34 42 Contents lists available at ScienceDirect Journal of Chromatography A journal homepage: www.elsevier.com/locate/chroma Comparative study of Eucalyptus dunnii

More information

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005 Gas Chromatography Chromatography Laboratory Course The laboratory course experiments General Aim: Gain general experience using a GC Constant Injection technique Temperature variations Qualitative and

More information

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol

Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol Experiment DE: Part II Fisher Esterification and Identification of an Unknown Alcohol Fisher Esterification of an Alcohol (Fraction A) On the Chem 113A website, under "Techniques" and "Videos" review the

More information

SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging

SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging SPME-GC-MS/MS for Identification and Quantification of Migration Contaminants in Paperboard Food Packaging Katerina Bousova, 1 Michal Godula, 2 Michele Suman 3 1 Thermo Fisher Scientific, Special Solutions

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

Analysis of Geosmin and 2-Methylisoborneol Utilizing the Stratum PTC and Aquatek 70

Analysis of Geosmin and 2-Methylisoborneol Utilizing the Stratum PTC and Aquatek 70 Analysis of Geosmin and 2-Methylisoborneol Utilizing the Stratum PTC and Aquatek 70 Application Note Abstract Geosmin and 2-Methylisoborneol are organic compounds that have a distinct scent. These compounds

More information

Solid-phase microextraction of hop volatiles Potential use for determination and verification of hop varieties q

Solid-phase microextraction of hop volatiles Potential use for determination and verification of hop varieties q Journal of Chromatography A, 918 (2001) 159 167 www.elsevier.com / locate / chroma Solid-phase microextraction of hop volatiles Potential use for determination and verification of hop varieties q a, *,

More information

GAS CHROMATOGRAPHY MASS SPECTROMETRY. Pre-Lab Questions

GAS CHROMATOGRAPHY MASS SPECTROMETRY. Pre-Lab Questions GAS CHROMATOGRAPHY MASS SPECTROMETRY Pre-Lab Questions Questions to be answered before doing the experiment. The answers are due at the beginning of each experiment without exception (the questions are

More information

Characterization of Volatiles in Different Dry Gins

Characterization of Volatiles in Different Dry Gins 10154 J. Agric. Food Chem. 2005, 53, 10154 10160 Characterization of Volatiles in Different Dry Gins STEFANIA VICHI,* MONTSERRAT RIU-AUMATELL, MERCEÅ MORA-PONS, SUSANA BUXADERAS, AND ELVIRA LOÄ PEZ-TAMAMES

More information

Analysis of Pressure Sensitive Adhesives by GC/MS and GC/AED with Temperature Programmable Pyrolyzer

Analysis of Pressure Sensitive Adhesives by GC/MS and GC/AED with Temperature Programmable Pyrolyzer 2000 The Japan Society for Analytical Chemistry 627 Analysis of Pressure Sensitive Adhesives by GC/MS and GC/AED with Temperature Programmable Pyrolyzer Sadao NAKAMURA,* Masahiko TAKINO,* and Shigeki DAISHIMA**

More information

AppNote 1/2007. Automated Dynamic Headspace Sampling using Replaceable Sorbent Traps KEYWORDS ABSTRACT

AppNote 1/2007. Automated Dynamic Headspace Sampling using Replaceable Sorbent Traps KEYWORDS ABSTRACT AppNote 1/2007 Automated Dynamic Headspace Sampling using Replaceable Sorbent Traps Carlos Gil, Oliver Lerch Gerstel GmbH & Co. KG, Eberhard-Gerstel-Platz 1, D-45473 Mülheim an der Ruhr, Germany Jackie

More information

Hye-Jin Jang, Hyun-Hwa Son, and Dong-Sun Lee *

Hye-Jin Jang, Hyun-Hwa Son, and Dong-Sun Lee * Optimization of Monolithic Material Sorptive Extraction Bull. Korean Chem. Soc. 2011, Vol. 32, No. 12 4275 http://dx.doi.org/10.5012/bkcs.2011.32.12.4275 Optimization of Disk Sorptive Extraction Based

More information

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES

TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview +8 OPERATIONAL MODES MAIN FEATURES ROBOKROM 1 TOTALLY INNOVATIVE MULTIMODE AUTOSAMPLER NEW KONIK ROBOKROM Laboratory Gas Generators An Overview ROBOKROM 2 +8 OPERATIONAL MODES HRGC+HRGC-MS HRGC+HPLC-MS STATIC HEAD SPACE PURGE & TRAP SMPE

More information

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench

Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Automated Sample Preparation of Headspace Standards Using the Agilent 7696 WorkBench Application Note Forensic Toxicology and Drug Testing Author Jared Bushey Agilent Technologies, Inc. 285 Centerville

More information