Correlating Transport and Structural Properties in Li1+xAlxGe2 x(po4)3 (LAGP) Prepared from Aqueous Solution

Size: px
Start display at page:

Download "Correlating Transport and Structural Properties in Li1+xAlxGe2 x(po4)3 (LAGP) Prepared from Aqueous Solution"

Transcription

1 Supporting Information for Correlating Transport and Structural Properties in Li1+xAlxGe2 x(po4)3 (LAGP) Prepared from Aqueous Solution Manuel Weiss a, Dominik A. Weber a, Anatoliy Senyshyn b, Jürgen Janek a* and Wolfgang G. Zeier a* a Physikalisch-Chemisches Institut & Zentrum ür Materialforschung (ZfM/LaMa), Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 17, Gießen, Germany b Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, Garching, Germany *Corresponding authors: juergen.janek@phys.chemie.uni-giessen.de wolfgang.g.zeier@phys.chemie.uni-giessen.de S-1

2 Structural data for LAGP Representative refinements of laboratory X-ray diffraction data Figure S1: Laboratory X-ray diffraction data (open circles) and results of the Rietveld refinement (black line) for two different LAGP samples. The violet line depicts the profile difference. Vertical ticks mark the calculated Bragg positions of LAGP and some side phases: (a) Nominal composition Li 1.3Al 0.3Ge 1.7(PO 4) 3 (x = 0.3), sintered at 800 C Refined mass fractions: 98.6(7) % Li 1.28Al 0.28Ge 1.72(PO 4) 3, 1.43(4) % GeO 2; goodness of fit S = 1.60, R p = 4.11, R wp = 5.34, R exp = 3.34; (b) nominal composition Li 1.7Al 0.7Ge 1.3(PO 4) 3 (x = 0.7), sintered at 750 C Refined mass fractions: 69.2(6) % Li 1.48Al 0.48Ge 1.52(PO 4) 3, 6.36(6) % GeO 2, 0.8(1) % Li 4P 2O 7, 23.7(2) % Li 9Al 3P 8O 29; goodness of fit S = 1.68, R p = 4.23, R wp = 5.61, R exp = S-2

3 Synchrotron measurements The structural parameters for LAGP samples with different nominal compositions as obtained from refinements with space group R3 c of synchrotron data are listed in Tables S1 S16. The first table for each sample contains the atomic positions, isotropic atomic displacement parameters and occupancies. Atomic displacement parameters given as 0 Å 2 were refined anisotropically and are shown in the second table for each sample. Table S1: Structural parameters from the refinement of synchrotron data of a sample with nominal composition LiGe 2(PO 4) 3. Obtained lattice parameters: a = (0) Å, c = (1) Å. Refined mass fractions: % LAGP, 0.62 % GeO 2 (P4 2/mnm), 4.43 % GeO 2 (P3 121). Goodness of fit S = 1.87, R p = 6.43 %, R wp = 8.52 %, R exp = 4.56 %. P1 18e (5) O1 36f (10) (12) (3) O2 36f (9) (9) (3) Li1 6b Ge1 12c (0) Table S2: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition LiGe 2(PO 4) 3. P (7) (8) (1) (4) (1) (3) O (2) 0.004(2) (2) (2) (5) (5) O (2) (2) (2) (13) (5) (5) Ge (3) (3) (0) (2) S-3

4 Table S3: Structural parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.2Al 0.2Ge 1.8(PO 4) 3. Obtained lattice parameters: a = (2) Å, c = (6) Å. Refined mass fractions: 99.0(4) % LAGP, 1.03(2) % GeO 2. Goodness of fit S = 2.81, R p = 9.47 %, R wp = 12.5 %, R exp = 4.46 %. P1 18e (9) O1 36f (2) (2) (6) O2 36f (2) (2) (7) Li1 6b Ge1 12c (1) (0) Al1 12c (1) (0) Li2 36f (0) Table S4: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.2Al 0.2Ge 1.8(PO 4) 3. P (2) (2) (2) (8) (2) (5) O (4) (4) (4) (3) (9) (10) O (3) (3) (4) (3) (9) (10) Ge (6) (6) (1) (3) Al (6) (6) (1) (3) Table S5: Structural parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.3Al 0.3Ge 1.7(PO 4) 3. Obtained lattice parameters: a = (1) Å, c = (5) Å. Refined mass fractions: 98.3(3) % LAGP, 1.73(2) % GeO 2. Goodness of fit S = 1.64, R p = 5.37 %, R wp = 7.05 %, R exp = 4.29 %. P1 18e (5) O1 36f (10) (12) (4) O2 36f (9) (9) (4) Li1 6b Ge1 12c (1) (0) Al1 12c (1) (0) Li2 36f (0) S-4

5 Table S6: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.3Al 0.3Ge 1.7(PO 4) 3. P (9) (10) (1) (5) (1) (3) O (2) (2) (3) (2) 0.001(6) (6) O (2) (2) (3) (2) (5) (6) Ge (4) (4) (1) (2) Al (4) (4) (1) (2) Table S7: Structural parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.4Al 0.4Ge 1.6(PO 4) 3. Obtained lattice parameters: a = (1) Å, c = (4) Å. Refined mass fractions: 99.6(2) % LAGP, 0.31(1) % GeO 2, 0.11(1) % AlPO 4. Goodness of fit S = 1.73, R p = 4.96 %, R wp = 6.95 %, R exp = 4.01 %. P1 18e (4) O1 36f (9) (11) (3) O2 36f (8) (9) (3) Li1 6b (0) Ge1 12c (1) (0) Al1 12c (1) (0) Li2 36f (0) Table S8: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.4Al 0.4Ge 1.6(PO 4) 3. P (8) (9) (1) (4) (1) (2) O (2) (2) (2) (2) (5) (6) O (2) (2) (2) (2) (5) (5) Ge (4) (4) (0) (2) Al (4) (4) (0) (2) S-5

6 Table S9: Structural parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.5Al 0.5Ge 1.5(PO 4) 3. Obtained lattice parameters: a = (1) Å, c = (4) Å. Refined mass fractions: 97.3(3) % LAGP, 2.67(2) % GeO 2. Goodness of fit S = 1.77, R p = 5.86 %, R wp = 8.07 %, R exp = 4.55 %. P1 18e (5) O1 36f (11) (14) (4) O2 36f (10) (11) (4) Li1 6b Ge1 12c (1) (0) Al1 12c (1) (0) Li2 36f (0) Table S10: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.5Al 0.5Ge 1.5(PO 4) 3. P (10) (10) (1) (5) (1) (3) O (3) (3) (3) (2) (6) (7) O (2) (2) (3) (18) (6) (7) Ge (5) (5) (1) (2) Al (5) (5) (1) (2) Table S11: Structural parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.6Al 0.6Ge 1.4(PO 4) 3. Obtained lattice parameters: a = (1) Å, c = (3) Å. Refined mass fractions: 92.0(3) % LAGP, 5.37(6) % Li 9Al 3(P 2O 7) 3(PO 4) 2, 2.01(2) % GeO 2, 0.62(2) % AlPO 4. Goodness of fit S = 2.45, R p = 6.16 %, R wp = 8.72 %, R exp = 3.56 %. P1 18e (5) O1 36f (11) (14) (4) O2 36f (10) (11) (4) Li1 6b Ge1 12c (1) (0) Al1 12c (1) (0) Li2 36f (0) S-6

7 Table S12: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.6Al 0.6Ge 1.4(PO 4) 3. P (9) (10) (1) (5) (1) (3) O (3) 0.013(3) (3) (2) (6) (7) O (2) (2) (3) (2) (6) (7) Ge (5) (5) (1) (2) Al (5) (5) (1) (2) Table S13: Structural parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.7Al 0.7Ge 1.3(PO 4) 3. Obtained lattice parameters: a = (1) Å, c = (4) Å. Refined mass fractions: 81.9(3) % LAGP, 12.83(8) % Li 9Al 3(P 2O 7) 3(PO 4) 2, 2.34(2) % GeO 2, 1.65(2) % AlPO 4 (C222 1), 1.27(3) % AlPO 4 (P112 1). Goodness of fit S = 2.02, R p = 6.14 %, R wp = 8.37 %, R exp = 4.14 %. P1 18e (5) O1 36f (12) (2) (5) O2 36f (11) (12) (5) Li1 6b Ge1 12c (1) (0) Al1 12c (1) (0) Li2 36f (0) Table S14: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.7Al 0.7Ge 1.3(PO 4) 3. P (10) (11) (1) (5) (2) (3) O (3) (3) (3) 0.007(2) (7) (8) O (2) (3) (3) (2) (7) (7) Ge (5) (5) (1) (3) Al (5) (5) (1) (3) S-7

8 Table S15: Structural parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.8Al 0.8Ge 1.2(PO 4) 3. Obtained lattice parameters: a = (2) Å, c = (7) Å. Refined mass fractions: 68.0(4) % LAGP, 20.5(1) % Li 9Al 3(P 2O 7) 3(PO 4) 2, 5.84(3) % GeO 2, 5.63(6) % AlPO 4. Goodness of fit S = 2.64, R p = 9.83 %, R wp = 13.0 %, R exp = 4.95 %. P1 18e (11) O1 36f (2) (3) (9) O2 36f (2) (2) (9) Li1 6b Ge1 12c (2) (3) Al1 12c (2) (3) Li2 36f (1) Table S16: Anisotropic atomic displacement parameters from the refinement of synchrotron data of a sample with nominal composition Li 1.8Al 0.8Ge 1.2(PO 4) 3. P (2) (2) (3) (10) (3) (6) O (5) (6) (7) (5) (13) (2) O (4) (5) (6) (4) (13) (13) Ge (10) (10) (1) (5) Al (10) (10) (1) (5) Neutron measurements The structural parameters for LAGP samples with different nominal compositions as obtained from refinements with space group R3 c of neutron data are listed in Tables S17 S32. The first table for each sample contains the atomic positions, isotropic atomic displacement parameters and occupancies. Atomic displacement parameters given as 0 Å 2 were refined anisotropically and are shown in the second table for each sample. S-8

9 Table S17: Structural parameters from the refinement of neutron data of a sample with nominal composition LiGe 2(PO 4) 3. Obtained lattice parameters: a = (4) Å, c = (2) Å. Refined mass fractions: 95.1(3) % LAGP, 1.9(2) % GeO 2, 3.0(2) % Li 4P 2O 7. Goodness of fit S = 2.65, R p = 3.00 %, R wp = 3.56 %, R exp = 1.34 %. P1 18e (14) O1 36f (12) (12) (4) O2 36f (10) (10) (4) Li1 6b (14) 1.0 Ge1 12c (4) Table S18: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition LiGe 2(PO 4) 3. P (5) (6) (5) (3) (2) (4) O (5) (5) (4) (4) (4) (3) O (4) (4) (4) (3) (4) (4) Ge (3) 0.019(3) (4) (13) Table S19: Structural parameters from the refinement of neutron data of a sample with nominal composition Li 1.2Al 0.2Ge 1.8(PO 4) 3. Obtained lattice parameters: a = (1) Å, c = (5) Å. Refined mass fractions: 96.8(4) % LAGP, 2.0(3) % GeO 2, 1.3(3) % Li 4P 2O 7. Goodness of fit S = 3.17, R p = 4.03 %, R wp = 5.16 %, R exp = 1.63 %. P1 18e (2) O1 36f (2) (2) (7) O2 36f (2) (2) (8) Li1 6b (3) 0.76(3) Ge1 12c (8) (10) Al1 12c (8) (10) Li2 36f 0.001(8) 0.270(7) 0.062(2) 0.5(3) 0.080(6) S-9

10 Table S20: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition Li 1.2Al 0.2Ge 1.8(PO 4) 3. P (9) (12) 0.008(1) (6) (4) (8) O (1) (9) (9) (8) (7) (7) O (8) (9) (8) (7) (7) (7) Ge (8) (8) (8) (4) Al (8) (8) (8) (4) Table S21: Structural parameters from the refinement of neutron data of a sample with nominal composition Li 1.3Al 0.3Ge 1.7(PO 4) 3. Obtained lattice parameters: a = (8) Å, c = (4) Å. Refined mass fractions: 97.6(3) % LAGP, 2.4(3) % Li 4P 2O 7. Goodness of fit S = 3.13, R p = 3.80 %, R wp = 4.73 %, R exp = 1.47 %. P1 18e (2) O1 36f (2) (2) (6) O2 36f (2) (2) (7) Li1 6b (3) 0.73(3) Ge1 12c (7) (1) Al1 12c (7) (1) Li2 36f 0.004(7) 0.273(6) 0.062(2) 0.8(3) 0.084(5) Table S22: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition Li 1.3Al 0.3Ge 1.7(PO 4) 3. P (7) (10) (9) (5) (4) (8) O (8) (8) (8) (7) (6) (6) O (7) (8) (7) (6) (6) (6) Ge (6) (6) (7) (3) Al (6) (6) (7) (3) S-10

11 Table S23: Structural parameters from the refinement of neutron data of a sample with nominal composition Li 1.4Al 0.4Ge 1.6(PO 4) 3. Obtained lattice parameters: a = (9) Å, c = (5) Å. Refined mass fractions: 98.5(3) % LAGP, 1.5(3) % Li 4P 2O 7. Goodness of fit S = 4.17, R p = 4.61 %, R wp = 5.95 %, R exp = 1.43 %. P1 18e (2) O1 36f (2) (2) (7) O2 36f (2) (2) (8) Li1 6b (3) 0.65(3) Ge1 12c (9) (1) Al1 12c (9) (1) Li2 36f 0.009(7) 0.232(5) 0.060(2) 1.6(3) 0.124(6) Table S24: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition Li 1.4Al 0.4Ge 1.6(PO 4) 3. P (8) (12) 0.011(1) (6) (4) (8) O (9) (10) 0.019(9) (8) (7) (7) O (8) (10) (8) (7) (7) (7) Ge (8) (8) (9) (4) Al (8) (8) (9) (4) Table S25: Structural parameters from the refinement of neutron data of a sample with nominal composition Li 1.5Al 0.5Ge 1.5(PO 4) 3. Obtained lattice parameters: a = (9) Å, c = (4) Å. Refined mass fractions: 95.4(4) % LAGP, 1.3(3) % GeO 2, 3.2(3) % Li 4P 2O 7. Goodness of fit S = 3.68, R p = 4.37 %, R wp = 5.78 %, R exp = 1.57 %. P1 18e (2) O1 36f (2) (2) (8) O2 36f (2) (2) (8) Li1 6b (3) Ge1 12c (9) (1) Al1 12c (9) (1) Li2 36f 0.012(7) 0.227(5) 0.057(2) (6) S-11

12 Table S26: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition Li 1.5Al 0.5Ge 1.5(PO 4) 3 P (8) (12) 0.012(1) (6) (4) (8) O (10) (10) (10) (8) (7) (8) O (9) (10) (8) (7) (7) (7) Ge (8) (8) (10) (4) Al (8) (8) (10) (4) Table S27: Structural parameters from the refinement of neutron data of a sample with nominal composition Li 1.6Al 0.6Ge 1.4(PO 4) 3. Obtained lattice parameters: a = (10) Å, c = (5) Å. Refined mass fractions: 86.6(6) % LAGP, 7.3(4) % Li 9Al 3(P 2O 7) 3(PO 4) 2, 2.5(3) % GeO 2, 3.6(3) % Li 4P 2O 7. Goodness of fit S = 4.36, R p = 4.75 %, R wp = 6.27 %, R exp = 1.44 %. P1 18e (2) O1 36f (2) (3) (9) O2 36f (2) (3) (9) Li1 6b (4) 0.50(3) Ge1 12c (11) (1) Al1 12c (11) (1) Li2 36f 0.014(6) 0.226(5) 0.058(2) 1.7(4) 0.163(7) Table S28: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition Li 1.6Al 0.6Ge 1.4(PO 4) 3. P (10) (14) (12) (7) (5) (10) O (12) (12) (12) (10) (9) (9) O (10) (12) (10) (9) (9) (8) Ge (9) (9) (12) (4) Al (9) (9) (12) (4) S-12

13 Table S29: Structural parameters from the refinement of neutron data of a sample with nominal composition Li 1.7Al 0.7Ge 1.3(PO 4) 3. Obtained lattice parameters: a = (11) Å, c = (5) Å. Refined mass fractions: 80.1(5) % LAGP, 13.1(4) % Li 9Al 3(P 2O 7) 3(PO 4) 2, 3.5(3) % GeO 2, 3.2(3) % Li 4P 2O 7. Goodness of fit S = 3.87, R p = 4.58 %, R wp = 5.92 %, R exp = 1.53 %. P1 18e (3) O1 36f (3) (3) (9) O2 36f (3) (3) (9) Li1 6b (4) 0.48(3) Ge1 12c (12) (1) Al1 12c (12) (1) Li2 36f 0.016(6) 0.228(5) 0.057(2) 1.2(4) 0.165(7) Table S30: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition Li 1.7Al 0.7Ge 1.3(PO 4) 3. P (10) (14) (14) (7) (5) (10) O (13) (13) (13) (11) (9) (9) O (11) (13) (11) (9) (9) (9) Ge (9) (9) (14) (5) Al (9) (9) (14) (5) Table S31: Structural parameters from the refinement of neutron data of a sample with nominal composition Li 1.8Al 0.8Ge 1.2(PO 4) 3. Obtained lattice parameters: a = (13) Å, c = (6) Å. Refined mass fractions: 72.0(6) % LAGP, 19.5(4) % Li 9Al 3(P 2O 7) 3(PO 4) 2, 4.8(3) % GeO 2, 3.7(4) % Li 4P 2O 7. Goodness of fit S = 3.72, R p = 4.78 %, R wp = 5.89 %, R exp = 1.58 %. P1 18e (3) O1 36f (3) (3) (11) O2 36f (3) (3) (11) Li1 6b (5) 0.45(4) Ge1 12c (14) (2) Al1 12c (14) (2) Li2 36f 0.014(7) 0.235(5) 0.058(2) 1.2(5) 0.166(8) S-13

14 Table S32: Anisotropic atomic displacement parameters from the refinement of neutron data of a sample with nominal composition Li 1.8Al 0.8Ge 1.2(PO 4) 3. P (12) 0.003(2) 0.014(2) (8) (6) (12) O (2) 0.035(2) 0.019(2) (13) (11) (11) O (14) (14) (13) (10) (11) (10) Ge (11) (11) 0.019(2) (5) Al (11) (11) 0.019(2) (5) Difference Fourier map of nuclear density Figure S2: (0 0 1) section of the difference Fourier map (F obs F calc) of nuclear density from the refinement of a sample with nominal composition Li 1.5Al 0.5Ge 1.5(PO 4) 3 against neutron diffraction data. During this refinement, only the Li(1) position (Wyckoff site 6b) was occupied. S-14

15 Evolution of pellet density Figure S3: Dependence of the relative density of the pellets used for electrochemical impedance measurements on the nominal lithium concentration. For calculation, the actual density was determined from the sample volume and weight, whereas the theoretical density was obtained from Rietveld refinements against laboratory X-ray diffraction data. S-15

Supporting Information - Inducing high ionic conductivity in the lithium superionic argyrodites Li 6+x P 1-x Ge x S 5 I for allsolid-state

Supporting Information - Inducing high ionic conductivity in the lithium superionic argyrodites Li 6+x P 1-x Ge x S 5 I for allsolid-state Supporting Information - Inducing high ionic conductivity in the lithium superionic argyrodites Li 6+x P 1-x Ge x S 5 I for allsolid-state batteries Marvin A. Kraft a, Saneyuki Ohno a,b, Tatiana Zinkevich

More information

Sodiated carbon: A reversible anode for the sodium-oxygen battery and route for the chemical synthesis of sodium superoxide (NaO 2 )

Sodiated carbon: A reversible anode for the sodium-oxygen battery and route for the chemical synthesis of sodium superoxide (NaO 2 ) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Sodiated carbon: A reversible anode for the sodium-oxygen battery and route

More information

Supporting Information for Interstitial oxygen in perovskite-related Sr 6-2x

Supporting Information for Interstitial oxygen in perovskite-related Sr 6-2x Supporting Information for Interstitial oxygen in perovskite-related Sr 6-2x Man-Rong Li and Seung-Tae Hong* Table S1. Atomic coordinates, unit cell parameters, site occupancies, isotropic displacement

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Table 1. Atomic details for the crystal structures of silver closo-boranes. See Table 1 for further details. α Ag 2 B 10 H 10 Wyckoff x y z U / Å 2 Occ. Ag 4d 0.250

More information

shows the difference between observed (black) and calculated patterns (red). Vertical ticks indicate

shows the difference between observed (black) and calculated patterns (red). Vertical ticks indicate Intensity (arb. unit) a 5 K No disorder Mn-Pt disorder 5 K Mn-Ga disorder 5 K b 5 K Observed Calculated Difference Bragg positions 24 28 32 2 4 6 8 2 4 2θ (degree) 2θ (degree) Supplementary Figure. Powder

More information

behavior explored by in situ neutron powder diffraction during electrochemical oxygen

behavior explored by in situ neutron powder diffraction during electrochemical oxygen (Nd/Pr)2NiO4+δ: reaction intermediates and redox behavior explored by in situ neutron powder diffraction during electrochemical oxygen intercalation Monica Ceretti a,*, Olivia Wayudi a,b, Gilles André

More information

Supporting Information for

Supporting Information for Supporting Information for Tetragonal Li 10 GeP 2 S 12 and Li 7 GePS 8 exploring the Li ion dynamics in LGPS Li electrolytes Alexander Kuhn, a Viola Duppel a and Bettina V. Lotsch* a,b a Max Planck Institute

More information

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube

X-ray Diffraction. Diffraction. X-ray Generation. X-ray Generation. X-ray Generation. X-ray Spectrum from Tube X-ray Diffraction Mineral identification Mode analysis Structure Studies X-ray Generation X-ray tube (sealed) Pure metal target (Cu) Electrons remover inner-shell electrons from target. Other electrons

More information

SOLID STATE 9. Determination of Crystal Structures

SOLID STATE 9. Determination of Crystal Structures SOLID STATE 9 Determination of Crystal Structures In the diffraction experiment, we measure intensities as a function of d hkl. Intensities are the sum of the x-rays scattered by all the atoms in a crystal.

More information

Supporting Information. Chemo-mechanical expansion of lithium electrode materials - On the route to mechanically optimized solid-state batteries

Supporting Information. Chemo-mechanical expansion of lithium electrode materials - On the route to mechanically optimized solid-state batteries Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supporting Information Chemo-mechanical expansion of lithium electrode materials

More information

Supplementary information: Applying Polymer. Blend Dynamics Concepts to a Simplified. Industrial System. A Combined Effort by Dielectric Spectroscopy

Supplementary information: Applying Polymer. Blend Dynamics Concepts to a Simplified. Industrial System. A Combined Effort by Dielectric Spectroscopy Supplementary information: Applying Polymer Blend Dynamics Concepts to a Simplified Industrial System. A Combined Effort by Dielectric Spectroscopy and Neutron Scattering Thomas Gambino,,, Angel Alegría,,,

More information

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution

2 ( º ) Intensity (a.u.) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution Intensity (a.u.) Y Obs Y Cal Y Obs - Y Cal Bragg position Cc 20 40 60 80 100 2 ( º ) Supplementary Figure 1. Crystal structure for composition Bi0.75Pb0.25Fe0.7Mn0.05Ti0.25O3. Highresolution X-ray diffraction

More information

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors*

First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* First principles computer simulations of Li 10 GeP 2 S 12 and related lithium superionic conductors* N. A. W. Holzwarth Wake Forest University, Winston-Salem, NC, USA, 27109 Motivation and background information

More information

Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes

Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes Effects of Fluorine and Chromium Doping on the performance of Lithium-Rich Li 1+x MO 2 (M = Ni, Mn, Co) Positive Electrodes Wei Kong Pang, 1,2 Hsiu-Fen Lin, 3 Vanessa K. Peterson, 1,2* Cheng-Zhang Lu,

More information

Protein crystallography. Garry Taylor

Protein crystallography. Garry Taylor Protein crystallography Garry Taylor X-ray Crystallography - the Basics Grow crystals Collect X-ray data Determine phases Calculate ρ-map Interpret map Refine coordinates Do the biology. Nitrogen at -180

More information

Spin crossover in polymeric and heterometallic Fe II species containing polytopic dipyridylamino-substituted-triazine ligands.

Spin crossover in polymeric and heterometallic Fe II species containing polytopic dipyridylamino-substituted-triazine ligands. Electronic Supplementary Information for Spin crossover in polymeric and heterometallic Fe II species containing polytopic dipyridylamino-substituted-triazine ligands Tamsyn M. Ross, [a] Boujemaa Moubaraki,

More information

Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements

Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements Structure Refinements of II-VI Semiconductor Nanoparticles based on PDF Measurements Reinhard B. Neder Institut für Physik der kondensierten Materie Lehrstuhl für Kristallographie und Strukturphysik Universität

More information

Supplementary Information. Structure and Electrochemical Performance

Supplementary Information. Structure and Electrochemical Performance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supplementary Information P-type Na x Ni 0.22 Co 0.11 Mn 0.66 O 2 Materials:

More information

Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in Li 4 Ti 5 O 12 Anodes for Room-Temperature Sodium-Ion Batteries

Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in Li 4 Ti 5 O 12 Anodes for Room-Temperature Sodium-Ion Batteries SUPPLEMENTARY INFORMATION FOR Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in Li 4 Ti 5 O 12 Anodes for Room-Temperature Sodium-Ion Batteries Authors: Yang Sun 1,*, Liang Zhao 1,*,

More information

Supplementary Information

Supplementary Information Supplementary Information Structural manipulation and tailoring of dielectric properties in SrTi -x Fe x Ta x O 3 perovskites: Design of new lead free relaxors R. Shukla, S. J. Patwe, S. K. Deshpande 2,

More information

Anion Diffusion Processes in O- and N-Mayenite Investigated by Neutron Powder Diffraction

Anion Diffusion Processes in O- and N-Mayenite Investigated by Neutron Powder Diffraction The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application www..org, ISSN 1862-4138; 2005-2008 Anion Diffusion Processes in O- and N-Mayenite Investigated by Neutron

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011 Transformation of Nickelalactones to Methyl Acrylate: On the Way to a Catalytic Conversion of Carbon Dioxide S. Y.

More information

Insights into Mg 2+ Intercalation in a Zero-Strain Material: Thiospinel Mg x Zr 2 S 4

Insights into Mg 2+ Intercalation in a Zero-Strain Material: Thiospinel Mg x Zr 2 S 4 Supporting Information for Publication Insights into Mg 2+ Intercalation in a Zero-Strain Material: Thiospinel Mg x Zr 2 S 4 Patrick Bonnick, a Lauren Blanc, a Shahrzad Hosseini Vajargah, a Chang-Wook

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Coexistence of superconductivity and antiferromagnetism in (Li 0.8 Fe 0.2 )OHFeSe superconductor X. F. Lu 1,2, N. Z. Wang 1,2, H. Wu 3,7, Y. P. Wu 1,2, D. Zhao 1,2, X. Z. Zeng 1,2, X. G. Luo 1,2,8, T.

More information

High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases

High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases Supporting information High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases Kent J. Griffith, Alexander C. Forse, John M. Griffin, Clare P. Grey Department of Chemistry, University

More information

Supporting Information

Supporting Information Supporting Information Structural Evidence for Strong Coupling between Polarization Rotation and Lattice Strain in Monoclinic Relaxor Ferroelectrics Hui Liu, Jun Chen,*, Longlong Fan, Yang Ren, Lei Hu,

More information

A mesoporous aluminium metal-organic framework with 3 nm open pores

A mesoporous aluminium metal-organic framework with 3 nm open pores Electronic Supplementary Information A mesoporous aluminium metal-organic framework with 3 nm open pores Sheng-Han Lo, a Ching-Hsuan Chien, a Yu-Lun Lai, b Chun-Chuen Yang, c Jey Jau Lee, d Duraisamy Senthil

More information

Structure of the orthorhombic γ-phase and phase transitions of Ca(BD 4 ) 2

Structure of the orthorhombic γ-phase and phase transitions of Ca(BD 4 ) 2 Structure of the orthorhombic γ-phase and phase transitions of Ca(BD 4 ) 2 F. Buchter, Z. Lodziana, A. Remhof, O. Friedrichs, A. Borgschulte, Ph. Mauron, and A. Züttel Empa, Swiss Federal Laboratories

More information

Structural Analysis. G. Roth

Structural Analysis. G. Roth Structural Analysis G. Roth This document has been published in Thomas Brückel, Gernot Heger, Dieter Richter, Georg Roth and Reiner Zorn (Eds.): Lectures of the JCNS Laboratory Course held at Forschungszentrum

More information

Oxygen storage properties of La1-xSrxFeO3-δ for chemicallooping reactions an in-situ neutron and synchrotron X-ray study

Oxygen storage properties of La1-xSrxFeO3-δ for chemicallooping reactions an in-situ neutron and synchrotron X-ray study Oxygen storage properties of La1-xSrxFeO3-δ for chemicallooping reactions an in-situ neutron and synchrotron X-ray study Daniel D. Taylor a, Nathaniel J. Schreiber a, Benjamin D. Levitas b, Wenqian Xu

More information

Supporting Information

Supporting Information Supporting Information X-ray diffraction Room temperature powder X-ray diffraction (PXRD) data were initially collected in a Siemens D-5000 diffractometer using CuK radiation ( =1.5418 Å). Further low

More information

Low-activated Li-Ion Mobility and Metal to Semiconductor Transition in CdP Phases

Low-activated Li-Ion Mobility and Metal to Semiconductor Transition in CdP Phases Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Low-activated Li-Ion Mobility and Metal to Semiconductor Transition in

More information

Resolution: maximum limit of diffraction (asymmetric)

Resolution: maximum limit of diffraction (asymmetric) Resolution: maximum limit of diffraction (asymmetric) crystal Y X-ray source 2θ X direct beam tan 2θ = Y X d = resolution 2d sinθ = λ detector 1 Unit Cell: two vectors in plane of image c* Observe: b*

More information

Magnetic structure and properties of centrosymmetric twisted-melilite K 2 CoP 2 O 7

Magnetic structure and properties of centrosymmetric twisted-melilite K 2 CoP 2 O 7 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 1 Supplementary Information Magnetic structure and properties of centrosymmetric twisted-melilite

More information

Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5. Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany

Department of Chemistry, University of Ottawa, Ottawa, Canada K1N 6N5. Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany Electronic Supplementary Information for: Crystal engineering the clathrate hydrate lattice with NH 4 F Kyuchul Shin a,b, Igor L. Moudrakovski, a,c Mehdi Davari, d Saman Alavi, a,c Christopher I. Ratcliffe

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. Photographs show the titration experiments by dropwise adding ~5 times number of moles of (a) LiOH and LiOH+H 2 O, (b) H 2 O 2 and H 2 O 2 +LiOH, (c) Li

More information

Supporting Information A Universal Approach to Determine the Free Energy Diagram of an Electrocatalytic Reaction

Supporting Information A Universal Approach to Determine the Free Energy Diagram of an Electrocatalytic Reaction Supporting Information A Universal Approach to Determine the Free Energy Diagram of an Electrocatalytic Reaction Kai S. Exner 1,, Iman Sohrabnejad-Eskan 1, Herbert Over 1,* 1 Physical Chemistry Department,

More information

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Xiaohe Ma, Gin Keat Lim, Kenneth D.M. Harris, David C. Apperley, Peter N. Horton, Michael

More information

Crystals, X-rays and Proteins

Crystals, X-rays and Proteins Crystals, X-rays and Proteins Comprehensive Protein Crystallography Dennis Sherwood MA (Hons), MPhil, PhD Jon Cooper BA (Hons), PhD OXFORD UNIVERSITY PRESS Contents List of symbols xiv PART I FUNDAMENTALS

More information

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an

Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an Supplementary Figure 1. Large-area SEM images of rhombic rod foldectures (F1) deposited on Si substrate in (a) an in-plane magnetic field and (b) an out-of-plane magnetic field. Scale bars: 10 m. 1 Supplementary

More information

Structural Analysis and Dielectric Properties of Cobalt Incorporated Barium Titanate

Structural Analysis and Dielectric Properties of Cobalt Incorporated Barium Titanate AMANTULLA MANSURI, ASHUTOSH MISHRA School of Physics, Devi Ahilya University, Khandwa road campus, Indore, 452001, India Corresponding author: a.mansuri14@gmail.com Abstract The polycrystalline samples

More information

Magnetic Structure of TbRu 2 Al 10

Magnetic Structure of TbRu 2 Al 10 Magnetic Structure of TbRu 2 Al 10 R. White a, W.D. Hutchison a and T. Mizushima b a School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra ACT 2600, Australia.

More information

Supplementary material

Supplementary material 2 15 1 5 1 2 3 4 5 6 2 15 1 5 2 4 6 8 1 12 14 Figure S1 Observed, calculated and difference XPD (top) and NPD (bottom) patterns obtained after simultaneous Rietveld refinement of the 3D model of the member

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry

More information

Supporting Information: Structural investigation of Na 3 NpO 4 and Na 3 PuO 4 using X-ray diraction and

Supporting Information: Structural investigation of Na 3 NpO 4 and Na 3 PuO 4 using X-ray diraction and Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information: Structural investigation of 3 Np 4 and 3 Pu 4 using X-ray diraction

More information

Supporting Information

Supporting Information Supporting Information A Templated 2D Carbon Nitride Network: Structure Elucidation by Electron Diffraction Markus Döblinger, a Bettina V. Lotsch, a Julia Wack, b Jürgen Thun, b Jürgen Senker, b Wolfgang

More information

Rietveld method - grounds

Rietveld method - grounds 07 July 2010 Rietveld method - grounds Miguel Ángel García Aranda Departamento de Química Inorgánica Universidad de Málaga g_aranda@uma.es http://webpersonal.uma.es/~mag-aranda/ Outline 1.- (Very brief)

More information

Data collection Strategy. Apurva Mehta

Data collection Strategy. Apurva Mehta Data collection Strategy Apurva Mehta Outline Before.. Resolution, Aberrations and detectors During.. What is the scientific question? How will probing the structure help? Is there an alternative method?

More information

Oxidation of cobalt(ii) bispidine complexes with dioxygen

Oxidation of cobalt(ii) bispidine complexes with dioxygen 10.1071/CH16674_AC CSIRO 2017 1 2 3 Australian Journal of Chemistry 2017, 70(5), 576-580 Supplementary Material Oxidation of cobalt(ii) bispidine complexes with dioxygen 4 5 6 Peter Comba *, Bianca Pokrandt

More information

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007

Supporting Information. for. Advanced Functional Materials, adfm Wiley-VCH 2007 Supporting Information for Advanced Functional Materials, adfm.200601202 Wiley-VCH 2007 69451 Weinheim, Germany [Supporting Information] Optical Sensor Based on Nanomaterial for the Selective Detection

More information

Karena W. Chapman *, Peter J. Chupas * X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700

Karena W. Chapman *, Peter J. Chupas * X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Supporting Information Inter-granular cracking as a major cause of longterm capacity fading of layered cathodes Hao Liu, Mark Wolf, Khim Karki, Young-Sang Yu,#, Eric A. Stach, Jordi Cabana, Karena W. Chapman

More information

Supporting Information. Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral -Surfaces

Supporting Information. Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral -Surfaces Supporting Information Impact of Molecular Flexibility on Binding Strength and Self-Sorting of Chiral -Surfaces Marina M. Safont-Sempere, a Peter Osswald, a Matthias Stolte, a Matthias Grüne, a Manuel

More information

Supporting Information for. Fast Direct Synthesis and Compaction of Phase Pure. Thermoelectric ZnSb

Supporting Information for. Fast Direct Synthesis and Compaction of Phase Pure. Thermoelectric ZnSb Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2015 Supporting Information for Fast Direct Synthesis and Compaction of Phase

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information "Redox Properties of Alluaudite Sodium Cobalt Manganese Sulfates

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Facile Heterolytic H 2 Activation by Amines and B(C 6 F 5 ) 3 Victor Sumerin, Felix Schulz, Martin Nieger, Markku Leskelä, Timo Repo,* and

More information

Electron Density at various resolutions, and fitting a model as accurately as possible.

Electron Density at various resolutions, and fitting a model as accurately as possible. Section 9, Electron Density Maps 900 Electron Density at various resolutions, and fitting a model as accurately as possible. ρ xyz = (Vol) -1 h k l m hkl F hkl e iφ hkl e-i2π( hx + ky + lz ) Amplitude

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature14327 Supplementary Text Structure solution and Rietveld refinement of mmen-mn 2 (dobpdc) Initially, the previously reported crystal structure of the isostructural Zn 2 (dobpdc) 13, with

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION A) Structural refinement. The powder pattern was indexed (DICVOL04 [21]) in a triclinic cell, (space group P-1). The structures were then refined using the Rietveld method with

More information

Isochronous Mass Measurements of Hot Exotic Nuclei

Isochronous Mass Measurements of Hot Exotic Nuclei Hyperfine Interactions 132: 291 297, 2001. 2001 Kluwer Academic Publishers. Printed in the Netherlands. 291 Isochronous Mass Measurements of Hot Exotic Nuclei M. HAUSMANN 1, J. STADLMANN 2, F. ATTALLAH

More information

Structure factors again

Structure factors again Structure factors again Remember 1D, structure factor for order h F h = F h exp[iα h ] = I 01 ρ(x)exp[2πihx]dx Where x is fractional position along unit cell distance (repeating distance, origin arbitrary)

More information

Supplementary Information. Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA

Supplementary Information. Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA Supplementary Information Removal of interstitial H 2 O in hexacyanometallates for a superior cathode of a sodium-ion battery Jie Song 1, Long Wang 2, Yuhao Lu 2, Jue Liu 3, Bingkun Guo 1, Penghao Xiao

More information

NMR, STRUCTURE AND SPECTROSCOPIC INVESTIGATIONS ON A CESIUM-AMMONIUM CADMIUM TRICHLORIDE

NMR, STRUCTURE AND SPECTROSCOPIC INVESTIGATIONS ON A CESIUM-AMMONIUM CADMIUM TRICHLORIDE Research and Reviews in Materials Science and Chemistry Vol. 4, Issue 1, 2014, Pages 17-34 ISSN 2319-6920 Published Online on July 19, 2014 2014 Jyoti Academic Press http://jyotiacademicpress.net NMR,

More information

Le Bail and Rietveld refinement

Le Bail and Rietveld refinement e Bail and Rietveld refinement The powder diffraction option (Rietveld refinement + lebail technique) was implemented in 001: Dušek,M., Petříček,V., Wunschel,M., Dinnebier,R.,E. & Van Smaalen,S. (001).

More information

Electronegative Guests in CoSb 3

Electronegative Guests in CoSb 3 Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Electronegative Guests in CoSb 3 Bo

More information

An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology. Supporting information

An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology. Supporting information # This journal is The Royal Society of Chemistry 05 An isoreticular class of Metal-Organic-Frameworks based on the MIL-88 topology Suzy Surblé, a Christian Serre, a Caroline Mellot-Draznieks b Franck Millange,

More information

Selective total encapsulation of the sulfate anion by neutral nano-jars

Selective total encapsulation of the sulfate anion by neutral nano-jars Supporting Information for Selective total encapsulation of the sulfate anion by neutral nano-jars Isurika R. Fernando, Stuart A. Surmann, Alexander A. Urech, Alexander M. Poulsen and Gellert Mezei* Department

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2009 69451 Weinheim, Germany Total Synthesis of Spirastrellolide F thyl Ester Part 2: Macrocyclization and Completion of the Synthesis** Stefan Benson, Marie-Pierre Collin,

More information

4. Constraints and Hydrogen Atoms

4. Constraints and Hydrogen Atoms 4. Constraints and ydrogen Atoms 4.1 Constraints versus restraints In crystal structure refinement, there is an important distinction between a constraint and a restraint. A constraint is an exact mathematical

More information

Simon Grabowsky a * Technology Organisation, New Illawarra Road, Lucas Heights NSW 2234 Australia,

Simon Grabowsky a * Technology Organisation, New Illawarra Road, Lucas Heights NSW 2234 Australia, 1 Predicting the position of the hydrogen atom in the short intramolecular hydrogen bond of the hydrogen maleate anion from geometric correlations (Supporting Information) Lorraine A. Malaspina, a Alison

More information

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster

Rare double spin canting antiferromagnetic behaviours in a. [Co 24 ] cluster Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Rare double spin canting antiferromagnetic behaviours in a [Co 24 ] cluster Guang-Ming Liang, Qing-Ling

More information

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral

Effect of Chloride Anions on the Synthesis and. Enhanced Catalytic Activity of Silver Nanocoral Supporting Information Effect of Chloride Anions on the Synthesis and Enhanced Catalytic Activity of Silver Nanocoral Electrodes for CO 2 Electroreduction Polyansky* Yu-Chi Hsieh, Sanjaya D. Senanayake,

More information

Phases of Na x CoO 2

Phases of Na x CoO 2 Phases of Na x CoO 2 by Aakash Pushp (pushp@uiuc.edu) Abstract This paper deals with the various phases of Na x CoO 2 ranging from charge ordered insulator to Curie-Weiss metal to superconductor as the

More information

Structural investigations of photoswitchable materials

Structural investigations of photoswitchable materials D. Schaniel, Th. Woike I. Physikalisches Institut, Universität zu Köln Structural investigations of photoswitchable materials Motivation Possible applications: holographic data storage (TByte/cm 3 ) fast

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information A x (H 3 O) 2-x Mn 5 (HPO 3 ) 6 (A= Li, Na, K and

More information

Supplementary Figure 1. Dependence of iso on e concentration. Isotropic chemical shifts measured for H ions in C12A7 plotted against electron

Supplementary Figure 1. Dependence of iso on e concentration. Isotropic chemical shifts measured for H ions in C12A7 plotted against electron Supplementary Figure 1. Dependence of iso on e concentration. Isotropic chemical shifts measured for H ions in C12A7 plotted against electron concentration. The data in the main text is indicated by the

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

Crystal structures of Na and K aluminate mullites

Crystal structures of Na and K aluminate mullites American Mineralogist, Volume 86, pages 1513 1518, 2001 Crystal structures of Na and K aluminate mullites REINHARD X. FISCHER, 1, * MARTIN SCHMÜCKER, 2 PAUL ANGERER, 2 AND HARTMUT SCHNEIDER 2 1 Fachbereich

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

A Comparison of the Cc and R3c Space Groups for the Superlattice Phase of. Pb(Zr 0.52 Ti 0.48 )O 3

A Comparison of the Cc and R3c Space Groups for the Superlattice Phase of. Pb(Zr 0.52 Ti 0.48 )O 3 1 A Comparison of the Cc and R3c Space Groups for the Superlattice Phase of Pb(Zr 0.52 Ti 0.48 )O 3 Ragini, Akhilesh Kumar Singh, Rajeev Ranjan and Dhananjai Pandey* School of Materials Science and Technology,

More information

Supplementary Information for. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz. homeotypes under pressure

Supplementary Information for. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz. homeotypes under pressure Supplementary Information for Universal elastic-hardening-driven mechanical instability in α-quartz and quartz homeotypes under pressure Juncai Dong, Hailiang Zhu, and Dongliang Chen * Beijing Synchrotron

More information

High-resolution atomic distribution functions of disordered materials by high-energy x-ray diffraction

High-resolution atomic distribution functions of disordered materials by high-energy x-ray diffraction High-resolution atomic distribution functions of disordered materials by high-energy x-ray diffraction V. Petkov a,*, S. J.L. Billinge a, S. D. Shastri b and B. Himmel c a Department of Physics and Astronomy

More information

High pressure synthesis of late rare earth RFeAs(O,F) superconductors; R = Tb and Dy.

High pressure synthesis of late rare earth RFeAs(O,F) superconductors; R = Tb and Dy. High pressure synthesis of late rare earth RFeAs(O,F) superconductors; R = Tb and Dy. Jan-Willem G. Bos, a,b George B. S. Penny, a,b Jennifer A. Rodgers, a,b Dmitry A. Sokolov, a,c Andrew D. Huxley a,c

More information

Solving Complex Open-Framework Structures from X-ray Powder Diffraction by Direct-Space Methods using Composite Building Units

Solving Complex Open-Framework Structures from X-ray Powder Diffraction by Direct-Space Methods using Composite Building Units Supplementary Materials Solving Complex Open-Framework Structures from X-ray Powder Diffraction by Direct-Space Methods using Composite Building Units A. Ken Inge ab, Henrik Fahlquist b, Tom Willhammar

More information

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov Lecture 10

DIFFRACTION METHODS IN MATERIAL SCIENCE. PD Dr. Nikolay Zotov   Lecture 10 DIFFRACTION METHODS IN MATERIAL SCIENCE PD Dr. Nikolay Zotov Email: zotov@imw.uni-stuttgart.de Lecture 10 OUTLINE OF THE COURSE 0. Introduction 1. Classification of Materials 2. Defects in Solids 3. Basics

More information

Supporting Information

Supporting Information Supporting Information tert-butylzinc Hydroxide as Efficient Predesigned Precursor of ZnO Nanoparticles Wojciech Bury, Elżbieta Krajewska, Michał Dutkiewicz, Kamil Sokołowski, Iwona Justyniak, Zbigniew

More information

Phthalocyanine-Based Single-Component

Phthalocyanine-Based Single-Component Phthalocyanine-Based Single-Component Molecular Conductor [Mn Ⅲ (Pc)(CN)] 2 O Mitsuo Ikeda, Hiroshi Murakawa, Masaki Matsuda, and Noriaki Hanasaki *, Department of Physics, Graduate School of Science,

More information

General theory of diffraction

General theory of diffraction General theory of diffraction X-rays scatter off the charge density (r), neutrons scatter off the spin density. Coherent scattering (diffraction) creates the Fourier transform of (r) from real to reciprocal

More information

Ordnung muss sein: heteroelement order and disorder in polyoxovanadates

Ordnung muss sein: heteroelement order and disorder in polyoxovanadates Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Ordnung muss sein: heteroelement order and disorder in polyoxovanadates M. Wendt a,

More information

Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Electronic Supplementary Information (10 pages)

Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Electronic Supplementary Information (10 pages) Combining piracetam and lithium salts: Ionic co-cocrystals and codrugs? Dario Braga, Fabrizia Grepioni,* a Lucia Maini,* a Davide Capucci, Saverio Nanna, Johan Wouters, Luc Aerts and Luc Quéré Electronic

More information

Lichtenbergestrasse 1, D Garching b. München, Germany. Abstract

Lichtenbergestrasse 1, D Garching b. München, Germany. Abstract 1 Electric field induced irreversible transformation to the R3c phase and its influence on the giant piezo-strain behaviour of lead-free system- Na 0.5 Bi 0.5 TiO 3 -BaTiO 3 -K 0.5 Na 0.5 NbO 3 Dipak Kumar

More information

Basics of XRD part III

Basics of XRD part III Basics of XRD part III Dr. Peter G. Weidler Institute of Functional Interfaces IFG 1 10/31/17 KIT The Research University of the Helmholtz Association Name of Institute, Faculty, Department www.kit.edu

More information

Structural phase transitions in Bi 2 Se 3 under high pressure

Structural phase transitions in Bi 2 Se 3 under high pressure Structural phase transitions in Bi 2 Se 3 under high pressure Zhenhai Yu 1, Lin Wang 1,2,7 * Qingyang Hu 1,7, Jinggeng Zhao 3, Shuai Yan 4, Ke Yang 4, Stanislav Sinogeikin 5, Genda Gu 6 & Ho-kwang Mao

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

EXAFS study of n- and p-type Ba 8 Ga 16 Ge 30

EXAFS study of n- and p-type Ba 8 Ga 16 Ge 30 EXAFS study of n- and p-type Ba 8 Ga 16 Ge 30 Y. Jiang, 1 F. Bridges, 1 M. A. Avila, 2 T. Takabatake, 2 J. Guzman, 1 and G. Kurczveil 1 1 Department of Physics, University of California, Santa Cruz, Santa

More information

Supporting Information for: Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal Organic Frameworks

Supporting Information for: Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal Organic Frameworks Supporting Information for: Separation of Xylene Isomers through Multiple Metal Site Interactions in Metal Organic Frameworks Miguel I. Gonzalez,,# Matthew T. Kapelewski,,# Eric D. Bloch, Phillip J. Milner,

More information

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer.

Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD. Precursors for Copper and Copper Oxide Layer. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information β-ketoiminato-based Copper(II) Complexes as CVD

More information

Direct visualization of the Jahn Teller effect coupled to Na ordering in Na 5/8 MnO 2

Direct visualization of the Jahn Teller effect coupled to Na ordering in Na 5/8 MnO 2 Direct visualization of the Jahn Teller effect coupled to Na ordering in Na 5/8 MnO 2 Xin Li 1, Xiaohua Ma 1, Dong Su 2, Lei Liu 1, Robin Chisnell 3, Shyue Ping Ong 1, Hailong Chen 1, Alexandra Toumar

More information

Synchrotron powder X-ray diffraction and structural analysis of Eu0.5La0.5FBiS2-xSex

Synchrotron powder X-ray diffraction and structural analysis of Eu0.5La0.5FBiS2-xSex Synchrotron powder X-ray diffraction and structural analysis of Eu0.5La0.5FBiS2-xSex K. Nagasaka 1, G. Jinno 1, O. Miura 1, A. Miura 2, C. Moriyoshi 3, Y. Kuroiwa 3, Y. Mizuguchi 1 * 1. Department of Electrical

More information

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz CIF access Acta Cryst. (1999). C55, IUC9900067 [ doi:10.1107/s0108270199099163 ] Redetermination of biphenylene at 130K R. Boese, D. Bläser and R. Latz Abstract Biphenylene is one of the key compounds

More information

Fourier Syntheses, Analyses, and Transforms

Fourier Syntheses, Analyses, and Transforms Fourier Syntheses, Analyses, and Transforms http://homepages.utoledo.edu/clind/ The electron density The electron density in a crystal can be described as a periodic function - same contents in each unit

More information