Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of PCPDTBT/PCBM: Influence of Solvent Additives Steve Albrecht, Wolfram Schindler, Jona Kurpiers, Juliane Kniepert, James C. Blakesley, Ines Dumsch, Sybille Allard, Konstantinos Fostiropoulos, Ullrich Scherf, and Dieter Neher * Universität Potsdam, Institute of Physics and Astronomy, Soft Matter Physics, D- Potsdam, Germany Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz, D- Berlin, Germany Bergische Universität Wuppertal, Macromolecular Chemistry and Institute for Polymer Technology, Gauss-Strasse, D- Wuppertal, Germany The supporting information contains the following data: - details on sample fabrication and measurement techniques - Fig. S: (a) electron energy loss spectra and (b) thin film absorption - Fig. S: total extracted charges and EQEs from TDCF measurements with different pulse fluences - Fig. S: comparison of ratios between the two blends: current under AM.G and total extracted charge from TDCF for different bias - Fig. S: total-, pre- and collected charges for blends with and without DIO measured with different delay times at.;. and. V pre bias together with the corresponding bimolecular recombination fits - Fig. S: drift diffusion fits to TDCF transients with different delay times for blends (a) with and (b) without DIO. * corresponding author, neher@uni-potsdam.de

2 Sample fabrication: The solar cell-, TDCF- as well as photo-celiv devices were fabricated on structured ITO coated glass slides (Optrex) pre-cleaned in acetone, detergent, DI-water, isopropanol and dried with a nitrogen gun. The pre-cleaned ITO substrate was plasma-cleaned and a - nm layer of PEDOT:PSS (Clevios AI ) was spin cast ontop. The sample was subsequently transferred into a nitrogen filled glove-box followed by annealing at C for min. The active layer was spin cast from solutions containing : (by weight) blend ratios of PCPDTBT (M w = g/mol, PDI=., prepared in a Stille type polycondensation following a procedure described in literature) and PC BM (%, Solenne). Chlorobenzene was used as the solvent. Samples were prepared with and without vol% diiodooctane (DIO) as processing agent. Finally nm Ca and nm Al were thermally evaporated with a base pressure below - mbar trough shadow masks to define the active area to be. mm². Such small area was used to realize a small RC-constant of the device. Due to the high boiling point of DIO, all devices processed with DIO have been dried in vacuum at room-temperature for at least h prior to evaporation of Ca and Al, since residual DIO functions as a hole trap. Samples for Photo-CELIV or TDCF have been encapsulated with two component epoxy resin and a glass lid prior to air exposure. For the TEM measurements, blends processed with and without DIO where prepared on ITO/PEDOT:PSS identical to the solar cell samples but with smaller thicknesses of to nm. These films where then floated off in de-ionized water and picked up by the TEM-grid. Plasmon maps based on EFTEM images: Phase separation was imaged using spectroscopic contrast in the TEM as recently demonstrated for blends of PHT and PCBM. Thin films were analyzed in a Zeiss Libra TEM equipped with an energy filter. By electron energy loss spectroscopy plasmon energies of. ev and. ev were measured for pristine PCPDTBT and PC BM, respectively. A series of energy filtered images of the blend films was recorded in the region from ev to ev using a. ev window and an energy

3 increment of. ev. Plasmon spectra were extracted pixel-by-pixel from the spatially corrected image stack and adjusted for energetic drift and non-isochromaticity. Peak centers were determined by an automatic Gaussian fitting routine and laterally mapped. TDCF measurements: The measurement-scheme was described in detail elsewhere. The pulsed excitation (, ns pulse width, Hz repetition rate, ns jitter) was done with a diode-pumped, Q-switched Nd:YAG laser (NT,EKSPLA). The current through the device was measured via a Ω resistor in series with the sample and was recorded with a Yokogawa DL oscilloscope. For decreasing the time delay between the laser pulse and the start of the collection voltage ramp to ns, the following measures were taken. First, Agilent A pulse generator with a very fast slew rate of. ns was used to apply the preand collection bias to the sample. Second, to reduce the effect of the laser jitter on the measurement, the pulse generator was triggered via a fast photodiode (EOT ET TTL). Also, to compensate the internal latency of the pulse generator, the laser pulses were delayed with a m long multimode fiber (LEONI) with respect to the first trigger diode. The pulses broadened to. ns after the fiber. A second fast photodiode (EOT ET TTL) was placed after the fiber to trigger the oscilloscope. The pulse fluence was measured with a Ophir Vega power meter equipped with a photodiode sensor. Data analysis: The bimolecular recombination coefficient was iteratively calculated from the TDCF-data with equation S. (S) Here, and are the integrals of the photocurrent during delay and collection, respectively, d the device thickness and A the active area. Note that (S) also considers the density of dark charge carriers due to injected charges at forward bias. An analysis of the data without considering will slightly overestimate. The dark charge density has been measured with dark CELIV experiments for each individual pre-bias (see below).

4 Figure S shows, and with the corresponding bmr-fit according to equation (S) for different pre bias settings. Photo-CELIV measurements: Measurements employing the current extraction under linearly increasing voltages (CELIV) technique were realized with the same laser and excitation wavelength as used for TDFC. The linear increasing voltage ramp was applied with an Agilent A wave form generator and a fast custom-built amplifier. The resulting current transients were measured with a fast current amplifier (Femto DHPCA-) and a digital oscilloscope (Yokogawa DL). To vary the field with being the time with maximum photocurrent, the voltage slope was increased by only varying the pulse length. Note that although decreased with increasing, the mobility calculated according to μ ². (S) decreased with higher. The dark density needed for correct calculation of the bmr-coefficient from TDCF transients has been determined via dark-celiv. Devices were held at a pre-bias to to realize steady state conditions and then the voltage ramp was applied. The dark density was determined by subtracting the capacitive current from the CELIV transient. Values for the dark charges were about - cm -. Increasing the dark charge in Eq. S artificially to values much larger than those measured by dark-celiv led to very poor fits of the collected charge versus delay time. We, therefore, rule out that the increase of the bmr-coefficient when the bias approaches as described in the main part of the paper is caused by an exceptional large dark charge. Solar cell characteristics: The solar cell characteristics were measured with an Oriel class A simulator calibrated to mw/cm², the samples were temperature controlled to C during measurement. The calibration of the sun simulator was done with a KG filtered silicon

5 reference cell calibrated at Fraunhofer ISE. All shown data are corrected for spectral mismatch with a mismatch factor of. for PCPDTBT:PC BM processed with and without additive. Figure S Intensity [a.u.]. PC BM. PCPDTBT Blend. ev. ev. ev. Energy Loss [ev] Absorption [a.u.] w/o with DIO Wavelength [nm] Fig. S (a) Electron energy loss spectra from single component films and blends. Shown is the energy region of the plasmon absorption. The PCPDTBT plasmon center peak appears to be at lower energies than that for PC BM. Therefore, the dark areas (loss at higher energy) in Figure refer to the PC BM domains. (b) Thin film absorption spectra on glass substrates of PCPDTBT: PC BM blends processed with (filled symbols) and without DIO (open symbols) for nm thickness. TDCF excitation was at nm, where both blends have almost identical absorption coefficients.

6 Figure S.. EQE.. n tot [cm - ] w/o with V pre [V].... Pulse Fluence [µj/cm²] Fig. S Total charges extracted from TDCF transients measured with a delay of ns at different pulse fluences for blends with (filled symbols) and without DIO (open symbols) at different pre bias of.;. and. V. The corresponding EQEs are plotted in the upper panel.

7 Figure S. Ratio (with / without)..... Q tot steady state current Voltage [V] Fig. S Comparison of the ratio between blends with and without additive in steady state photocurrent (blue solid line) and total extracted charges (black stars) for each bias. The arrows indicate that at conditions of and. V the difference in charge generation is not solely causing the difference in solar cell performance. From the ratio in charge generation, the loss caused by increased non-geminate recombination and less generation of free charges for blends without DIO can be quantified individually. Assuming only difference in charge generation, the photocurrent for additive processed blends can be reduced by the ratio of charge generated for each bias. This would end up in a hypothetical device with J sc =. ma/cm², FF=.%, V oc =. V and PCE=.% for blends without DIO. The measured PCE is.% (.%) for blends without (with DIO). Thus, approximately.% of efficiency is lost due to less efficient generation, whereas ca..% loss can be addressed to the higher imbalance between non-geminate recombination and extraction in blends processed without the additive.

8 Figure S Q [ - C] w/o;.v Q [ - C] w/o;.v Q [ - C] w/o;.v Q pre Q tot Q coll Q [ - C] with;.v with;.v Q [ - C] Dealy Time [ns] Q [ - C] with;.v Q pre Q tot Q coll Fig. S Total-, pre- and collected charges extracted from transients for blends without DIO (upper row) and with DIO (lower row) measured with different delay times and pre bias of. V (left column);.v (middle column) and. V (right column). The pulse fluence was adjusted to. µj/cm². This fluence is almost in the linear regime but the transients have a better signal to noise ratio for higher accuracy fit-results.

9 Figure S Current [ma] Vpre. V Fluence. µj/cm² Vbi. V Qinitial * m - µe(e=).* - cm²/vs µh(e=).* - cm²/vs µe(t=).* - cm²/vs µh(t=).* - cm²/vs t relax ns PF factor -.* - (cm/v) / BMR coeff.* - m³/s Time [ns] Current [ma] Vpre.V Fluence. µj/cm² Vbi. V Qinitial.* m - µe(e=).* - cm²/vs µh(e=).* - cm²/vs µe(t=).* - cm²/vs µh(t=).* - cm²/vs t relax ns PF factor -.* - (cm/v) / BMR coeff.* - m /s Time [ns] Fig. S Drift diffusion fits to TDCF Transients at. µj/cm² and. V pre bias for different delay times between - ns for (a) with DIO and (b) without DIO. The fit parameters initially, homogeneous created charges (Qinitial) and bimolecular recombination coefficient (BMR coeff) have been adopted from measurements. The zero field mobilities µ(e=) and the Poole Frenkel factor (PF factor) have been adopted from mobility measurements and are indicated by the crosses for the corresponding field at the pre bias and the collection voltage in Figure. A slight mobility relaxation was needed to fit the initial slope of the transients. The mobility exponentially decays from the start values µe,h (t=) in ns to the field determined mobility. The built-in field (Vbi) is assumed to be flat at a bias mv higher than. Supplementary References () Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M. et al. Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules,, -. () Cho, S.; Lee, J. K.; Moon, J. S.; Yuen, J. et al. Bulk heterojunction bipolar field-effect transistors processed with alkane dithiol. Org. Electron.,, -. () Herzing, A. A.; Richter, L. J.; Anderson, I. M. D Nanoscale Characterization of Thin-Film Organic Photovoltaic Device Structures via Spectroscopic Contrast in the TEM. The Journal of Physical Chemistry C,, -. () Kniepert, J.; Schubert, M.; Blakesley, J. C.; Neher, D. Photogeneration and Recombination in PHT/PCBM Solar Cells Probed by Time-Delayed Collection Field Experiments. The Journal of Physical Chemistry Letters,, -. () Bange, S.; Schubert, M.; Neher, D. Charge mobility determination by current extraction under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobilities. Physical Review B,,. () Shrotriya, V.; Li, G.; Yao, Y.; Moriarty, T. et al. Accurate Measurement and Characterization of Organic Solar Cells. Adv. Funct. Mater.,, -.

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Electronic Supplementary Information. inverted organic solar cells, towards mass production Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Polyelectrolyte interlayers with a

More information

Supporting Information

Supporting Information Supporting Information Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable and Large-Area Solar Cell Experimental Section Kai Yao, Xiaofeng Wang, Yun-xiang Xu, Fan Li, Lang

More information

Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique

Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique Characterization of electric charge carrier transport in organic semiconductors by time-of-flight technique Raveendra Babu Penumala Mentor: Prof. dr. Gvido Bratina Laboratory of Organic Matter Physics

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 017 Supporting Information Reduced Bimolecular Recombination in Blade-Coated,

More information

Direct measurements of exciton diffusion length limitations on organic solar cell performance

Direct measurements of exciton diffusion length limitations on organic solar cell performance This journal is The Royal Society of Chemistry 212 Supplementary information for Direct measurements of exciton diffusion length limitations on organic solar cell performance Derek R. Kozub, Kiarash Vakhshouri,

More information

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer

Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Supporting Information Improving Efficiency and Reproducibility of Perovskite Solar Cells through Aggregation Control in Polyelectrolytes Hole Transport Layer Xiaodong Li, a Ying-Chiao Wang, a Liping Zhu,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

Electronic Supplementary Information. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All- Polymer Solar Cells

Electronic Supplementary Information. Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All- Polymer Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Thermal Annealing Reduces Geminate Recombination in TQ1:N2200 All- Polymer

More information

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass and a reference pattern of anatase TiO 2 (JSPDS No.: 21-1272).

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION On the origin of the open-circuit voltage of polymer:fullerene solar cells Koen Vandewal, Kristofer Tvingstedt, Abay Gadisa, Olle Inganäs and ean V. Manca The additional information

More information

Supporting Information. Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells

Supporting Information. Benzophenone-based small molecular cathode interlayers with various polar groups for efficient polymer solar cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supporting Information Benzophenone-based small molecular cathode interlayers

More information

Supporting Information for

Supporting Information for Supporting Information for Molecular Rectification in Conjugated Block Copolymer Photovoltaics Christopher Grieco 1, Melissa P. Aplan 2, Adam Rimshaw 1, Youngmin Lee 2, Thinh P. Le 2, Wenlin Zhang 2, Qing

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) Sifting α,ω-di(thiophen-2-yl)alkanes

More information

Supporting Information

Supporting Information Supporting Information Enhanced Thermal Stability in Perovskite Solar Cells by Assembling 2D/3D Stacking Structures Yun Lin 1, Yang Bai 1, Yanjun Fang 1, Zhaolai Chen 1, Shuang Yang 1, Xiaopeng Zheng 1,

More information

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara Charge Extraction from Complex Morphologies in Bulk Heterojunctions Michael L. Chabinyc Materials Department University of California, Santa Barbara OPVs Vs. Inorganic Thin Film Solar Cells Alta Devices

More information

Improved Efficiency for Bulk Heterojunction Hybrid. Solar Cells by utilizing CdSe Quantum Dot - Graphene Nanocomposites

Improved Efficiency for Bulk Heterojunction Hybrid. Solar Cells by utilizing CdSe Quantum Dot - Graphene Nanocomposites Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 SUPPORTING INFORMATION Improved Efficiency for Bulk Heterojunction Hybrid Solar

More information

Supplementary Figure 3. Transmission spectrum of Glass/ITO substrate.

Supplementary Figure 3. Transmission spectrum of Glass/ITO substrate. Supplementary Figure 1. The AFM height and SKPM images of PET/Ag-mesh/PH1000 and PET/Ag-mesh/PH1000/PEDOT:PSS substrates. (a, e) AFM height images on the flat PET area. (c, g) AFM height images on Ag-mesh

More information

Electro-optics of perovskite solar cells

Electro-optics of perovskite solar cells SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.284 Electro-optics of perovskite solar cells Qianqian Lin, Ardalan Armin, Ravi Chandra Raju Nagiri, Paul L Burn* and Paul Meredith* Centre for Organic

More information

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance

Supporting Information The Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 Supporting Information The Roles of Alkyl Halide Additives in Enhancing

More information

Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Nam-gu, Pohang, Gyeongbuk , Republic of Korea.

Department of Chemical Engineering, Pohang University of Science and Technology, San 31, Nam-gu, Pohang, Gyeongbuk , Republic of Korea. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information Green-solvent processable semiconducting polymers

More information

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency

Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Supplementary Information Hysteresis-free low-temperature-processed planar

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information A minimal non-radiative recombination loss for efficient

More information

HKBU Institutional Repository

HKBU Institutional Repository Hong Kong Baptist University HKBU Institutional Repository Department of Physics Journal Articles Department of Physics 2009 Imbalanced charge mobility in oxygen treated polythiophene/fullerene based bulk

More information

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch*

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Supporting information Inverted P3HT:PC61BM organic solar cells incorporating a -extended squaraine dye with H- and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Department

More information

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces Supplementary Information to Role of coherence and delocalization in photo-induced electron transfer at organic interfaces V. Abramavicius,, V. Pranckevičius, A. Melianas, O. Inganäs, V. Gulbinas, D. Abramavicius

More information

Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives

Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Synergistic Improvements in Stability

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Synthesis of Squaraine-based alternated copolymers via metal-free condensation J. Oriou

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION ARTICLE NUMBER: 1118 DOI: 1.138/NENERGY.21.118 Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and fill factor of 77% Nicola Gasparini 1, Xuechen Jiao 2, Thomas

More information

POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE

POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE Eyob Daniel 1 1 Department of Physics, Wollo University, Dessie,

More information

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Au/Ag Core-shell Nanocuboids for High-efficiency

More information

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells Impact of Contact Evolution on the Shelf Life of Organic Solar Cells By Matthew T. Lloyd, Dana C. Olson, Ping Lu, Erica Fang, Diana L. Moore, Matthew S. White, Matthew O. Reese, David S. Ginley, and Julia

More information

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati vikram.kuppa@uc.edu Fei Yu Yan Jin Andrew Mulderig Greg

More information

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 The driving force dependence of charge Carrier dynamics in donor-acceptor

More information

Supplementary Figure 1: Absorbance and photoluminescence spectra. UV/Vis absorbance and photoluminescence spectra of (a) SiIDT-2FBT and

Supplementary Figure 1: Absorbance and photoluminescence spectra. UV/Vis absorbance and photoluminescence spectra of (a) SiIDT-2FBT and Supplementary Figure 1: Absorbance and photoluminescence spectra. UV/Vis absorbance and photoluminescence spectra of (a) SiIDT-2FBT and SiIDT-2FBT/PC70BM (1:2) thin films and (b) SiIDT-DTBT and SiIDT-DTBT/PC70BM

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) intensity [arb. units] Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics Electronic Supplementary Information (ESI) Structure-Property Relationship of Anilino-Squaraines in

More information

Supplementary Information. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells

Supplementary Information. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary Information to Formation of porous SnS nanoplate networks from solution and their

More information

Towards a deeper understanding of polymer solar cells

Towards a deeper understanding of polymer solar cells Towards a deeper understanding of polymer solar cells Jan Anton Koster Valentin Mihailetchi Prof. Paul Blom Molecular Electronics Zernike Institute for Advanced Materials and DPI University of Groningen

More information

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the

Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the Supplementary Figure S1. Verifying the CH 3 NH 3 PbI 3-x Cl x sensitized TiO 2 coating UV-vis spectrum of the solution obtained by dissolving the spiro-ometad from a perovskite-filled mesoporous TiO 2

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

Organic solar cells with inverted layer sequence incorporating optical spacers - simulation and experiment.

Organic solar cells with inverted layer sequence incorporating optical spacers - simulation and experiment. Organic solar cells with inverted layer sequence incorporating optical spacers - simulation and experiment. Birger Zimmermann a, Markus Glatthaar a, Michael Niggemann Author3 a,b, Moritz Kilian Riede b,

More information

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die

Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die Supplementary Figure 1 Scheme image of GIXD set-up. The scheme image of slot die printing system combined with grazing incidence X-ray diffraction (GIXD) set-up. 1 Supplementary Figure 2 2D GIXD images

More information

Mini-project report. Organic Photovoltaics. Rob Raine

Mini-project report. Organic Photovoltaics. Rob Raine Mini-project report Organic Photovoltaics Rob Raine dtp11rdr@sheffield.ac.uk 10/2/2012 ASSIGNMENT COVER SHEET 2010/2011 A completed copy of this sheet MUST be attached to coursework contributing towards

More information

Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots

Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots Supporting Information Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots Byung Joon Moon, 1 Yelin Oh, 1 Dong Heon Shin, 1 Sang Jin Kim, 1 Sanghyun Lee, 1,2 Tae-Wook

More information

Supporting Information

Supporting Information Supporting Information Band Gap Tuning of CH 3 NH 3 Pb(Br 1-x Cl x ) 3 Hybrid Perovskite for Blue Electroluminescence Naresh K. Kumawat 1, Amrita Dey 1, Aravindh Kumar 2, Sreelekha P. Gopinathan 3, K.

More information

Supplementary information for the paper

Supplementary information for the paper Supplementary information for the paper Structural correlations in the generation of polaron pairs in lowbandgap polymers for photovoltaics Supplementary figures Chemically induced OD 0,1 0,0-0,1 0,1 0,0-0,1

More information

Supporting Information. Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode

Supporting Information. Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode Supporting Information Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode Jong Hyuk Yim, Sung-yoon Joe, Christina Pang, Kyung Moon

More information

Charge mobility determination by current extraction under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobilities

Charge mobility determination by current extraction under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobilities Charge mobility determination by current extraction under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobilities Sebastian Bange,* Marcel Schubert, and Dieter Neher Institut

More information

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A.

Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Supporting Information CsPbIBr 2 Perovskite Solar Cell by Spray Assisted Deposition Cho Fai Jonathan Lau, Xiaofan Deng, Qingshan Ma, Jianghui Zheng, Jae S. Yun, Martin A. Green, Shujuan Huang, Anita W.

More information

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120%

Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120% Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120% Marcus L. Böhm, Tom C. Jellicoe, Maxim Tabachnyk, Nathaniel J. L. K. Davis, Florencia Wisnivesky- Rocca-Rivarola,

More information

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU)

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU) Federal Agency for Science and Innovations, Russia (grant 2.74.11.5155) NGC211, Moscow, 12-16 Sep 211 Artem A. Bakulin (Cambridge U) Almis Serbenta Jan C. Hummelen Vlad Pavelyev Paul H.M. van Loosdrecht

More information

University of Wollongong. Research Online

University of Wollongong. Research Online University of Wollongong Research Online Australian Institute for Innovative Materials - Papers Australian Institute for Innovative Materials 2013 Photodegradation in encapsulated silole-based polymer:

More information

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D. The 4th U.S.-Korea NanoForum April 26-27, 2007, Honolulu, USA Improvement of Device Efficiency in Conjugated Polymer/Fullerene NanoComposite Solar Cells School of Semiconductor & Chemical Engineering *

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/8/e1716/dc1 Supplementary Materials for Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells Lijian Zuo, Hexia

More information

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector

High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Supporting information for High-Performance Photocoupler Based on Perovskite Light Emitting Diode and Photodetector Zhi-Xiang Zhang, Ji-Song Yao, Lin Liang, Xiao-Wei Tong, Yi Lin, Feng-Xia Liang, *, Hong-Bin

More information

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5.

Supporting Information. Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized solar cells with efficiencies of up to 5. Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information Room temperature aqueous Sb 2 S 3 synthesis for inorganic-organic sensitized

More information

Charge separation in molecular donor acceptor heterojunctions

Charge separation in molecular donor acceptor heterojunctions Institute of Physics 13 July 2009 Charge separation in molecular donor acceptor heterojunctions Jenny Nelson, James Kirkpatrick, Jarvist Frost, Panagiotis Keivanidis, Clare Dyer-Smith, Jessica Benson-Smith

More information

Enhanced Charge Extraction in Organic Solar Cells through. Electron Accumulation Effects Induced by Metal

Enhanced Charge Extraction in Organic Solar Cells through. Electron Accumulation Effects Induced by Metal Electronic Supplementary Information Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulation Effects Induced by Metal Nanoparticles Feng-xian Xie, a Wallace C. H. Choy, * a Wei

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2017 Supplementary Information Enhanced Charge Collection with Passivation of

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1176706/dc1 Supporting nline Material for High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm Xiong Gong,* Minghong Tong, Yangjun Xia,

More information

Supplementary Information. Bi-hierarchical nanostructures of donor-acceptor. copolymer and fullerene for high efficient bulk

Supplementary Information. Bi-hierarchical nanostructures of donor-acceptor. copolymer and fullerene for high efficient bulk Supplementary Information Bi-hierarchical nanostructures of donor-acceptor copolymer and fullerene for high efficient bulk heterojunction solar cells Hsueh-Chung Liao, Cheng-Si Tsao 2 *, Yu-Tsun Shao 3,

More information

The impact of hot charge carrier mobility on photocurrent losses

The impact of hot charge carrier mobility on photocurrent losses Supplementary Information for: The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells Bronson Philippa 1, Martin Stolterfoht 2, Paul L. Burn 2, Gytis Juška 3, Paul

More information

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Supplementary Information Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Tapan Barman, Amreen A. Hussain, Bikash Sharma, Arup R. Pal* Plasma Nanotech Lab, Physical Sciences Division,

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements Homework #6 is assigned, due May 1 st Final exam May 8, 10:30-12:30pm

More information

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13%

All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency. Exceeding 13% All-Inorganic CsPbI 2 Br Perovskite Solar Cells with High Efficiency Exceeding 13% Chong Liu a,, Wenzhe Li a,, Cuiling Zhang b, Yunping Ma b, Jiandong Fan*,a, Yaohua Mai*,a,b a Institute of New Energy

More information

doi: /

doi: / doi: 10.1080/15421406.2015.1094887 Emission from Charge-Transfer States in Bulk Heterojunction Organic Photovoltaic Cells Based on Ethylenedioxythiophene-Fluorene Polymers TAKESHI YASUDA 1, *, JUNPEI KUWABARA

More information

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea

Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells. Gajeong-Ro, Yuseong-Gu, Daejeon , Korea Supporting Information Tailoring of Electron Collecting Oxide Nano-Particulate Layer for Flexible Perovskite Solar Cells Seong Sik Shin 1,2,, Woon Seok Yang 1,3,, Eun Joo Yeom 1,4, Seon Joo Lee 1, Nam

More information

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 1 Low-temperature-processed inorganic perovskite solar cells via solvent engineering

More information

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14%

Influence of Hot Spot Heating on Stability of. Conversion Efficiency of ~14% Influence of Hot Spot Heating on Stability of Large Size Perovskite Solar Module with a Power Conversion Efficiency of ~14% Kunpeng Li, Junyan Xiao, Xinxin Yu, Tongle Bu, Tianhui Li, Xi Deng, Sanwan Liu,

More information

Supplementary Information

Supplementary Information Supplementary Information Polarization and Dielectric Study of Methylammonium Lead Iodide Thin Film to Reveal its Nonferroelectric Nature under Solar Cell Operating Conditions Md Nadim Ferdous Hoque, 1

More information

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer

High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend electron transport layer Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 High Performance Perovskite Solar Cells based on a PCBM:polystyrene blend

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 0 Electronic Supplementary Information Slow surface passivation and crystal relaxation

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information High-k Polymer/Graphene Oxide Dielectrics for Low-Voltage Flexible Nonvolatile

More information

Photo-Induced Charge Recombination Kinetics in MAPbI 3-

Photo-Induced Charge Recombination Kinetics in MAPbI 3- Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Photo-Induced Charge Recombination Kinetics in MAPbI 3- xcl x Perovskite-like Solar Cells Using

More information

The influence of doping on the performance of organic bulk heterojunction solar cells

The influence of doping on the performance of organic bulk heterojunction solar cells The influence of doping on the performance of organic bulk heterojunction solar cells Markus Glatthaar a, Nicola Mingirulli b, Birger Zimmermann a, Florian Clement b, Moritz Riede a, Bas van der Wiel b,

More information

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass

Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass Supplementary Figure 1. Cross-section SEM image of the polymer scaffold perovskite film using MAI:PbI 2 =1:1 in DMF solvent on the FTO/glass substrate. Scale bar: 1 m. Supplementary Figure 2. Contact angle

More information

Electronic Supplementary Information. Organic Photodiodes from Homochiral Squaraine. Compounds with Strong Circular Dichroism

Electronic Supplementary Information. Organic Photodiodes from Homochiral Squaraine. Compounds with Strong Circular Dichroism Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 27 Electronic Supplementary Information. Organic Photodiodes from Homochiral Squaraine

More information

ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES

ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Organic-based light harvesting devices From power

More information

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells

Supplementary Information. Back-Contacted Hybrid Organic-Inorganic Perovskite Solar Cells Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2016 Journal of Materials Chemistry C Supplementary Information Back-Contacted

More information

Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices

Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices Nanomaterials Volume 2013, Article ID 354035, 4 pages http://dx.doi.org/10.1155/2013/354035 Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic

More information

Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport. Layer for Colloidal Quantum Dot Solar Cells

Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport. Layer for Colloidal Quantum Dot Solar Cells Supporting Information Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells Darren C. J. Neo 1, Nanlin Zhang 1, Yujiro Tazawa 1, Haibo Jiang 1,2, Gareth M. Hughes

More information

Effects of Thermochemical Treatment on CuSbS 2. Photovoltaic Absorber Quality and Solar Cell. Reproducibility

Effects of Thermochemical Treatment on CuSbS 2. Photovoltaic Absorber Quality and Solar Cell. Reproducibility SUPPORTING INFORMATION Effects of Thermochemical Treatment on CuSbS 2 Photovoltaic Absorber Quality and Solar Cell Reproducibility Francisco Willian de Souza Lucas, [a],[b] Adam W. Welch, [a],[c] Lauryn

More information

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics

Continuous, Highly Flexible and Transparent. Graphene Films by Chemical Vapor Deposition for. Organic Photovoltaics Supporting Information for Continuous, Highly Flexible and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics Lewis Gomez De Arco 1,2, Yi Zhang 1,2, Cody W. Schlenker 2,

More information

Recent advancement in polymer solar cells

Recent advancement in polymer solar cells Recent advancement in polymer solar cells Nayera Abdelaziz, Upasana Banerjee Chem8069 March 26 th, 2017 Introduction The energy crisis today arises from the fact that world s supply for the fossil fuels

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Efficient charge generation by relaxed charge-transfer states at organic interfaces Koen Vandewal, Steve Albrecht, Eric T. Hoke, Kenneth R. Graham, Johannes Widmer, Jessica

More information

Opto-electronic characterization of third generation solar cells

Opto-electronic characterization of third generation solar cells Martin Neukom, Simon Züfle, Sandra Jenatsch and Beat Ruhstaller 1. Measurement techniques 1.1. Transient photocurrent decay In the manuscript we presented transient photocurrent simulations with rise and

More information

Severe Morphological Deformation of Spiro- Temperature

Severe Morphological Deformation of Spiro- Temperature Supplementary Information Severe Morphological Deformation of Spiro- OMeTAD in (CH 3 NH 3 )PbI 3 Solar Cells at High Temperature Ajay Kumar Jena, Masashi Ikegami, Tsutomu Miyasaka* Toin University of Yokohama,

More information

Supporting information

Supporting information Supporting information Spontaneous Passivation of Hybrid Perovskite by Sodium Ions from Glass Substrates - Mysterious Enhancement of Device Efficiency Overtime Discovered Cheng Bi, Xiaopeng Zheng, Bo Chen,

More information

Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material**

Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material** DOI: 1.12/adma.262437 Ultrafast Electron Transfer and Decay Dynamics in a Small Band Gap Bulk Heterojunction Material** By In-Wook Hwang, Cesare Soci, Daniel Moses,* Zhengguo Zhu, David Waller, Russell

More information

Supporting Information for. Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr 3. Perovskite Crystals for Thin Film Photovoltaic Applications

Supporting Information for. Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr 3. Perovskite Crystals for Thin Film Photovoltaic Applications Supporting Information for Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr 3 Perovskite Crystals for Thin Film Photovoltaic Applications Nadja Giesbrecht, 1 Johannes Schlipf, 2 Lukas Oesinghaus,

More information

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100%

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% (black) and 80% (red) external quantum efficiency (EQE)

More information

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact

Organo-metal halide perovskite-based solar cells with CuSCN as inorganic hole selective contact Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 214 Organo-metal halide perovskite-based solar cells with CuSCN as inorganic

More information

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells Electron. Mater. Lett., Vol. 11, No. 2 (2015), pp. 236-240 DOI: 10.1007/s13391-014-4326-9 Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of

More information

Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells

Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells Charge Formation, Recombination, and Sweep-Out Dynamics in Organic Solar Cells Sarah R. Cowan, Natalie Banerji, Wei Lin Leong, and Alan J. Heeger* This manuscript is dedicated to the memory of Professor

More information

Photovoltage phenomena in nanoscaled materials. Thomas Dittrich Hahn-Meitner-Institute Berlin

Photovoltage phenomena in nanoscaled materials. Thomas Dittrich Hahn-Meitner-Institute Berlin Photovoltage phenomena in nanoscaled materials Thomas Dittrich Hahn-Meitner-Institute Berlin 1 2 Introduction From bulk to nanostructure: SPV on porous Si Retarded SPV response and its origin Photovoltage

More information

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer

Enhancing the Performance of Organic Thin-Film Transistor using a Buffer Layer Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials July 19-23, 29, Harbin, China L-7 Enhancing the Performance of Organic Thin-Film Transistor using

More information

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates

Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV. Heather M. Yates Atmospheric pressure Plasma Enhanced CVD for large area deposition of TiO 2-x electron transport layers for PV Heather M. Yates Why the interest? Perovskite solar cells have shown considerable promise

More information

Using the Stark effect to understand charge generation in organic solar cells

Using the Stark effect to understand charge generation in organic solar cells Using the Stark effect to understand charge generation in organic solar cells Jelissa De Jonghe-Risse a, Martina Causa b, Ester Buchaca-Domingo c, Martin Heeney c, Jacques-E. Moser a, Natalie Stingelin

More information

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells Supporting Information Thermally Stable Silver Nanowires-embedding Metal Oxide for Schottky Junction Solar Cells Hong-Sik Kim, 1 Malkeshkumar Patel, 1 Hyeong-Ho Park, Abhijit Ray, Chaehwan Jeong, # and

More information

SUPPLEMENTARY INFORMATION. Solution-Processed Organic Solar Cells Based on Dialkylthiol- Substituted Benzodithiophene Unit with Efficiency near 10%

SUPPLEMENTARY INFORMATION. Solution-Processed Organic Solar Cells Based on Dialkylthiol- Substituted Benzodithiophene Unit with Efficiency near 10% SUPPLEMENTARY INFORMATION Solution-Processed Organic Solar Cells Based on Dialkylthiol- Substituted Benzodithiophene Unit with Efficiency near 10% Bin Kan, # Qian Zhang, # Miaomiao Li, Xiangjian Wan, Wang

More information