Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization

Size: px
Start display at page:

Download "Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization"

Transcription

1 Application of Electrochemical Impedance Spectroscopy for Fuel Cell Characterization Dr. Norbert Wagner DLR, Institut für Technische Thermodynamik, Stuttgart Kronach Impedance Days 2010 Kloster Banz, April, 14 th 16 th, 2010

2 Presentation outline Introduction and motivation Examples of porous (technical) electrodes Theory and models of porous gas diffusion electrodes Impedance models Application of Göhr s porous electrode model EIS measured at PEFC EIS measured during oxygen reduction on silver in alkaline solution Outlook Experimental set up for EIS applied for stack measurements

3 Electrochemical kinetic and electrode structure Current density / macm -2 i = 100 macm i 0 = 1 macm -2 i 0 = 10 macm -2 b = 25 mv/decade η 1 η 2 HOR Increasing power output (P=I U) at constant cell voltage (overvoltage) by: enlargement of active electrode surface using porous electrodes (electrode structure) increasing i 0 (electrode material with high catalytic activity) HER Overvoltage / mv Butler-Volmer equation for hydrogen oxydation (HOR) and hydrogen evolution reaction (HER) I= Surface i= Surface i 0 exp{(αrt/zf)η}

4 Field of application of porous electrodes Batteries and supercaps Water purification and treatment (Bio)-Organic synthesis Auxiliary supply Fuel Cells GDE anode ee l ctrical power cah t ode Electrolysis (Water, NaCl, etc.) Hydrogen Current collector H 2 O 2 Cl 2 NaOH, H 2 Membrane Process fluids Packed bed cathode electrons poo r t ns ClṈa+ OH membrane reaction layer diffusion layer flow field/current collector HO, 2 O 2 NaCl H 2 O

5 Fuel cell overvoltage and current density / voltage characteristic Hydrogen Oxidation Reaction (HOR): H 2 = RT/2F i/i * 0 Cathode Oxygen Reduction Reaction (ORR): Cathode 0, Cathode O 2/air = RT/[(1-)2F] [ln i - ln i * ] ct,c Ohmic loss = ir Transport limitation (diffusion) Potential U 0 Cell Voltage (U C ) d +( r ) d = - RT/2F ln (1 - i/i lim ) d +( r ) Fuelcellvoltage U C = U 0 - ct,h 2 - ct,o2/air - d - Anode ct,a Current density (Current/Surface)

6 Schematic representation of main types of fuel cells Temperature AFC 80 C PEM 80 C PAFC 200 C MCFC 650 C SOFC 1000 C Oxidant O 2 O HO 2 2 O HO 2 2 CO O 2 2 O 2 Current Cathode Charge carrier in electrolyte OH - H + H + CO 3 - O 2 - Anode Fuel gas H HO 2 2 H 2 H 2 H 2 HO 2 CO CO 2 H 2 HO 2 CO CO 2 Load Alkaline FC Polymer Electrolyt Membrane FC Phosphoric Acid FC Molten Carbonate FC Solid Oxide FC

7 Measuring methods used for fuel cell and fuel cell components characterization : in-situ und ex-situ methods In-situ measuring methods Current-voltage characteristic (U(i)) Electrochemical Impedance Spectroscopy (EIS) Local and time resolved Cyclic Voltammetry (CV) Current interruption (CI)) Chronopotentiometry (CP) und Chronoamperometry (CA) Current density distribution

8 Ex-situ measuring methods used for fuel cell and fuel cell components characterization Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) Energy dispersive X-ray spectroscopy (EDS) X-ray photoelectron spectroscopy (XPS) X-Ray Diffraction (XRD) Thermal gravimetric analysis (TGA) Porosimetry (Hg-Porosimetry) Measurement of the specific surface area (BET-measurement) Determination of gas permeability

9 Electrochemical Impedance Spectroscopy: Application to Fuel Cells

10 Electrochemical Impedance Spectroscopy: Application to Fuel Cells Potential excitation signal - E(t) Cell voltage U U/I - Characteristic of a Fuel Cell Current I Current response signal- I(t)

11 Schematic diagram of the U-i characteristic of PEFC and Electrochemical Impedance Measurements Ruhespannung (ohne Stromfluß) R ac An U ( Anode ) i U = ir M Anodic Overvoltage Cell voltage U n U(Cell) R ac Cath R dc Cell U ( Cathode ) i U ( Cell ) i i Cathodic Overvoltage U-i measured i n Current density

12 The Metal-Electrolyte Interface

13 The Metal-Electrolyte Interface + - Double layer capacity (C dl )

14 The Metal-Electrolyte Interface Double layer capacity (C dl ) Faraday-Impedance (Z F )

15 Impedance spectra of a simple electrochemical system (Z F =R ct ): Nyquist representation -8 Imaginary part / 2f max = max =1/C dl R ct -6 R ct =10-4 R el =1 f max =15.9 Hz -2 0 C dl =1 mf 2 R el R ct R el +R ct Real part /

16 Impedance spectra of a simple electrochemical system (Z F =R ct ): Bode representation Impedance / Phase 10 R el +R ct f max =52.8 Hz 80 R ct =10 R el = R ct 40 C dl =1 mf 2f max =(1/R ct C dl )(1+R ct /R el ) 1/2 at =2f=1: Z C =1/C dl (------) 2 R el R el 1 10m 100m K 10K Frequency / Hz 20 0

17 Schematic representation of different steps during electrochemical reaction as a function of distance from electrode surface Ox + ne - Red Adsorption Ox* Ox* Ox bulk Chem. Mass Des. reaction transport n e - Ox ad * Charge transfer Red ad * Des. Ads. Chem. reaction Red* Red* Electrode Double layer Reaction layer Mass transport Red bulk Diffusion layer

18 Multi-layer Gas Diffusion Electrodes with different porous layers Carbon-PTFE Layer (Dry sprayed) Ag-PTFE Layer (Rolled Layer)

19 SEM micrograph of a cross section of SOFC Cathode Electrolyte Anode

20 SEM micrograph of a porous silver membrane

21 Simple pore model of interface charging RC-transmission line of a flooded pore R = electrolyte resistance inside the pore per unit length C = interface capacitance per unit length Z( i) R ic coth irc

22 Nyqusit representation of Impedance of RCtransmission line, model of a flooded pore R imaginary part / C=500mF Pore 100 mhz real part / R = 3 Ω C = 0.5 F Z( i) C R i C coth R 0 R 0 = R/3 = δl/3πr 2 r L irc δ = specific electrolyte resistance r = pore radius L = pore lenght

23 Nyqusit representation of porous electrode impedance with faradaic impedance element -3 Simple pore model with faradaic processes in pores RC-transmission line of a flooded pore imaginary part / C=500mF C+Rpor(3 Ohm) C//R(1.5 Ohm) r c r ct r = 3 c = 500 mf r ct = real part /

24 Theory of Agglomerated Electrodes Gas metal (backing) side side ionic current electrolyte side M. Eikerling, A.A. Kornyshev, E. Lust, J. Electrochem. Soc., 152 (2005) E24

25 Cylindrical homogeneous porous electrode model (H. Göhr) I electrolyte pores metal Z p1 Z pi Z pn Z e Z q1 Z qi Z qn Z m Z s1 Z si porous layer Z sn H. Göhr in Electrochemical Applications/97,

26 Cylindrical homogeneous porous electrode model (H. Göhr) II Z o Z S Ions (H +, OH -,..) Electrolyte Z q Z p Pore Current (e - ) Electrode, porous layer Z* = ( Z C = cosh p Zs) Zp Z Z * Z s q Z # = Zp Zs ( Zp Zs) Zp Zs S = sinh Z * p Z * Zp Z P = q 0 = v = Z o Z * Z p Z Z s q n = Z Zs s = = 1-p Zn* Zp Zs s Z n 2 2 C( 1C) 2 pss( p qns qo) Z = Z # +Z* S( 1qnqo) C( qnqo) I I

27 Brief Overview of Porous electrode models and Applications Authors Reference Model and system J. -P Candy, P Fouilloux, M. Keddam, H. Electrochim. Acta, 26(1981) 1029 Ni in alkaline solution Takenouti R. De Levie Electrochim. Acta, 8(1963) 751 Transmission line model, J.S. Newman and C.W. Tobias J. Electrochem. Soc., 109(1962) 1183 Steady-state J. Giner, C. Hunter J. Electrochem. Soc., 116(1969) 1124 Flooded-agglomerate model, Pt-GDE, OCR in alkaline solution K. Mund, F.v. Sturm Electrochim. Acta, 20(1975) 463 HOR on Ni in alkaline solution S. Sunde, Electrochim. Acta, 42(1997) 2637 Composites, SOFC P. Björnbom Electrochim. Acta, 32(1987) 115 Steady state model R. Holze, W. Vielstich J. Electrochem. Soc., 131(1984) 2298 OCR in alkaline solution T.E. Springer, I.D. Raistrick J. Electrochem. Soc., 136(1989) 1594 Flooded-agglomerate and thin film model, differential element of a pore wall H. Göhr Poster ISE Erlangen, 1983 Homogeneous porous model, Pb in sulfphuric acid G. Paasch, K. Micka, P. Gersdorf Electrochim. Acta, 38(1993) 2653 Macrohomogeneous porous electrode model W. Scheider J. Phys. Chem., 79(1975) 127 Model with pore branching S. Srinivasan, H. D. Hurwitz, J. O'M Bockris J. Chem. Phys., 46(1967) 3108 Thin film model M. Kramer, M. Tomkiewicz J. Electrochem. Soc. 131(1984) Stochastic approach with interpenetrating network A. Winsel, E. Bashtavelova J. Power Sources, 73(1998) 242 Agglomerate-of-spheres model M. Tomkiewicz, B. Aurian-Blajeni J. Electrochem. Soc. 135(1988) 2743 True effective medium approach H. Keiser, K.D. Beccu, M.A. Gutjahr Electrochim. Acta, 21(1976) 539 Various geometries of single pore, Ni-GDE

28 Electrochemical Impedance Spectroscopy: Experimental Set-up Flow contoller Pressure regulator Electrochemical workstation Humidifier PEFC

29 Bode diagram of measured EIS at different cell voltages (current densities) I Impedance / Phase o m 100m 30m O E=1024 mv; I=0 ma E=841 mv; I=1025 ma E=597 mv; I=9023 ma + E=317 mv; I=17510 ma m 0 10m 100m K 10K 100K Frequency / Hz

30 Bode diagram of measured EIS at different cell voltages (current densities) II 50 Impedance / m Diffusion Charge transfer of ORR Phase o Charge transfer of HOR 60 R M O V=597 mv; i=400 macm -2 V=497 mv; i=530 macm -2 V=397 mv; i=660 macm -2 + V=317 mv; i=760 macm m 100m K 10K 100K Frequency / Hz N. Wagner, K.A. Friedrich, Dynamic Operational Conditions. In: J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand and B. Scrosati, editors. Encyclopedia of Electrochemical Power Sources, Vol. 2. Amsterdam: Elsevier, 2009, pp

31 Common Equivalent Circuit for Fuel Cells Diffusion of H 2 Z diff R ct,c R ct,a Z diff R M C dl,c C dl,a

32 EIS at Polymer Fuel Cells (PEFC): Common equivalent circuit and boundary case R N R ct,c R ct,a R M Porous electrode with pore electrolyte resistance (R por ) and surface layer resistance (R S ) C N C dl,c C dl,a R ct,c R ct,a R M C dl,c C dl,a Equivalent circuit of the PEFC: anode and cathode simulated without pores, without diffusion (valid for example at lower current densities)

33 Bode diagramm of the EIS, measured at the PEFC at 80 C, symmetrical gas supply of the cell Impedance / Phase o 10 O 2 /O 2 H 2 /H m 20 10m 10m 100m K 10K 100K Frequency / Hz 0

34 EIS at Polymer Fuel Cells (PEFC): Contributions to the cell impedance at different current densities 0.2 Cell impedance /Ohm Cell impedance /Ohm Current density /macm Current density /macm -2

35 Evaluation of the U-i characteristics from EIS Cell voltage /mv Current density /macm -2 measured curve: U n = f(i n ) calculated curve: U n = i n R n (without integration) calculated curve using method II: U n = a n i 2 n +b n i n +c n x calculated curve using method I: U n = a n i n +b n R U n U I n Integration method I: U U U 1 ( ) ( I I ) I I n n n n n n Integration method II: 2 U a I b I c with: n n n n n n R R n 1 n a n 2 ( I I ) n 1 b R 2 a I n n 1 n n 1 c U 2 a I b I n n 1 n n 1 n n 1 n

36 EIS at Polymer Fuel Cells (PEFC): Contributions to the overal U-i characteristic determined by EIS 1100 Cell voltage / mv R N C N R C C dl,c R M R A C dl,a E 0 E C E A E M E Diff Current density / macm -2

37 Evaluation of EIS with the porous electrode model I I Rp,a; Rct,a; Rpor,a /Ohm R p, a ( Rpor, a R Rpor tanh Rct, ct, a , a Current density /macm -2 a ) I I Porous electrode resistance (R p, a ), charge transfer resistance (R ct, a ) and electrolyte resistance (R por, a ) in the pore of the anode at different current densities

38 Evaluation of EIS with the porous electrode model i-v characteristic and current dependency of pore electrolyte resistance of the anode and cathode Pore electrolyte resistance / mohm R el,por,anode R el,por,kathode Cell voltage / mv Current / A

39 Z / 5 ma Impedance Measurements during Oxygen Reduction Reaction (ORR) in 10 N NaOH, on Silver Electrodes at Different Current Densities 10 ma 15 ma 20 ma 25 ma 30 ma 35 ma 40 ma 45 ma phase / o 100 ma 95 ma 90 ma 85 ma 80 ma 75 ma 70 ma 65 ma 60 ma 55 ma 50 ma Z' / 15 ma 20 ma 10 ma 5 ma Z'' / 500m 0 10m 100m K 10K 100K frequency / Hz ma i / ma

40 Evaluation of EIS measured during ORR Equivalent circuit and R ct = f(i) R / m m ms -1/ s mf m m 3.18 m m nh N current/ma 1 3

41 Outlook Further improvement of porous electrode models Combination and extension of existent and new models Application of EIS to segmented cells Experimental validation of models using PEFC and DMFC electrodes with different porous structure Gas Diffusion Electrodes (GDE) for Oxygen Consumption Reaction (OCR) in alkaline solution using different gas compositions

42 Experimental EIS set-up for stack measurements

Theory and Application of Porous Electrodes in Fuel Cell Characterization. Dr. Norbert Wagner DLR, Institut für Technische Thermodynamik, Stuttgart

Theory and Application of Porous Electrodes in Fuel Cell Characterization. Dr. Norbert Wagner DLR, Institut für Technische Thermodynamik, Stuttgart Theory and Application of Porous Electrodes in Fuel Cell Characterization Dr. Norbert Wagner DLR, Institut für Technische Thermodynamik, Stuttgart Kronach Impedance Days 2009 "Hermann Göhr" Kloster Banz,

More information

EIS in Fuel Cell Science

EIS in Fuel Cell Science www.dlr.de Chart 1 EIS in Fuel Cell Science Dr. Norbert Wagner German Aerospace Center (DLR) Institute for Engineering Thermodynamics Pfaffenwaldring 38-49, 7569 Stuttgart, Germany Electrochemical Impedance

More information

Electrochemical Characterization of Silver Gas Diffusion Electrodes during Oxygen Reduction in Alkaline Solution

Electrochemical Characterization of Silver Gas Diffusion Electrodes during Oxygen Reduction in Alkaline Solution www.dlr.de Chart 1 Electrochemical Characterization of Silver Gas Diffusion Electrodes during Oxygen Reduction in Alkaline Solution Norbert Wagner German Aerospace Center (DLR) Institute of Technical Thermodynamics,

More information

Relaxation Impedance

Relaxation Impedance Relaxation Impedance One Reason for Inductive and Capacitive Behavior in Low Frequency Impedance Spectra of Corroding Electrodes, Batteries and Fuel Cells C.A. Schiller a, F. Richter a,, W. Strunz a, N.

More information

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany

Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications. Pfaffenwaldring 6, Stuttgart, Germany Development of Bifunctional Electrodes for Closed-loop Fuel Cell Applications S. Altmann a,b, T. Kaz b, K. A. Friedrich a,b a Institute of Thermodynamics and Thermal Engineering, University Stuttgart,

More information

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods

Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods Analytical Investigation of Fuel Cells by Using In-situ and Ex-situ Diagnostic Methods G. Schiller, E. Gülzow, M. Schulze, N. Wagner, K.A. Friedrich German Aerospace Center (DLR), Institute of Technical

More information

VI. EIS STUDIES LEAD NANOPOWDER

VI. EIS STUDIES LEAD NANOPOWDER VI. EIS STUDIES LEAD NANOPOWDER 74 26. EIS Studies of Pb nanospheres Impedance (valid for both DC and AC), a complex resistance occurs when current flows through a circuit (composed of various resistors,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature17653 Supplementary Methods Electronic transport mechanism in H-SNO In pristine RNO, pronounced electron-phonon interaction results in polaron formation that dominates the electronic

More information

State-Space Modeling of Electrochemical Processes. Michel Prestat

State-Space Modeling of Electrochemical Processes. Michel Prestat State-Space Modeling of Electrochemical Processes Who uses up my battery power? Michel Prestat ETH-Zürich Institute for Nonmetallic Materials Head: Prof. L.J. Gauckler Outline Electrochemistry Electrochemical

More information

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid

Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electronic Supplementary Information Lithium-ion Batteries Based on Vertically-Aligned Carbon Nanotubes and Ionic Liquid Electrolytes Wen Lu, * Adam Goering, Liangti Qu, and Liming Dai * 1. Synthesis of

More information

FUEL CELLS: INTRODUCTION

FUEL CELLS: INTRODUCTION FUEL CELLS: INTRODUCTION M. OLIVIER marjorie.olivier@fpms.ac.be 19/5/8 A SIMPLE FUEL CELL Two electrochemical half reactions : H 1 O H + + H + e + + e H O These reactions are spatially separated: Electrons:

More information

Polymer graphite composite anodes for Li-ion batteries

Polymer graphite composite anodes for Li-ion batteries Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia, SC 29208 Plamen Atanassov University of New

More information

Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell

Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell Journal of Power Sources 127 (4) 341 347 Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell N. Wagner, E. Gülzow Deutsches Zentrum für

More information

Bulk graphdiyne powder applied for highly efficient lithium storage

Bulk graphdiyne powder applied for highly efficient lithium storage Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Bulk graphdiyne powder applied for highly efficient lithium storage Shengliang Zhang, ab Huibiao

More information

and constant current operations in capacitive deionization

and constant current operations in capacitive deionization Energy consumption analysis of constant voltage and constant current operations in capacitive deionization Supporting information Yatian Qu, a,b Patrick G. Campbell, b Lei Gu, c Jennifer M. Knipe, b Ella

More information

Introduction Fuel Cells Repetition

Introduction Fuel Cells Repetition Introduction Fuel Cells Repetition Fuel cell applications PEMFC PowerCell AB, (S1-S3) PEMFC,1-100 kw Toyota Mirai a Fuel Cell Car A look inside The hydrogen tank 1. Inside Layer of polymer closest to the

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) CHEM465/865, 24-3, Lecture 26-28, 19 th Nov., 24 Please, note the following error in the notes lecture19+2 (Hydrodynamic electrodes and Microelectrodes: on page two, 3 rd line, the correct expression for

More information

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially

Supporting Information. Electropolymerization of aniline on nickel-based electrocatalysts substantially Supporting Information Electropolymerization of aniline on nickel-based electrocatalysts substantially enhances their performance for hydrogen evolution Fuzhan Song, Wei Li, Guanqun Han, and Yujie Sun*

More information

High-Performance Silicon Battery Anodes Enabled by

High-Performance Silicon Battery Anodes Enabled by Supporting Information for: High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies Min Zhou,, Xianglong Li, *, Bin Wang, Yunbo Zhang, Jing Ning, Zhichang Xiao, Xinghao Zhang,

More information

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY FC ANALYSES TECHNIQUES

MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY FC ANALYSES TECHNIQUES MAE 214 FUEL CELL FUNDAMENTALS & TECHNOLOGY Fuel Cell Analyses Methods NFCRC DR. JACK BROUWER MAE 214 Lecture #11 Spring, 2005 FC ANALYSES TECHNIQUES Potential Sweep Methods Linear Sweep Voltammetry (I-V)

More information

Basic overall reaction for hydrogen powering

Basic overall reaction for hydrogen powering Fuel Cell Basics Basic overall reaction for hydrogen powering 2H 2 + O 2 2H 2 O Hydrogen produces electrons, protons, heat and water PEMFC Anode reaction: H 2 2H + + 2e Cathode reaction: (½)O 2 + 2H +

More information

Electrochemical Impedance Spectroscopy

Electrochemical Impedance Spectroscopy Electrochemical Impedance Spectroscopy May 2012 Designing the Solution for Electrochemistry Potentiostat/Galvanostat І Battery Cycler І Fuel Cell Test Station +82-2-578-6516 І sales@wonatech.com www.wonatech.com

More information

FUEL CELLS in energy technology (4)

FUEL CELLS in energy technology (4) Fuel Cells 1 FUEL CELLS in energy technology (4) Werner Schindler Department of Physics Nonequilibrium Chemical Physics TU Munich summer term 213 Fuel Cells 2 Nernst equation and its application to fuel

More information

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy

Structural and Electronic properties of platinum nanoparticles studied by diffraction and absorption spectroscopy The 4 th SUNBEAM Workshop Structural and Electronic properties of platinum nanoparticles studied by in situ x-ray x diffraction and in situ x-ray x absorption spectroscopy Hideto Imai Fundamental and Environmental

More information

Performance analysis of Lithium-ion-batteries: status and prospects

Performance analysis of Lithium-ion-batteries: status and prospects Performance analysis of Lithium-ion-batteries: status and prospects DPG conference Erlangen March 218 Ellen Ivers-Tiffée, Philipp Braun, Michael Weiss Karlsruhe Institute of Technology (KIT), Germany KIT

More information

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam

(name) Electrochemical Energy Systems, Spring 2014, M. Z. Bazant. Final Exam 10.626 Electrochemical Energy Systems, Spring 2014, M. Z. Bazant Final Exam Instructions. This is a three-hour closed book exam. You are allowed to have five doublesided pages of personal notes during

More information

Complex Capacitance Analysis on Leakage Current Appearing in Electric Double-layer Capacitor Carbon Electrode

Complex Capacitance Analysis on Leakage Current Appearing in Electric Double-layer Capacitor Carbon Electrode Downloaded 2 Jul 29 to 47.46.82.84. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp A48 Journal of The Electrochemical Society, 52 7 A48-A422 25 3-465/25/527/A48/5/$7.

More information

Review of temperature distribution in cathode of PEMFC

Review of temperature distribution in cathode of PEMFC Project Report 2008 MVK 160 Heat and Mass Transport May 08, 2008, Lund, Sweden Review of temperature distribution in cathode of PEMFC Munir Ahmed Khan Department of Energy Sciences, Lund Institute of Technology,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Ultrasmall Sn Nanodots Embedded inside N-Doped

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance

An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Supporting Information An Ideal Electrode Material, 3D Surface-Microporous Graphene for Supercapacitors with Ultrahigh Areal Capacitance Liang Chang, 1 Dario J. Stacchiola 2 and Yun Hang Hu 1, * 1. Department

More information

Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst

Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst Supporting information for Electrochemical Partial Reforming of Ethanol into Ethyl Acetate Using Ultrathin Co 3 O 4 Nanosheets as a Highly Selective Anode Catalyst Lei Dai, 1 Qing Qin, 1 Xiaojing Zhao,

More information

Demystifying Transmission Lines: What are They? Why are They Useful?

Demystifying Transmission Lines: What are They? Why are They Useful? Demystifying Transmission Lines: What are They? Why are They Useful? Purpose of This Note This application note discusses theory and practice of transmission lines. It outlines the necessity of transmission

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supplementary Information A honeycomb-like porous carbon derived from pomelo peel for use in high-performance

More information

Advanced Analytical Chemistry Lecture 12. Chem 4631

Advanced Analytical Chemistry Lecture 12. Chem 4631 Advanced Analytical Chemistry Lecture 12 Chem 4631 What is a fuel cell? An electro-chemical energy conversion device A factory that takes fuel as input and produces electricity as output. O 2 (g) H 2 (g)

More information

Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express

Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express N. Murer, J.-P. Diard 1 /23 OBJECTIVES Understand what is performed during an impedance measurement. Understand

More information

SCIENCES & TECHNOLOGY

SCIENCES & TECHNOLOGY Pertanika J. Sci. & Technol. 22 (2): 645-655 (2014) SCIENCES & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Numerical Modelling of Molten Carbonate Fuel Cell: Effects of Gas Flow Direction

More information

Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack

Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack Experimental Characterization Methodology for the Identification of Voltage Losses of PEMFC: Applied to an Open Cathode Stack A. Husar *, S. Strahl, J. Riera Institut de Robòtica i Informàtica Industrial

More information

Supplementary Figure 1. Experimental conditions for the determination of Ni-S electrodeposition. The CV

Supplementary Figure 1. Experimental conditions for the determination of Ni-S electrodeposition. The CV Ni Deposition NiS Deposition Supplementary Figure 1. Experimental conditions for the determination of Ni-S electrodeposition. The CV plot shows a comparison between a deposition bath containing only a

More information

17.1 Redox Chemistry Revisited

17.1 Redox Chemistry Revisited Chapter Outline 17.1 Redox Chemistry Revisited 17.2 Electrochemical Cells 17.3 Standard Potentials 17.4 Chemical Energy and Electrical Work 17.5 A Reference Point: The Standard Hydrogen Electrode 17.6

More information

Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells

Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells 33 Research Report Analysis of the Catalyst Layer of Polymer Electrolyte Fuel Cells Takahisa Suzuki Hajime Murata Tatsuya Hatanaka Yu Morimoto Comprehensive techniques for diagnosing the catalyst layer

More information

Batteries (Electrochemical Power Sources)

Batteries (Electrochemical Power Sources) Batteries (Electrochemical Power Sources) 1. Primary (single-discharge) batteries. => finite quantity of the reactants 2. Secondary or rechargeable batteries => regeneration of the original reactants by

More information

Supporting Information

Supporting Information Supporting Information A Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K 2 Ti 6 O 13 Micro-Scaffolds Shengyang Dong,, Zhifei Li, Zhenyu Xing, Xianyong Wu, Xiulei Ji*, and Xiaogang Zhang*, Jiangsu

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Experimental section Synthesis of Ni-Co Prussian

More information

Supplementary Materials

Supplementary Materials Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation Yi Wei Chen 1, Jonathan D. Prange 2, Simon Dühnen 2, Yohan Park 1, Marika Gunji 1, Christopher E. D. Chidsey 2, and

More information

An Introduction to Electrochemical Impedance Spectroscopy (EIS)

An Introduction to Electrochemical Impedance Spectroscopy (EIS) An Introduction to Electrochemical Impedance Spectroscopy (EIS) Dr. Robert S Rodgers, Ph.D. PO Box 7561 Princeton, NJ 08543 Delivered at June 18, 2009 Meeting of ACS Princeton Local Section Outline A Little

More information

Diagnosis of PEMFC operation using EIS

Diagnosis of PEMFC operation using EIS Diagnosis of PEMFC operation using EIS Electrical Research Institute Hydrogen and Fuel Cells Group Félix Loyola, Ulises Cano-Castillo ucano@iie.org.mx International Symposium on DIAGNOSTIC TOOLS FOR FUEL

More information

Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University

Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University 에너지소재특론 Fuel Cells Jong Hak Kim Chemical Engineering Yonsei University Fuel Cells Electrochemical cell which can continuously convert the chemical energy of a fuel and an oxidant to electrical energy PEMFC

More information

Prof. Mario L. Ferrari

Prof. Mario L. Ferrari Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy Lesson II Lesson II: fuel cells (electrochemistry)

More information

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra.

Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. Supplementary Figure 1 XPS, Raman and TGA characterizations on GO and freeze-dried HGF and GF. (a) XPS survey spectra and (b) C1s spectra. (c) Raman spectra. (d) TGA curves. All results confirm efficient

More information

Werner Strunz, Zahner-elektrik.

Werner Strunz, Zahner-elektrik. Werner Strunz, Zahner-elektrik www.zahner.de Outline 1. Resistor [ R ] Spannung Strom 0 1 2 3 4 5 6 2 2. Inductance [ L ] Spannung Strom 0 1 2 3 4 5 6 2 3. Capacitor [ C ] Spannung Strom 0 1 2 3 4 5 6

More information

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a We re going to calculate the open circuit voltage of two types of electrochemical system: polymer electrolyte membrane (PEM) fuel cells and lead-acid batteries. To do this, we re going to make use of two

More information

Impedance Basics. Fig 1. Generalized current-voltage curve; inset shows the principle of linear approximation for small perturbations.

Impedance Basics. Fig 1. Generalized current-voltage curve; inset shows the principle of linear approximation for small perturbations. Impedance Basics Electrochemical Impedance Spectroscopy (EIS) is a frequency domain measurement made by applying a sinusoidal perturbation, often a voltage, to a system. The impedance at a given frequency

More information

Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction

Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction Nanostructured Ti 0.7 Mo 0.3 O 2 Support Enhances Electron Transfer to Pt : High-Performance Catalyst for Oxygen Reduction Reaction Seonbaek Ha Professor : Carlo U. Segre 12. 06. 2013 Department of Chemical

More information

Supporting Information

Supporting Information Supporting Information Facet-Selective Deposition of FeO x on α-moo 3 Nanobelts for Lithium Storage Yao Yao, 1 Nuo Xu, 2 Doudou Guan, 1 Jiantao Li, 1 Zechao Zhuang, 1 Liang Zhou,*,1 Changwei Shi 1, Xue

More information

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example)

Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) 3 rd LAMNET Workshop Brazil -4 December 00 3 rd LAMNET Workshop Brazil 00 Introductory Lecture: Principle and Applications of Fuel Cells (Methanol/Air as Example) Prof. Dr. Wolf Vielstich University of

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information A Cu 2 Se-Cu 2 O Film Electrodeposited on Titanium Foil as a Highly Active

More information

Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics

Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics Theory of Charge Transport in Mixed Conductors: Description of Interfacial Contributions Compatible with the Gibbs Thermodynamics Mikhail A. Vorotyntsev LSEO-UMR 5188 CNRS, Université de Bourgogne, Dijon,

More information

Lecture 12: Electroanalytical Chemistry (I)

Lecture 12: Electroanalytical Chemistry (I) Lecture 12: Electroanalytical Chemistry (I) 1 Electrochemistry Electrochemical processes are oxidation-reduction reactions in which: Chemical energy of a spontaneous reaction is converted to electricity

More information

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance

Electrodeposited nickel hydroxide on nickel foam with ultrahigh. capacitance Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance Guang-Wu Yang, Cai-Ling Xu* and Hu-Lin Li* College of Chemistry and Chemical Engineering, Lanzhou University, 73 (PR China) 1.

More information

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by

Supporting Information. High Wettable and Metallic NiFe-Phosphate/Phosphide Catalyst Synthesized by Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information High Wettable and Metallic NiFe-Phosphate/Phosphide

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/12/eaao7233/dc1 Supplementary Materials for Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life Hao Chen, Hanyan Xu, Siyao Wang, Tieqi

More information

Hydrogen production by electrolysis. Ann Cornell, Department of Chemical Engineering, KTH

Hydrogen production by electrolysis. Ann Cornell, Department of Chemical Engineering, KTH Hydrogen production by electrolysis Ann Cornell, Department of Chemical Engineering, KTH amco@kth.se Sources for hydrogen International Energy Agency. Technology Roadmap Hydrogen and Fuel Cells, 2015

More information

I. 수퍼캐패시터특성분석을위한 transient 방법 EDLC analysis Pseudocapacitor analysis

I. 수퍼캐패시터특성분석을위한 transient 방법 EDLC analysis Pseudocapacitor analysis Theoretical consideration of electrochemical impedance spectroscopy based on 2-D transmission line model in the porous electrodes and its application into various mesoporous carbon materials 중앙대학교융합공학부나노소재전공윤성훈

More information

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries

Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Supporting Information Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries Zhiqiang Zhu, Shiwen Wang, Jing Du, Qi Jin, Tianran Zhang,

More information

Chapter 18 Electrochemistry. Electrochemical Cells

Chapter 18 Electrochemistry. Electrochemical Cells Chapter 18 Electrochemistry Chapter 18 1 Electrochemical Cells Electrochemical Cells are of two basic types: Galvanic Cells a spontaneous chemical reaction generates an electric current Electrolytic Cells

More information

Application of the impedance model of de Levie for the characterization of porous electrodes. Abstract

Application of the impedance model of de Levie for the characterization of porous electrodes. Abstract Application of the impedance model of de Levie for the characterization of porous electrodes O. E. Barcia, E. D'Elia, I. Frateur, O. R. Mattos, N. Pébère and B. Tribollet Universidade Federal de Rio de

More information

Electrochemical methods : Fundamentals and Applications

Electrochemical methods : Fundamentals and Applications Electrochemical methods : Fundamentals and Applications Lecture Note 7 May 19, 2014 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Electrochemical

More information

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Supplemental Materials for Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Wenchao Sheng, a MyatNoeZin Myint, a Jingguang G.

More information

MASTER OF APPLIED SCIENCE

MASTER OF APPLIED SCIENCE Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells By Ruth Anne Latham BSME, Lake Superior State University, 2001 A Thesis Submitted in Partial Fulfillment of

More information

Redox additive Aqueous Polymer-gel Electrolyte for Electric Double Layer Capacitor

Redox additive Aqueous Polymer-gel Electrolyte for Electric Double Layer Capacitor Electronic Supplementary Information Redox additive Aqueous Polymer-gel Electrolyte for Electric Double Layer Capacitor S.T. Senthilkumar, a R. Kalai Selvan,* a N.Ponpandian b and J.S. Melo c a Solid State

More information

Electrochemical Cell - Basics

Electrochemical Cell - Basics Electrochemical Cell - Basics The electrochemical cell e - (a) Load (b) Load e - M + M + Negative electrode Positive electrode Negative electrode Positive electrode Cathode Anode Anode Cathode Anode Anode

More information

A novel self-healing electrochromic film based on triphyelamine. cross-linked polymer

A novel self-healing electrochromic film based on triphyelamine. cross-linked polymer Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 217 Supporting Information A novel self-healing electrochromic film based on triphyelamine

More information

Potential Modulated Spectroscopy in Electrochemical Systems

Potential Modulated Spectroscopy in Electrochemical Systems Potential Modulated Spectroscopy in Electrochemical Systems David J. Fermín Action D36 www.chm.bris.ac.uk/pt/electrochemistry Overview Combining potential modulation and spectroscopy? Electroreflectance

More information

Supporting Information. Nature of Activated Manganese Oxide for Oxygen Evolution

Supporting Information. Nature of Activated Manganese Oxide for Oxygen Evolution Supporting Information Nature of Activated Manganese Oxide for Oxygen Evolution Michael Huynh, a Chenyang Shi, b Simon J. L. Billinge, b,c Daniel G. Nocera*,a adepartment of Chemistry and Chemical Biology,

More information

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010

Modeling as a tool for understanding the MEA. Henrik Ekström Utö Summer School, June 22 nd 2010 Modeling as a tool for understanding the MEA Henrik Ekström Utö Summer School, June 22 nd 2010 COMSOL Multiphysics and Electrochemistry Modeling The software is based on the finite element method A number

More information

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored

More information

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells

January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells. Fuel Cells January 21, 2004 Fuel Cell Engineering Course CHEG 320 Taught at UTC Fuel Cells Fuel Cells Instructor James M. Fenton, Professor, Chemical Engineering University of Connecticut Teaching Assistants: 1.

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information In situ growth of heterostructured Sn/SnO nanospheres

More information

Tutorials : Corrosion Part 1: Theory and basics

Tutorials : Corrosion Part 1: Theory and basics Tutorials : Corrosion Part 1: Theory and basics Outline A. Definition and effects of corrosion B. General thermodynamics and kinetics in electrochemistry C. Thermodynamics and kinetics in corrosion 2 2/21

More information

Supplemental Information. Carbon Monoxide Gas Diffusion Electrolysis. that Produces Concentrated C 2 Products. with High Single-Pass Conversion

Supplemental Information. Carbon Monoxide Gas Diffusion Electrolysis. that Produces Concentrated C 2 Products. with High Single-Pass Conversion JOUL, Volume 3 Supplemental Information Carbon Monoxide Gas Diffusion Electrolysis that Produces Concentrated C 2 Products with High Single-Pass Conversion Donald S. Ripatti, Thomas R. Veltman, and Matthew

More information

Complex Capacitance Analysis of Porous Carbon Electrodes for Electric Double-Layer Capacitors

Complex Capacitance Analysis of Porous Carbon Electrodes for Electric Double-Layer Capacitors Journal of The Electrochemical Society, 151 4 A571-A577 24 13-4651/24/1514/A571/7/$7. The Electrochemical Society, Inc. Complex Capacitance Analysis of Porous Carbon Electrodes for Electric Double-Layer

More information

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system.

Figure 1. Schematic of Scriber Associates Model 850C fuel cell system. Objective of the fuel cell experiments: To familiarize the working principles and performance characteristics of proton exchange membrane fuel cells. Experimental Procedures Instrumentation A Scriber Associates

More information

Fuel Cell Activities in MME Waterloo

Fuel Cell Activities in MME Waterloo Fuel Cell Activities in MME Waterloo Xianguo Li and Roydon Fraser Fuel Cells and Green Energy Research Group Department of Mechanical & Mechatronics Engineering University of Waterloo, Waterloo, Ontario,

More information

Performance Modeling of the Metal Hydride Electrode

Performance Modeling of the Metal Hydride Electrode Performance Modeling of the Metal Hydride Electrode by Bala S. S. Haran, Anand Durairajan, Branko N. Popov and Ralph E. E. White Center for Electrochemical Engineering Department of of Chemical Engineering

More information

Chapter 19: Oxidation - Reduction Reactions

Chapter 19: Oxidation - Reduction Reactions Chapter 19: Oxidation - Reduction Reactions 19-1 Oxidation and Reduction I. Oxidation States A. The oxidation rules (as summarized by Mr. Allan) 1. In compounds, hydrogen has an oxidation # of +1. In compounds,

More information

Supplementary Information for

Supplementary Information for Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Supplementary Information for Cu Nanowires Shelled with NiFe Layered Double

More information

Cross Section of Proton Exchange Membrane Fuel Cell

Cross Section of Proton Exchange Membrane Fuel Cell PEMFC Electrodes 1 Cross Section of Proton Exchange Membrane Fuel Cell Anode Cathode 2 Typical PEMFC Electrodes: - Anode Hydrogen Oxidation - Pt Ru / C - Cathode Oxygen reduction - Pt / C Pt is alloyed

More information

The Importance of Electrochemistry for the Development of Sustainable Mobility

The Importance of Electrochemistry for the Development of Sustainable Mobility TUM CREATE Centre for Electromobility, Singapore The Importance of Electrochemistry for the Development of Sustainable Mobility Jochen Friedl, Ulrich Stimming DPG-Frühjahrstagung, Working Group on Energy,

More information

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC

Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Modeling of Liquid Water Distribution at Cathode Gas Flow Channels in Proton Exchange Membrane Fuel Cell - PEMFC Sandro Skoda 1*, Eric Robalinho 2, André L. R. Paulino 1, Edgar F. Cunha 1, Marcelo Linardi

More information

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell

Supporting Information for. Impedance Spectroscopy Characterization of Porous Electrodes. under Different Electrode Thickness Using a Symmetric Cell Supporting Information for Impedance Spectroscopy Characterization of Porous Electrodes under Different Electrode Thickness Using a Symmetric Cell for High-Performance Lithium-Ion Batteries Nobuhiro Ogihara,*

More information

Fuel Cells. Chronoamperometric Investigations of the Electrode- Electrolyte Interface of a Commercial High Temperature PEM Fuel Cell

Fuel Cells. Chronoamperometric Investigations of the Electrode- Electrolyte Interface of a Commercial High Temperature PEM Fuel Cell Fuel Cells Chronoamperometric Investigations of the Electrode- Electrolyte Interface of a Commercial High Temperature PEM Fuel Cell Journal: Fuel Cells Manuscript ID: fuce.0000.r Wiley - Manuscript type:

More information

Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy

Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy Loughborough University Institutional Repository Study of current distribution and oxygen diffusion in the fuel cell cathode catalyst layer through electrochemical impedance spectroscopy This item was

More information

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor

Synthesis of Oxidized Graphene Anchored Porous. Manganese Sulfide Nanocrystal via the Nanoscale Kirkendall Effect. for supercapacitor Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Synthesis of Oxidized Graphene Anchored Porous Manganese Sulfide Nanocrystal

More information

Electrocatalysis: Experimental Techniques and Case Studies

Electrocatalysis: Experimental Techniques and Case Studies Electrocatalysis: Experimental Techniques and Case Studies 1) Introduction (what is electrochemistry?) Electric double layer Electrode potential 2) How to measure electrochemical reactions? Cyclic voltammetry

More information

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS

ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL IN MOBILE APPLICATIONS Int. J. of Applied Mechanics and Engineering, 015, vol.0, No., pp.319-38 DOI: 10.1515/ijame-015-001 ANALYTICAL INVESTIGATION AND IMPROVEMENT OF PERFORMANCE OF A PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL

More information

Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis

Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis Application note #18 Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis I- Introduction It is sometimes useful to automate measurements. With EC-Lab and EC-Lab

More information

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

Oxidation number. The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. Oxidation number The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred. 1. Free elements (uncombined state) have an oxidation number of zero. Na,

More information