Optical Rotatory Dispersion of DNA in Concentrated Salt Solutions

Size: px
Start display at page:

Download "Optical Rotatory Dispersion of DNA in Concentrated Salt Solutions"

Transcription

1 1218 COMhfUNICATIONS TO THE EDITORS Optical Rotatory Dispersion of DNA in Concentrated Salt Solutions The fact that the structure of DNA in fibers is sensitive to the relative humidity of the atmosphere suggests that it may be interesting to study the structure in solution under conditions of low water activity. There is considerable evidence that high concentrations of salt have large effects on the structure and stability of the DNA helix.213 Optical rotatory dispersion (OR])) is very sensitive to secondary structure. In an attempt to gain more insight into the nature of the structural changes, the ORD of DNA was measured as a function of salt concentration in several salts. Materials and Methods The DNA used in these experiments was calf thymus DNA, supplied by Nutritional Biochemicals. It was dissolved in DSC buffer (0.015M NaC1, M Na citrate, ph 7.0) to a concentration of about 7.5 OD, by gentle stirring at 5 C for 48 hr. In the DSC buffer, it melted over a 10 C range with a midpoint at 70 C. Its absorption spectrum showed it to be native and undegraded, by the analysis proposed by Hirschman and Fel~enfeld.~ NaCl, NaBr, LiBr, and LiCl were analytical grade reagents; CsCI, optical grade, and Cs formate were supplied by Harshaw Chemical Co., CsBr by A. B. MacKay, Inc. Stock solutions of these salts were prepared by dissolving them in DSC buffer and adjusting the ph to The Cs trifluoroacetate (CsTFA) stock solution was prepared by neutralizing Cs2C03 (K and K Laboratories, 99.8% assay) with trifluoroacetic acid. Solutions were clarified by filtering through a sintered glass filter. ph measurements were uncertain in these highly concentrated salt solutions, but no significant changes in the ORD were observed as a result of deliberate variation of the ph in this range. Solution samples were prepared by dilution of the stock salt solutions with DSC, and addition of the DNA stock to a final DNA concentration of about 0.75 OD. Salt concentrations were determined by measuring the refractive index of the solution in an Abbe refractometer and comparing with tabulated nd versus c data.6,6 DNA concentrations were determined spectrophotometrically, assuming Epmax = 6.5 X lo3. The tendency observed by Emanuelz for some salts to bring about changes in the extinction coefficient of the DNA complicates the calculation of specific rotation. For the most part this effect was ignored. At most it makes a difference of the order of 7% at the highest salt concentrations, which is a very small difference compared with the magnitude of the effect on the ORD. Corrections of the data on the basis of Emanuel s observations has no effect on the trends observed. Samples were run in cells of 1 cm path length in a Cary Model 60 recording spectropolarimeter at room temperature. Measurements were begun at 350 mp and continued to decreasing wavelength until solution absorption caused noise levels to become too high for meaningful data. Results and Discussion The primary effect of the presence of high concentrations of salt on the ORD of DNA appears to be a general loss of rotation at the higher wavelengths. The rotation in the vicinity of 290 mp becomes less positive and that in the vicinity of 260 mp less negative. In some cases it appeared that these changes were associated with the appearance of a peak or shoulder in the vicinity of 270 mp. This was particularly obvious in concentrated solutions of LiCI, where the depression of rotation produced by the presence of

2 COMMUNICATIONS TO THE EDITORS 1219 salt WM the greatest (Fig. 1). The peak near 230 mp is independent of these changes and appears to be relatively unaffected by the presence of salt. The bromides and KTFA absorb too strongly in this wavelength region to observe this peak, but in the presence of high concentrations of NaCI, CsCl, or LiCl, there is no tendency of this peak to decrease. There may even be a slight increase in rotation in this region. That the changes in the ORD brought about by high salt concentrations are quite different from those accompanying denaturation is seen in Figure 2. Denaturation in -I0 t V -Buffer 1.1 M LiCl --5.4M 6.8 M x Fig. 1. Effect of high salt concentrations on OR11 of calf thymus DNA. \ \ 10 a Y -I 0 -native in buffer (250) denatured in buffer (90 ) - - native in CsCl 6M (25O) denatured incscl 6M (25O) Fig A Effect of high salt concentrations on ORD of native and denatured calf thymus DNA.

3 1220 COh'IMUNTCATIONS TO TTIE EDITORS dilute buffcr causes a large decrease in rotation at the 290 mp peak with a much smaller change in the 260 mp region. The peak nrar 230 mp appcws to be very sensitive to long-range order iri the helix, and the large decrease in rotation brought about by denaturation shows less revcmal on cooling than the chaiiges at higher wavelengths. The spectrum in CsC1 is quite differont, the changcs in the 260 mp rcagion being much greater than those accompanying denaturation, while those in the vicinity of 230 mp are very small. The optical rotation of denatured DNA in CsCl is intermediate between that for the native form in CsCI, and that for the denatured form in dilute buffer. The effects of all the salts are similar, hut quantitativc.ly there arc significant differences from one sdt to another. Figure 3 shows the rotat,ion plotted against molar concentration of the various salts. The order of effectiveness of the ions in decreasing the rotation is: Ti+ > Cs+ > Na+ for the cations, and Cl- > Br- for the anions. Isolated experiments in CsBr, Cs formate, and CsTFA r,onfirm that t,he effect of Br- is slightly smaller than that of CI- and indicates that formate and trifliioroacet.ate both have a larger effect than chloride. There is no correlation with water act,ivity (aw). A plot, of rotation versus aw does not look very different, than when plotted versus molarity of salt. The effect appears to be reversible. One experiment was done measuring the rotation in 7.8M LiCI, then dialyzing the I)NA hack into 1)SC. The rotat,ion of the dialyxed DNA was within experimental error of that of 1)NA unexposed to high salt concentrations. The degree to whirh these changes are due to vicinal effects of the solvent is uncertain, but it is unlikely that this factor is of primary importance. The changes in the shape of the spectrum, with large effects at some wavelengths and none at others, makes it seem more likely that there are actual changes in the structure of the molecule. hloreover, there is evidence that the rotation spectra of several kinds of single-stranded RNA and the double-stranded DNA-RNA hybrid from F2 bacteriophage are relatively c (moles/l salt) Fig. 3. Comparison of effectiveness of various salts in decreasing optical rotation of calf thymus DNA at the 290 mp peak and the 260 mp trough.

4 COA4MUNICATIONS TO THE EDITORS 1221 unuffected by the presence of high salt conceiitratio~is,~ and one would expect the vicinal solvent effects to be very similar for these macroniolocules. It is thercfore most likely that the spectral changes in the presence of high xalt concentrations are a result of some structural change in the DNA. This is suggestive of the B + '4 transition in fibers, which also occura on dehydration. Thus it is appropriate to ask whether the presence of salt causes a change in helical structure to the A form in solution. To answer this qilcstion we need information on the ORD of the A strueture. The x-ray diffraction patterns of double-stranded RNA are quite similar to those of the A form of DNA,*,g although the detaiied structure is probably somewhat different from both the A and B forms of I)NA.lOJL Recent studies of Milmari et al12 indicate that the structure of the DNA-RNA hybrid is very close to that of the A form of DNA, and shows very little change as the relatively humidity is varied. They concludc that the Y-OH group precludes the existence of thc B form in polyribonucleotides for steric rcasons. It is thcwfore interesting to look at the ORD of these structures in solutioii and see what one can predict about that of the A form of DNA. Figure 4 shows a comparison of the rotation spectra of DNA, double-strandcd RNA, and the I)NA-RKA hybrid. The RXA curve was taken from the curve published by Oriel and Wilderla for MS2 ILNA. The spectrum of the hybrid is that of F2 bacteriophage; the sample was generously provided by M. Chamberlin and is the same material as that on which the x-ray diffraction was done. The ORD spectrum of the hybrid is more similar to doublc-stranded RNA than to DNA. Let us assume that both these structures are in the A form. The most conspicuous differences from the prcsumed B form of DNA are in the larger absolute magnitude of the rotation at the maxima near 285 mp and the minima near 250 nip, and a smaller pcak near 230. (However, it is difficult to predict what oiic might expect of the A form of 1)NA at 230 mp, because of the tcwlency of the hybrid to be more positive there than HNA). These differencw are roughly the opposite of the changes obwrved in the DNA spectra. on adding salt. Any predictions one could make about the spectrum of the A form of DNA from these data would be yuit.e differcnt from t.hc: spcctrum actually observed on the addition of salt. Thus we would conclude that a B+A transition docs not occur in c,oiicciitrated salt solutions as the 1)NA moleculc is dehydrated. Whatever structural change is induwd by the presence of salt is quite different both from this transition and from denaturation. I Fig. 4. Coinparisoil of OlW of double-stranded nuclcic acid helices.

5 1222 COMMUNICATIONS TO THE EDITORS The ORD of the hybrid was also measured in the presence of 3M CsCl. One can see from Figure 5 that the effect of the salt here is very small compared to the effect on DNA. The salt effect, then, acts fairly specifically on the B structure. The changes in the ORD of DNA show some resemblance to changes in ORD observed by Chengl4 in the presence of very low concentrations of some divalent cations. The possibility cannot be excluded that part of the changes observed here are due to the presence of heavy ions. However, it seems unlikely that heavy ion contamination could account for the major part of the effects observed, since the citrate in the buffer should keep the concentrations of divalent impurities below the level used by Cheng, except possibly at the highest concentrations of salt used. It seems more likely that Effect of salt on DNA buffer CsCl 2.4 M A

6 COMMUNICATIONS TO THE EDITORS 1223 both low concentrations of divalent ions and higher concentrations of monovalent ions are capable of bringing about structural changes in the DNA responsible for the alterations in its ORD spectrum. The order of effectiveness of the various ions in bringing about the ORD changes cannot be correlated either with effects on water structure or with the ability of the salts to lower the melting temperature of DNA. Moreover, although the loss of rotation appears to follow roughly the loss of hydration with water activity,16 the large specific ion effect suggests that whatever structural changes are taking place depend on more than just the quantity of water bound to the helix. What kind of structural change actually does occur is uncertaiii. One possibility is a change in the number of base-pairs per turn in the Watson-Crick helix. There is evidence from the work of Wang et a1.16 that this parameter is sensitive to the ionic environment of the DNA. It seems likely that the nature of the specific interaction of the DNA with its counterions causes significant differences in the fine structure of the DNA in solution. We would like to acknowledge the contribution of Dr. R. Davis, who originally observed and told us of the effect of high salt concentration on the ORD of DNA, and to thank Dr. M. Maestre for many helpful discussions while this work was in progress. We are very grateful to Dr. M. Chamberlin for material and help with the experiments on the DNA-RNA hybrid. The irivcstigation was supported in part by a U.S. Public Health Service Grant (GM 11180) and fellowship (F1-6M 17791) from thc National Institute of General Medical Scieiices. References 1. R. Franklin and R. G. Gosliiig, Acta Cryst., 6, 673 (1953). 2. C. F. Emanuel, Biochim. Biophys. Acta, 42, 91 (1960). 3. K. Hamaguchi and E. P. Geiduschek, J. Am. Chem. Soc., 84, 1329 (1962). 4. S. Z. Hirschman and G. Felsenfeld, J. hlol. Biol., 16, 347 (1966). 5. J. Timmermans, The Physico-chemical Constants of Binary Systems in Concentrated Solutions, Vol. 3, Interscience, NEW York, J. Vinograd and J. E. Hearst, Progr. Chem. Orq. Nat. Prod., 20, 372 (1962). 7. M. Maestre, private communication (1967). 8. R. Langridge and P. J. Gomatos, Science, 141, 694 (19K3). 9. M. Spencer, W. Fuller, M. H. F. Wilkins, and G. L. Brown, Xature, 194, 1014 (1962). 10. T. Sato, Y. Kyogoku, S. Higuchi, Y. Mitsui, Y. Iitaka, and M. Tsuboi, J. MoZ. BioZ., 16, 180 (1966). 11. S. Arnott, M. H. F. Wilkiiis, W. Fuller, J. H. Veiiablc, niid R. Langridge, J. Mol. Bid, 27, 549 (1967). 12. G. Milman, R. Laiigridgc, and M. Chamberliti, Proc. Nat. dcad. Sci. U.S., 57, 1804 (1967). 13. P. J. Oricl and J. Wilder, Nature, 214, 702 (1967). 14. P. Cheng, Biochim. Biophys. Acta, 102, 314 (1965). 15. J. E. Hearst and J. Vinograd, Proc. Nat. Acad. Sci. U.S., 47,825, 999, 1005, 1015 (1961). 16. J. C. Wang, D. Baumgarten, and B. M. Olivera, Proc. Nat. Acad. Sci. U.S., (1967). MARY-JANE B. TUNIS JOHN E. HEARST Group in Biophysics and Departmelit of Chemistry University of California Berkeley, Califronia Itcccived Fcbrunry 5, 1968

The Approach to Equilibrium in a Buoyant-Density Gradient

The Approach to Equilibrium in a Buoyant-Density Gradient BIOPOLY MERS VOL. 11, 17651769 (1972) The Approach to Equilibrium in a BuoyantDensity Gradient CARL W. SCHMID and JOHN E. HEARST, Department of Chemistry, University of California Berkeley, California

More information

Sedimentation Equilibrium of DNA Samples Heterogeneous in Density

Sedimentation Equilibrium of DNA Samples Heterogeneous in Density BIOPOLY MERS VOL. 11, 1913-1918 (1972) Sedimentation Equilibrium of DNA Samples Heterogeneous in Density CARL W. SCHMID and JOHN E. HEARST, Department of Chemistry, University of California, Berkeley,

More information

A Thermodynamic Investigation into the Stabilization of Poly(dA) [poly(dt)] 2 Triple Helical DNA by Various Divalent Metal Ions

A Thermodynamic Investigation into the Stabilization of Poly(dA) [poly(dt)] 2 Triple Helical DNA by Various Divalent Metal Ions Thermodynamics on the Poly(dA) [poly(dt)] Triplex Formation Bull. Korean Chem. Soc. 009, Vol. 30, No. 11 691 A Thermodynamic Investigation into the Stabilization of Poly(dA) [poly(dt)] Triple Helical DNA

More information

A Determination of DNA-DAPI Binding using Fluorescence Spectroscopy

A Determination of DNA-DAPI Binding using Fluorescence Spectroscopy CHEM 311L Revision 1.2 A Determination of DNA-DAPI Binding using Fluorescence Spectroscopy In this Laboratory Exercise, we will determine the binding constant K f for complex formation between 4'-6-diamidino-2-phenylindole

More information

SEDIMENTATION EQUILIBRIUM IN A DENSITY

SEDIMENTATION EQUILIBRIUM IN A DENSITY SEDIMENTATION EQUILIBRIUM IN A DENSITY GRADIENT JOHN E. HEARST and CARL W. SCHMID Department of Chemistry, University of Cahfornia, Berkeley, Calfornia 94720 ABSTRACT Sedimentation equilibrium in a density

More information

Circular Dichroism & Optical Rotatory Dispersion. Proteins (KCsa) Polysaccharides (agarose) DNA CHEM 305. Many biomolecules are α-helical!

Circular Dichroism & Optical Rotatory Dispersion. Proteins (KCsa) Polysaccharides (agarose) DNA CHEM 305. Many biomolecules are α-helical! Circular Dichroism & Optical Rotatory Dispersion Polysaccharides (agarose) DNA Proteins (KCsa) Many biomolecules are α-helical! How can we measure the amount and changes in amount of helical structure

More information

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules

Solutions. Experiment 11. Various Types of Solutions. Solution: A homogenous mixture consisting of ions or molecules Solutions Solution: A homogenous mixture consisting of ions or molecules -Assignment: Ch 15 Questions & Problems : 5, (15b,d), (17a, c), 19, 21, 23, 27, (33b,c), 39, (43c,d),45b, 47, (49b,d), (55a,b),

More information

LESSON 11. Glossary: Solutions. Boiling-point elevation

LESSON 11. Glossary: Solutions. Boiling-point elevation LESSON 11 Glossary: Solutions Boiling-point elevation Colligative properties Freezing-point depression Molality Molarity (M) Mole (mol) Mole fraction Saturated solution a colligative property of a solution

More information

The Buoyant Behavior of Viral and Bacterial DNA in Alkaline CsCl. doi: /pnas This information is current as of January 2007.

The Buoyant Behavior of Viral and Bacterial DNA in Alkaline CsCl. doi: /pnas This information is current as of January 2007. The Buoyant Behavior of Viral and Bacterial DNA in Alkaline CsCl Jerome Vinograd, Janet Morris, Norman Davidson, and William F. Dove PNAS 1963;49;12-17 doi:10.1073/pnas.49.1.12 This information is current

More information

Supporting Information

Supporting Information Supporting Information Verification of specific G-quadruplex structure by using a novel cyanine dye supramolecular assembly: I. Recognizing mixed G-quadruplex in human telomeres Qianfan Yang, Junfeng Xiang,

More information

Specifically colorimetric recognition of calcium, strontium, barium. ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles

Specifically colorimetric recognition of calcium, strontium, barium. ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles Electronic Supporting Information (ESI) for Specifically colorimetric recognition of calcium, strontium, barium ions using 2-mercaptosuccinic acid-functionalized gold nanoparticles and its use in reliable

More information

ON ABSORPTION SPECTRA OF CoCl 2 /ACETONE SYSTEMS

ON ABSORPTION SPECTRA OF CoCl 2 /ACETONE SYSTEMS Journal of Optoelectronics and Advanced Materials Vol. 7, No., April 5, p. 19-115 ON ABSORPTION SPECTRA OF CoCl /ACETONE SYSTEMS G. Stanescu, Ath. Trutia * Bucharest University, Faculty of Physics, POB

More information

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion.

**The partially (-) oxygen pulls apart and surrounds the (+) cation. The partially (+) hydrogen pulls apart and surrounds the (-) anion. #19 Notes Unit 3: Reactions in Solutions Ch. Reactions in Solutions I. Solvation -the act of dissolving (solute (salt) dissolves in the solvent (water)) Hydration: dissolving in water, the universal solvent.

More information

Chapter 7 Ionic and Metallic Bonding

Chapter 7 Ionic and Metallic Bonding Chapter 7 Ionic and Metallic Bonding 7.1 Ions 7.2 Ionic Bonds and Ionic 7.3 Bonding in Metals 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. CHEMISTRY & YOU Where does table

More information

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent

Quick Review. - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Quick Review - Chemical equations - Types of chemical reactions - Balancing chemical equations - Stoichiometry - Limiting reactant/reagent Water H 2 O Is water an ionic or a covalent compound? Covalent,

More information

Crystal Violet as a Fluorescent Switch-On Probe for I-Motif: Label-Free DNA-Based Logic Gate

Crystal Violet as a Fluorescent Switch-On Probe for I-Motif: Label-Free DNA-Based Logic Gate Crystal Violet as a Fluorescent Switch-On Probe for I-Motif: Label-Free DNA-Based Logic Gate Dik-Lung Ma,* a Maria Hiu-Tung Kwan, a Daniel Shiu-Hin Chan, a Paul Lee, a Hui Yang, a Victor Pui-Yan Ma, a

More information

A rule of seven in Watson-Crick base-pairing of mismatched sequences

A rule of seven in Watson-Crick base-pairing of mismatched sequences A rule of seven in Watson-Crick base-pairing of mismatched sequences Ibrahim I. Cisse 1,3, Hajin Kim 1,2, Taekjip Ha 1,2 1 Department of Physics and Center for the Physics of Living Cells, University of

More information

DEOXYRIBONUCLEATE STRUCTURAL TRANSITION PRODUCED BY ELECTRIC FIELDS IN AQUEOUS SODIUM

DEOXYRIBONUCLEATE STRUCTURAL TRANSITION PRODUCED BY ELECTRIC FIELDS IN AQUEOUS SODIUM STRUCTURAL TRANSITION PRODUCED BY ELECTRIC FIELDS IN AQUEOUS SODIUM DEOXYRIBONUCLEATE CHESTER T. 0 'KONSKI and NANCY C. STELLWAGEN From the Department of Chemistry, University of California, Berkeley ABSTRACT

More information

Chapter 9 Practice Worksheet: Reactions in Aqueous Solutions

Chapter 9 Practice Worksheet: Reactions in Aqueous Solutions Chapter 9 Practice Worksheet: Reactions in Aqueous Solutions 1. The compound H 2 S is classified as a weak electrolyte. Describe/draw how it reacts when placed in water. Completely dissociates in water.

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

Chapter 8 - Activity

Chapter 8 - Activity Chapter 8 - Activity dilute solution Ions in concentrated solution interact CM 320 Lecture 10 Chap 8 ow do ionized species interact in solution? The charge on the ions attracts or repels other ionic species

More information

Raman study of magnesium induced conversion of polyu polya duplexes to polyu polya polyu triplexes

Raman study of magnesium induced conversion of polyu polya duplexes to polyu polya polyu triplexes Spectroscopy 24 (2010) 445 448 445 DOI 10.3233/SPE-2010-0473 IOS Press Raman study of magnesium induced conversion of polyu polya duplexes to polyu polya polyu triplexes S.J. Espinoza Herrera and J. Štěpánek

More information

CHEM J-6 June 2014

CHEM J-6 June 2014 CHEM1102 2014-J-6 June 2014 A solution is prepared that contains sodium chloride and sodium chromate (both 0.10 M). When a concentrated solution of silver nitrate is added slowly, white AgCl(s) begins

More information

3. Liquid solutions: a. liquid - liquid Ex. vinegar b. solid - liquid Ex. salt water c. gas - liquid Ex. carbonated water in soda pop

3. Liquid solutions: a. liquid - liquid Ex. vinegar b. solid - liquid Ex. salt water c. gas - liquid Ex. carbonated water in soda pop Solution Chemistry Nature of Solutions solutions are homogeneous mixtures substances in solution are different from their solid, liquid or gas forms there should be no observable segregation of component

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Chapter 11. Intermolecular Forces and Liquids & Solids

Chapter 11. Intermolecular Forces and Liquids & Solids Chapter 11 Intermolecular Forces and Liquids & Solids The Kinetic Molecular Theory of Liquids & Solids Gases vs. Liquids & Solids difference is distance between molecules Liquids Molecules close together;

More information

CHEMISTRY 15 EXAM II-Version A (White)

CHEMISTRY 15 EXAM II-Version A (White) CHEMISTRY 15 EXAM II-Version A (White) Dr. M. Richards-Babb June 8, 2001 An optical scoring machine will grade this examination. The machine is not programmed to accept the correct one of two sensed answers

More information

Interaction of aromatic ionen oligomers with DNA

Interaction of aromatic ionen oligomers with DNA J. Biosci., Vol. 4, Number 2, June 1982, pp. 127-132. Printed in India. Interaction of aromatic ionen oligomers with DNA. V. Η. MULIMANI, A. C. ROTH* and R. A. DAY*. Department of Chemistry, Division of

More information

Chem 1310 I Answers for Assignment VI Due September 27, 2004

Chem 1310 I Answers for Assignment VI Due September 27, 2004 Chem 1310 I Answers for Assignment VI Due September 27, 2004 p. 233, #33 Increasing the volume by a factor of 3.25 lowers the pressure by a factor of 3.25. Doubling the absolute temperature doubles the

More information

Unit 3: Solubility Equilibrium

Unit 3: Solubility Equilibrium Unit 3: Chem 11 Review Preparation for Chem 11 Review Preparation for It is expected that the student understands the concept of: 1. Strong electrolytes, 2. Weak electrolytes and 3. Nonelectrolytes. CHEM

More information

Nuclear Magnetic Resonance Studies of 35Cl, 37C1, 79Br, and 81Br in Aqueous Solution

Nuclear Magnetic Resonance Studies of 35Cl, 37C1, 79Br, and 81Br in Aqueous Solution Nuclear Magnetic Resonance Studies of 35Cl, 37C, 79Br, and in Aqueous Solution J. BLASER, 0. L U T Z, a n d W. STEINKILBERG Physikalisches Institut der Universität T ü b i n g e n (Z. Naturforsch. 7 a,

More information

Supporting Text Z = 2Γ 2+ + Γ + Γ [1]

Supporting Text Z = 2Γ 2+ + Γ + Γ [1] Supporting Text RNA folding experiments are typically carried out in a solution containing a mixture of monovalent and divalent ions, usually MgCl 2 and NaCl or KCl. All three species of ions, Mg, M +

More information

WEIGHT RIBONUCLEIC ACID IN SOLUTION

WEIGHT RIBONUCLEIC ACID IN SOLUTION THE STRUCTURE OF HIGH MOLECULAR WEIGHT RIBONUCLEIC ACID IN SOLUTION A SMALL-ANGLE X-RAY SCATTERING STUDY SERGE N. TIMASHEFF, J. WITZ, and V. LUZZATI From the Centre de Recherches sur les Macromolecules,

More information

Thermodynamic Stability of Hoogsteen and Watson-Crick. Base Pairs in the Presence of Histone H3-Mimicking Peptide

Thermodynamic Stability of Hoogsteen and Watson-Crick. Base Pairs in the Presence of Histone H3-Mimicking Peptide Supporting information Thermodynamic Stability of Hoogsteen and Watson-Crick Base Pairs in the Presence of Histone H3-Mimicking Peptide Smritimoy Pramanik a, Kaori Nakamura a, Kenji Usui a,b, Shu-ichi

More information

Physical Chemistry I. Crystal Structure

Physical Chemistry I. Crystal Structure Physical Chemistry I Crystal Structure Crystal Structure Introduction Crystal Lattice Bravis Lattices Crytal Planes, Miller indices Distances between planes Diffraction patters Bragg s law X-ray radiation

More information

Supporting Information

Supporting Information Supporting Information Ag.1 Pd.9 /rgo: An Efficient Catalyst for Hydrogen Generation from Formic Acid/Sodium Formate Yun Ping, Jun-Min Yan*, Zhi-Li Wang, Hong-Li Wang, Qing Jiang Key Laboratory of Automobile

More information

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6.

Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Unit 10 Solution Chemistry 1. Solutions & Molarity 2. Dissolving 3. Dilution 4. Calculation Ion Concentrations in Solution 5. Precipitation 6. Formula, Complete, Net Ionic Equations 7. Qualitative Analysis

More information

FINAL EXAM REVIEW I will provide all of the same sheets I provided on the quizzes this semester.

FINAL EXAM REVIEW I will provide all of the same sheets I provided on the quizzes this semester. Name: Class: Date: FINAL EXAM REVIEW I will provide all of the same sheets I provided on the quizzes this semester. True/False Indicate whether the statement is true or false. 1) Colligative properties

More information

Unit VI Stoichiometry. Applying Mole Town to Reactions

Unit VI Stoichiometry. Applying Mole Town to Reactions Unit VI Stoichiometry Applying Mole Town to Reactions Learning Goals I can apply mole town to reactions to determine the amount of product based on the amount of a reactant. I can apply mole town to reaction

More information

Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a ph-assisted and Surfactant-Free Route

Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a ph-assisted and Surfactant-Free Route Supporting Information Instantaneous and Quantitative Functionalization of Gold Nanoparticles with Thiolated DNA Using a ph-assisted and Surfactant-Free Route Xu Zhang,, Mark R. Servos and Juewen Liu *

More information

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file)

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file) Section 3.1: Solubility Rules (For Ionic Compounds in Water) Section 3.1.1: Introduction Solubility

More information

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions Chapter 13 Solutions Characteristics of a Solution A solution is a homogeneous mixture A solution is composed of a: Solute: the substance in lesser amount Solvent: the substance in greater amount Two liquid

More information

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in

Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in Problem Set #10 Assigned November 8, 2013 Due Friday, November 15, 2013 Please show all work for credit To Hand in 1. 2. 1 3. 4. The vapor pressure of an unknown solid is approximately given by ln(p/torr)

More information

Supporting Information

Supporting Information Supporting Information Materials and Methods: Tris-hydroxymethylaminomethane (Tris) was purchased from USB. All the other reagents used in the experiments were purchased from Sigma. All the DNA oligonucleotides

More information

GENERAL PHARMACOPOEIA MONOGRAPH

GENERAL PHARMACOPOEIA MONOGRAPH MINISTRY OF HEALTH OF THE RUSSIAN FEDERATION GENERAL PHARMACOPOEIA MONOGRAPH Spectrophotometry in the ultraviolet GPM.1.2.1.1.0003.15 and visible spectral regions Replaces the SPRF X GPM, SPRF XI GPM,

More information

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic

Formation of a salt (ionic compound): Neutralization reaction. molecular. Full ionic. Eliminate spect ions to yield net ionic Formation of a salt (ionic compound): Neutralization reaction molecular Full ionic Eliminate spect ions to yield net ionic Hydrolysis/ reaction with water Anions of Weak Acids Consider the weak acid HF

More information

Bonding. October 20, Intro to Ionic Bonds Honors.notebook

Bonding. October 20, Intro to Ionic Bonds Honors.notebook Bonding Power Standards 1. OBJ: Students will be able to identify an ionic compound 2. OBJ: Students will be able to write out an ionic compounds in name and formula. 3. OBJ: Students will be able to characterize

More information

15 Acids, Bases, and Salts. Lemons and limes are examples of foods that contain acidic solutions.

15 Acids, Bases, and Salts. Lemons and limes are examples of foods that contain acidic solutions. 15 Acids, Bases, and Salts Lemons and limes are examples of foods that contain acidic solutions. Chapter Outline 15.1 Acids and Bases 15.2 Reactions of Acids and Bases 15.3 Salts 15.4 Electrolytes and

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Liquids, Solids, and Intermolecular Forces Outline 1. Phase Diagrams and Triple Point Diagrams 2. Intermolecular Forces Review 1. Phase Diagrams and Triple Point Diagrams Phase Diagram of Water Triple

More information

Experiment 5 Equilibrium Systems

Experiment 5 Equilibrium Systems PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

Types of bonding: OVERVIEW

Types of bonding: OVERVIEW 1 of 43 Boardworks Ltd 2009 Types of bonding: OVERVIEW 2 of 43 Boardworks Ltd 2009 There are three types of bond that can occur between atoms: an ionic bond occurs between a metal and non-metal atom (e.g.

More information

Cu-Creatinine- Metol system

Cu-Creatinine- Metol system Quantification of Creatinine in Human Serum using Metol as a Chromogenic Probe Materials and methods 6.1. Reagents 6.1.1. N-methyl-p-aminophenol sulfate N-methyl-p-aminophenol sulfate also denoted as Metol

More information

CATION EXCHANGE OF ORGANIC COMPOUNDS ON MONTMORILLONITE IN ORGANIC MEDIA

CATION EXCHANGE OF ORGANIC COMPOUNDS ON MONTMORILLONITE IN ORGANIC MEDIA CATION EXCHANGE OF ORGANIC COMPOUNDS ON MONTMORILLONITE IN ORGANIC MEDIA by JAMES L. McATEE, JR. 1 ABSTRACT Cation exchange of dimethyldioctadecylammonium (DMDO) ion for dimethylbenzyllaurylammonium (DMBL)

More information

Writing Formulas for Binary Ionic Compounds. So we have written names for binary ionic compounds. But how do we get their formulas?

Writing Formulas for Binary Ionic Compounds. So we have written names for binary ionic compounds. But how do we get their formulas? So we have written names for binary ionic compounds. But how do we get their formulas? So we have written names for binary ionic compounds. But how do we get their formulas? It is very important to remember

More information

CH1810 Lecture #1 Solutions of Ionic Compounds

CH1810 Lecture #1 Solutions of Ionic Compounds CH1810 Lecture #1 Solutions of Ionic Compounds Solutions Homogeneous mixtures are called solutions. The component of the solution that changes state is called the solute. The component that keeps its state

More information

Recenltly,l'2 the determination of diffusion coefficients of electrolytes in dilute

Recenltly,l'2 the determination of diffusion coefficients of electrolytes in dilute THE DIFFUSION COEFFICIENTS OF THE ALKALI METAL CHLORIDES AND POTASSIUM AND SILVER NITRATES IN DILUTE AQUEOUS SOLUTIONS AT 250* BY HERBERT S. HARNED DEPARTMENT OF CHEMISTRY, YALE UNIVERSITY Communicated

More information

ph = -log[h+], [H+] = 10-pH ph + poh = 14

ph = -log[h+], [H+] = 10-pH ph + poh = 14 You may remove this page. ph = -log[h+], [H+] = 10-pH McVc = MdVd ph + poh = 14 NA = 6.02 x 1023 mol-1 JBA 2017 Chemistry Exam 3 Name: Score: /100 = /80 Multiple choice questions are worth two points each.

More information

Chapter 4. Solutions and Solution Stoichiometry

Chapter 4. Solutions and Solution Stoichiometry Chapter 4 Solutions and Solution Stoichiometry Solutions Homogeneous mixtures are called solutions. The component of the solution that changes state is called the solute. The component that keeps its state

More information

Tuesday, September 22, Ionic Compounds

Tuesday, September 22, Ionic Compounds Ionic Compounds Compounds Compound: Two or more elements chemically combined. Ionic Compounds Called an ionic compound because it is made up of negative and positive ions that have resulted from the transfer

More information

Chapter 15. Solutions

Chapter 15. Solutions Chapter 15 Solutions Key Terms for this Chapter Make sure you know the meaning of these: Solution Solute Solvent Aqueous solution Solubility Saturated Unsaturated Supersaturated Concentrated Dilute 15-2

More information

Available online Research Article

Available online  Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(4):1069-1073 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Development of extractive spectrophotometric method

More information

Copyright 2018 Dan Dill 1

Copyright 2018 Dan Dill 1 TP The molarity of the NaCl aqueous solution shown in the image is approximately 1. 20 M 2. 20 M 3. 2 M 4. 0.2 M 5. 0.02 M 6. 0.02 M Lecture 19 CH101 A1 (MWF 9:05 am) Friday, October 19, 2018 For today

More information

Solution Stoichiometry

Solution Stoichiometry Chapter 8 Solution Stoichiometry Note to teacher: You will notice that there are two different formats for the Sample Problems in the student textbook. Where appropriate, the Sample Problem contains the

More information

CSUS Department of Chemistry Experiment 9 Chem. 1A Experiment 9. Qualitative Analysis of Ions Pre Laboratory Assignment

CSUS Department of Chemistry Experiment 9 Chem. 1A Experiment 9. Qualitative Analysis of Ions Pre Laboratory Assignment Experiment 9. Qualitative Analysis of Ions Pre Laboratory Assignment Name: Lab Section Score: / 10 1. Suppose you are given an unknown aqueous solution that contained one of the following cations: Ag +,

More information

Ionic Bonding and Ionic Compounds

Ionic Bonding and Ionic Compounds Main Ideas Ionic bonds form from attractions between positive and negative ions Differences in attraction strength give ionic and molecular compounds different properties Multiple atoms can bond covalently

More information

Chemistry 222 Fall 2015 Exam 2: Chapters 5,6,7 80 Points

Chemistry 222 Fall 2015 Exam 2: Chapters 5,6,7 80 Points Chemistry 222 Fall 2015 Exam 2: Chapters 5,6,7 80 Points Name Complete two (2) of problems 1-3, problem 4, and three (3) of problems 5-8. CLEARLY mark the problems you do not want graded. You must show

More information

Shigeya SnTO and SUIIllO UCHIKAWA. Faculty of Education, Kumamoto University, Kurokami, Kumamoto 860

Shigeya SnTO and SUIIllO UCHIKAWA. Faculty of Education, Kumamoto University, Kurokami, Kumamoto 860 ANALYTICAL SCIENCES FEBRUARY 1986, VOL. 2 47 Extraction-Spectrophotometric Determination of Antimony(V) with 2-Hydroxyisocaproic Acid and Citrate, with Application to Differential Determination of Antimony(V)

More information

ANISOTROPIC ABSORPTION OF LINEARLY POLARIZED LIGHT BY CYLINDRICAL MOLECULES

ANISOTROPIC ABSORPTION OF LINEARLY POLARIZED LIGHT BY CYLINDRICAL MOLECULES ANISOTROPIC ABSORPTION OF LINEARLY POLARIZED LIGHT BY CYLINDRICAL MOLECULES RAYMOND GABLER, JAMES BEARDEN, and IRWIN BENDET From the Department of Biophysics and Microbiology, University of Pittsburgh,

More information

Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on

Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on 1 Why is water usually a liquid and not a gas? Why does liquid water boil at such a high temperature for such a small molecule? Why does ice float on water? Why do snowflakes have 6 sides? Why is I 2 a

More information

OPTICAL ROTATORY DISPERSION OF CHLOROPHYLL IN SOLUTION AND IN CHLOROPLAST SUBUNITS*

OPTICAL ROTATORY DISPERSION OF CHLOROPHYLL IN SOLUTION AND IN CHLOROPLAST SUBUNITS* 716 CHEMISTRY: K. SAUER PROC. N. A. S. 7 Vallee, B. L., Federation Proc., 23, 8 (1964). 8 Vallee, B. L., Abstracts 6th International Congress of Biochemistry (1964), p. 255. 9Vallee, B. L., J. F. Riordan,

More information

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example.

Solutions, Ions & Acids, Bases (Chapters 3-4) Example - Limiting Reagents. Percent Yield. Reaction Yields. Yield - example. Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Solutions, Ions & Acids, Bases (Chapters 3-4)

Solutions, Ions & Acids, Bases (Chapters 3-4) Solutions, Ions & Acids, Bases (Chapters 3-4) Chem 107 T. Hughbanks Example - Limiting Reagents SiCl 4 is used in making computer chips. It is produced by the reaction: SiO 2 + 2 C + 2 Cl 2 SiCl 4 + 2

More information

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for

Intermolecular Forces and Liquids and Solids. Chapter 11. Copyright The McGraw Hill Companies, Inc. Permission required for Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw Hill Companies, Inc. Permission required for 1 A phase is a homogeneous part of the system in contact with other parts of the

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 2 The Chemistry of Biology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Chemical Bonding: Chemical Formulas OL

Chemical Bonding: Chemical Formulas OL Name: Chemical Bonding 5. Chemical Bonding: Chemical Formulas Ionic Bonding Covalent Bonding Electronegativity Shapes of Molecules and Intermolecular Forces Objectives -understand that compounds can be

More information

Unit 4 review for finals

Unit 4 review for finals Unit 4 review for finals These are the topics you should know and be able to answer questions about: 1. Types of compounds a. What are the four types of bonding? Describe each type of bonding. i. Ionic

More information

CHEMISTRY The Molecular Nature of Matter and Change

CHEMISTRY The Molecular Nature of Matter and Change CHEMISTRY The Molecular Nature of Matter and Change Third Edition Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 11 INTERMOLECULAR FORCES

More information

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 8-Iodoquinolinium triiodide tetrahydrofuran solvate Jung-Ho Son and James D. Hoefelmeyer* Department of Chemistry,

More information

Chemistry 12 Unit III Solubility Notes

Chemistry 12 Unit III Solubility Notes Chemistry 12 Unit III Solubility Notes III.1 A Review Of Solubility There are only three classes of compounds that form ionic solutions: ACIDS, BASES and SALTS. This unit will deal only with SALTS. Acids

More information

Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction.

Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction. Experiment 3. Condensation Reactions of Ketones and Aldehydes: The Aldol Condensation Reaction. References: Brown & Foote, Chapters 16, 19, 23 INTRODUCTION: This experiment continues the saga of carbon-carbon

More information

J- vs. H-type assembly: pentamethine cyanine (Cy5) as near IR chiroptical. reporter

J- vs. H-type assembly: pentamethine cyanine (Cy5) as near IR chiroptical. reporter S1 Supporting Information: J- vs. H-type assembly: pentamethine cyanine (Cy5) as near IR chiroptical reporter Larysa I. Markova, a,b Vladimir L. Malinovskii, a Leonid D. Patsenker b and Robert Häner* a

More information

Protein folding. Today s Outline

Protein folding. Today s Outline Protein folding Today s Outline Review of previous sessions Thermodynamics of folding and unfolding Determinants of folding Techniques for measuring folding The folding process The folding problem: Prediction

More information

CHM112 Lab Hydrolysis and Buffers Grading Rubric

CHM112 Lab Hydrolysis and Buffers Grading Rubric Name Team Name CHM112 Lab Hydrolysis and Buffers Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial calculations completed

More information

Chem 1515 Section 2 Problem Set #4. Name Spring 1998

Chem 1515 Section 2 Problem Set #4. Name Spring 1998 Chem 1515 Section 2 Problem Set #4 Name Spring 1998 TA Name Lab Section # ALL work must be shown to receive full credit. Due Wednesday, February 4th PS4.1. Describe all the energy changes which must be

More information

SCI 3101 Test IV. 3) Diffraction is a result of A) interference. B) polarization. C) reflection. D) refraction. E) dispersion.

SCI 3101 Test IV. 3) Diffraction is a result of A) interference. B) polarization. C) reflection. D) refraction. E) dispersion. SCI 3101 Test IV MULTIPLE CHOICE. 1) The sky is blue because air molecules in the sky act as tiny A) mirrors that reflect only blue light. B) prisms. C) sources of white light. D) resonators that scatter

More information

SOLUTION CONCENTRATIONS

SOLUTION CONCENTRATIONS SOLUTION CONCENTRATIONS The amount of solute in a solution (concentration) is an important property of the solution. A dilute solution contains small quantities of solute relative to the solvent, while

More information

A Novel Detection Technique of Hydrazine Hydrate: Modality Change of Hydrogen-Bonding Induced Rapid and Ultrasensitive Colorimetric Assay

A Novel Detection Technique of Hydrazine Hydrate: Modality Change of Hydrogen-Bonding Induced Rapid and Ultrasensitive Colorimetric Assay A Novel Detection Technique of Hydrazine Hydrate: Modality Change of Hydrogen-Bonding Induced Rapid and Ultrasensitive Colorimetric Assay Zhenlu Zhao, a Kelong Ai, b Guo Zhang, b Ying Gao, a Xiuyun Yang,*

More information

IGCSE Double Award Extended Coordinated Science

IGCSE Double Award Extended Coordinated Science IGCSE Double Award Extended Coordinated Science Chemistry 5 - Electricity and Chemistry Electrolysis You need to know that electrolysis is: - The breakdown of ionic substances into their constituent elements

More information

5'-linked chains has been determined for oriented fibers by X-ray diffractions6 and

5'-linked chains has been determined for oriented fibers by X-ray diffractions6 and SOME OPTICAL PROPERTIES OF DIADENOSINE-5'-PHOSPHATES BY J. F. SCOTT AND P. C. ZAMECNIK JOHN COLLINS WARREN LABORATORIES, MASSACHUSETTS GENERAL HOSPITAL, BOSTON Communicated October 3, 1969 Abstract.-The

More information

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C

Heat Capacity of Water A) heat capacity amount of heat required to change a substance s temperature by exactly 1 C CHEMISTRY Ch. 13 Notes: Water and Its Solutions NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 13.1 Notes I. Water Molecule Characteristics POLAR molecule (a

More information

Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches

Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches Supporting Information Pathogenic C9ORF72 Antisense Repeat RNA Forms a Double Helix with Tandem C:C Mismatches David W. Dodd, Diana R. Tomchick, David R. Corey, and Keith T. Gagnon METHODS S1 RNA synthesis.

More information

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2

Supporting Information. Synthesis and Upconversion Luminescence of BaY 2 Supporting Information Synthesis and Upconversion Luminescence of BaY 2 F 8 :Yb 3+ /Er 3+ Nanobelts 5 Guofeng Wang, Qing Peng, and Yadong Li* Department of Chemistry and State Key Laboratory of New Ceramics

More information

CHEMISTRY Matter and Change

CHEMISTRY Matter and Change CHEMISTRY Matter and Change Table Of Contents Section.1 Measuring Matter Section.2 Mass and the Mole Section.3 Moles of Compounds Chapter : Section.4 Empirical and Molecular Formulas Section.5 Formulas

More information

4. Circular Dichroism - Spectroscopy

4. Circular Dichroism - Spectroscopy 4. Circular Dichroism - Spectroscopy The optical rotatory dispersion (ORD) and the circular dichroism (CD) are special variations of absorption spectroscopy in the UV and VIS region of the spectrum. The

More information

Term test #2 (50 points) Friday, June 24, This test has 10 questions and you have 50 minutes.

Term test #2 (50 points) Friday, June 24, This test has 10 questions and you have 50 minutes. Term test #2 (50 points) Friday, June 24, 2011 This test has 10 questions and you have 50 minutes. A calculator and periodic table may be used as required. Please use figures whenever possible illustrate

More information

research papers 1. Introduction Thomas C. Terwilliger a * and Joel Berendzen b

research papers 1. Introduction Thomas C. Terwilliger a * and Joel Berendzen b Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Discrimination of solvent from protein regions in native Fouriers as a means of evaluating heavy-atom solutions in the MIR and

More information

REVIEW QUESTIONS Chapter 17

REVIEW QUESTIONS Chapter 17 Chemistry 102 REVIEW QUESTIONS Chapter 17 1. A buffer is prepared by adding 20.0 g of acetic acid (HC 2 H 3 O 2 ) and 20.0 g of sodium acetate (NaC 2 H 3 O 2 ) in enough water to prepare 2.00 L of solution.

More information

-d(i, + M4) = 0. (2)

-d(i, + M4) = 0. (2) PRESSURE AND HYDRATION EFFECTS ON CHEMICALLY REACTING SYSTEMS IN THE ULTRACENTRIFUGE* BY LYNN F. TENEYCKt AND WALTER KAUZMANN PRICK CHEMICAL LABORATORY, PRINCETON UNIVERSITY Communicated July 3, 1967 The

More information

Science 1206 Ch. 3 - Chemical names, formulas and equations

Science 1206 Ch. 3 - Chemical names, formulas and equations Science 1206 Ch. 3 - Chemical names, formulas and equations 3.1 - Ionic and molecular compounds (pp. 98-107) Compounds A compound is a pure substance made of a combination of elements. The elements are

More information