Supporting Information. Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode

Size: px
Start display at page:

Download "Supporting Information. Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode"

Transcription

1 Supporting Information Fully Solution-Processed Semitransparent Organic Solar Cells with a Silver Nanowire Cathode and a Conducting Polymer Anode Jong Hyuk Yim, Sung-yoon Joe, Christina Pang, Kyung Moon Lee, Huiseong Jeong, Ji-Yong Park, Yeong Hwan Ahn, John C. de Mello,,*, and Soonil Lee,* Department of Physics and Division of Energy Systems Research, Ajou University, Suwon, , Korea Centre for Plastic Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom Address correspondence to soonil@ajou.ac.kr, j.demello@imperial.ac.uk

2 Device architecture and electrode patterns Figure S1 shows a general schematic of the device architecture and the corresponding energy level diagrams for P3HT:PCBM bulk heterojunction (BHJ) solar cells with a bottom AgNW cathode. Two different electrode patterns were employed for the control and semitransparent devices as shown in Figure S2; also shown are the specific device architectures used for the two control devices and the semitransparent device. In all cases four identical pixels, each having an active area of 0.24 cm 2 were fabricated on each 3 3 cm 2 glass substrate. Accounting for the influence of illumination direction on the EQE The difference in transmittance between the cathode and anode windows alone is not sufficient to account for the difference in J sc with respect to the illumination directions. Figure S3 shows the transmittance spectra of Glass/AgNW/ZnO and PH 1000/GO/AI 4083, which determine the influx of solar spectrum photons to the P3HT:PCBM active layer when illuminated through the bottom (substrate) and top sides, respectively. The average transmittance between nm (the main spectral range for P3HT absorption) is 84 % for the cathode window and 83 % for the anode window. The measured transmittance of the P3HT:PCBM BHJ device matches closely with the product of the window transmittances and the transmittance through the active layer: Τ ( )= Τ ) Τ ) αλ ( ) P HT: PCBMd : [ ] 3 P3HT PCBM device λ ( λ Glass / AgNW/ ZnO ( λ PH / AI / GO e (S1) However, the external quantum efficiency (EQE) measurements show large differences at 530 nm, where the transmittances of cathode and anode windows are the same, whereas the EQE difference is reduced by a factor of ~2.7 at 600 nm. Figure S4 shows the respective EQE spectra corresponding to illumination through the PH 1000 and AgNW electrodes. These EQE spectra

3 were measured from a 9-month-old device, while the J-V curves in Figure 5(b) were measured directly after fabrication. This device maintained about half of its original PCE after 9 months. The reduction of J sc to half of its initial value is responsible for most of the PCE loss. The V oc and FF of this device by contrast suffered only very slight losses after 9-month storage: losses of 3 % for V oc and 2 % for FF. Because the operation of P3HT:PCBM BHJ OSCs can be modelled as sequential steps of exciton generation in response to light absorption, exciton diffusion to P3HT-PCBM interfaces, exciton dissociation into free charge carriers at the P3HT-PCBM junction, charge carrier transport in separate P3HT and PCBM domains, and extraction of charge carriers at the electrodes, 1 the EQE can be expressed as the product of efficiencies for each of these steps. We note that the efficiencies for the exciton dissociation, charge carrier transport, and charge carrier extraction processes, which are all electrical in nature, are insensitive to illumination direction. On the contrary, both exciton generation and exciton diffusion can be sensitive to the illumination direction. Figure S5 is the solar photon absorption spectra corresponding to the two illumination directions. These spectra have been estimated by multiplying the black-body radiation spectrum that mimics the solar photon emission with the transmittance of the respective window layers and the light harvesting efficiency of the 210-nm-thick P3HT:PCBM active layer: α( λ) P3HT: PCBMd P3HT: PCBM A( λ) Φ ( λ) ( λ) / / or ( λ) solar Τ PH1000 AI 4083 GO Τ Glass / AgNW/ ZnO 1 e. (S2) We note that the exciton generation spectra, which are directly proportional to the solar photon absorption spectra, must be very similar for the two illumination directions at wavelengths longer than 500 nm because there is no significant illumination-direction-dependent difference in solar photon absorption.

4 Figure S6 shows the normalized exciton generation rates with respect to the position in the P3HT:PCBM active layer for the two illumination directions: Gz (, ) Φ ( ) Τ( ) or Τ( ) ( ) αλ ( ) 3 λ solar λ λ PH1000/ AI 4083/ GO λ Glass / AgNW/ ZnO α λ e P3HT: PCBM P HT: PCBM. (S3) We note that the exciton generation rate is monotonically decreasing from its maximum value near the illumination-side electrodes. The rates of exciton generation by 530-nm photons for the two illumination directions are almost the same near the respective electrodes and at the middle of the ~210 nm P3HT:PCBM active layer. Therefore, we attribute the difference in J sc for anodeand cathode-side illumination to differences in exciton-diffusion efficiency due to the asymmetric location of P3HT-PCBM interfaces with respect to the two electrodes. Presumably, the majority of P3HT-PCBM junctions are not at the middle of the active layer, but located closer to the AgNW cathode. Because the diffusion length of excitons is extremely short, typically much less than 20 nm, a slight shift of P3HT-PCBM junctions towards the cathode would favour AgNWside illumination as this generates a larger number of excitons in the vicinity of P3HT-PCBM junctions, resulting in higher J sc. In other words, compared to the case of PH 1000 anode-side illumination, the exciton-diffusion efficiency becomes higher when illuminated from the AgNW cathode side. However, at a wavelength of 600 nm, the exciton generation rates are lower, but more uniform throughout the P3HT:PCBM active layer so that the difference in EQE between two illumination directions become much smaller. z 1. Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells. Adv. Mater. 2007, 19,

5 Figure S1. (a) Schematic device architecture of AgNW-based P3HT:PCBM bulk-hetero-junction solar cells with a top contact of PEDOT:PSS or evaporated Ag. (b) Energy level diagram of the materials used in device fabrication.

6 Figure S2. Schematic diagram showing electrode patterns for (a) control and (b) semi-transparent P3HT:PCBM bulk heterojunction solar cells. In the case of the control devices, the AgNW cathode was patterned in a single strip of area cm 2 and the evaporated silver anode was patterned in the shape of four fingers, each of area cm 2. In the case of the semitransparent devices, the AgNW cathode was patterned in the shape of four fingers, each of area cm 2, and the PH 1000 anode was patterned in a single strip of area cm 2. In both cases, four identical pixels were obtained per substrate, each having an active area of 0.24 cm 2 as defined by the overlap of the anode and cathode patterns. (C) Schematics showing the device structures for the three AgNW-based organic solar cells.

7 Figure S3. The transmittance spectra of the cathode-side (Glass/AgNW/ZnO) and anode-side (PH 1000/GO/AI 4083) windows, which determine the influx of solar spectrum photons to the active layer (P3HT:PCBM blend). Also shown is the measured transmittance of the complete semitransparent device (dotted black line). The measured transmittance of the complete device matches closely to the calculated transmittance as determined from the product of the transmittance spectra of the two window layers and the P3HT:PCBM active layer.

8 Figure S4. Comparison of the EQE spectra of a semitransparent P3HT:PCBM BHJ OSC under illumination through the AgNW cathode and the PH 1000 anode. The EQE difference at ~530 nm is about 2.7 times larger than that at ~600 nm. The EQE measurement was made using a 9- month-old semitransparent P3HT:PCBM device that had maintained about half of its original PCE.

9 Figure S5. Comparison of the calculated solar photon absorption spectra under illumination through the AgNW cathode and the PH 1000 anode. The spectra have been estimated as the product of the black-body radiation spectrum representing solar photons, the transmittance spectrum of the appropriate (anode-side or cathode-side) window, and the absorption spectrum of the 210 nm P3HT:PCBM blend layer. The exciton generation spectra are directly proportional to the respective solar photon absorption spectra.

10 Figure S6. Calculated exciton generation rates versus position in a 210-nm-thick P3HT:PCBM active layer for anode- and cathode-side illumination. Larger values of the absorption coefficient α(λ) lead to a steeper monotonic decrease in the exciton generation rates away from the window.

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati vikram.kuppa@uc.edu Fei Yu Yan Jin Andrew Mulderig Greg

More information

Towards a deeper understanding of polymer solar cells

Towards a deeper understanding of polymer solar cells Towards a deeper understanding of polymer solar cells Jan Anton Koster Valentin Mihailetchi Prof. Paul Blom Molecular Electronics Zernike Institute for Advanced Materials and DPI University of Groningen

More information

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D. The 4th U.S.-Korea NanoForum April 26-27, 2007, Honolulu, USA Improvement of Device Efficiency in Conjugated Polymer/Fullerene NanoComposite Solar Cells School of Semiconductor & Chemical Engineering *

More information

Charge separation in molecular donor acceptor heterojunctions

Charge separation in molecular donor acceptor heterojunctions Institute of Physics 13 July 2009 Charge separation in molecular donor acceptor heterojunctions Jenny Nelson, James Kirkpatrick, Jarvist Frost, Panagiotis Keivanidis, Clare Dyer-Smith, Jessica Benson-Smith

More information

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Planar Organic Photovoltaic Device. Saiful I. Khondaker Planar Organic Photovoltaic Device Saiful I. Khondaker Nanoscience Technology Center and Department of Physics University of Central Florida http://www.physics.ucf.edu/~khondaker W Metal 1 L ch Metal 2

More information

What will it take for organic solar cells to be competitive?

What will it take for organic solar cells to be competitive? What will it take for organic solar cells to be competitive? Michael D. McGehee Stanford University Director of the Center for Advanced Molecular Photovoltaics Efficiency (%) We will need 20-25 % efficiency

More information

Organic solar cells with inverted layer sequence incorporating optical spacers - simulation and experiment.

Organic solar cells with inverted layer sequence incorporating optical spacers - simulation and experiment. Organic solar cells with inverted layer sequence incorporating optical spacers - simulation and experiment. Birger Zimmermann a, Markus Glatthaar a, Michael Niggemann Author3 a,b, Moritz Kilian Riede b,

More information

Introduction to Organic Solar Cells

Introduction to Organic Solar Cells Introduction to Organic Solar Cells Dr Chris Fell Solar Group Leader CSIRO Energy Technology, Newcastle, Australia Organic semiconductors Conductivity in polyacetylene 1970s Nobel Prize Alan J. Heeger

More information

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara Charge Extraction from Complex Morphologies in Bulk Heterojunctions Michael L. Chabinyc Materials Department University of California, Santa Barbara OPVs Vs. Inorganic Thin Film Solar Cells Alta Devices

More information

Fabrication and Characteristics of Organic Thin-film Solar Cells with Active Layer of Interpenetrated Hetero-junction Structure

Fabrication and Characteristics of Organic Thin-film Solar Cells with Active Layer of Interpenetrated Hetero-junction Structure Applied Physics Research; Vol. 4, No. 4; 2012 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Fabrication and Characteristics of Organic Thin-film Solar Cells with

More information

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You Wake Forest Nanotechnology Conference October 19, 2009 Conjugated Polymers Based on Benzodithiophene for Organic olar Cells Wei You Department of Chemistry and Institute for Advanced Materials, Nanoscience

More information

Supporting information for: Semitransparent Polymer-Based Solar Cells with. Aluminum-Doped Zinc Oxide Electrodes

Supporting information for: Semitransparent Polymer-Based Solar Cells with. Aluminum-Doped Zinc Oxide Electrodes Supporting information for: Semitransparent Polymer-Based Solar Cells with Aluminum-Doped Zinc Oxide Electrodes Sebastian Wilken,, Verena Wilkens, Dorothea Scheunemann, Regina-Elisabeth Nowak, Karsten

More information

Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-type and Visible Light-Sensing p-type Polymers

Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-type and Visible Light-Sensing p-type Polymers [ Supporting Information ] Broadband All-Polymer Phototransistors with Nanostructured Bulk Heterojunction Layers of NIR-Sensing n-type and Visible Light-Sensing p-type Polymers Hyemi Han 1, Sungho Nam

More information

Supplementary information

Supplementary information Supplementary information Neutral Colour Semitransparent Microstructured Perovskite Solar Cells Giles E. Eperon, Victor M. Burlakov, Alain Goriely and Henry J. Snaith 1. Controlling dewetting to achieve

More information

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Development of active inks for organic photovoltaics: state-of-the-art and perspectives Development of active inks for organic photovoltaics: state-of-the-art and perspectives Jörg Ackermann Centre Interdisciplinaire de Nanoscience de Marseille (CINAM) CNRS - UPR 3118, MARSEILLE - France

More information

Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition of Fusible Fullerene

Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition of Fusible Fullerene Journal of Photopolymer Science and Technology Volume 30, Number 4 (2017) 501-506 C 2017SPST Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION On the origin of the open-circuit voltage of polymer:fullerene solar cells Koen Vandewal, Kristofer Tvingstedt, Abay Gadisa, Olle Inganäs and ean V. Manca The additional information

More information

International Journal of Nano Dimension

International Journal of Nano Dimension ISSN: 2008-8868 Contents list available at IJND International Journal of Nano Dimension Journal homepage: www.ijnd.ir Short Communication Enhanced optical absorption in organic solar cells using metal

More information

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion Craig A. Grimes Department of Electrical Engineering Center for Solar Nanomaterials

More information

Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices

Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices Nanomaterials Volume 2013, Article ID 354035, 4 pages http://dx.doi.org/10.1155/2013/354035 Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic

More information

Efficiency degradation of organic solar cells with solution processed ZnO nanoparticles

Efficiency degradation of organic solar cells with solution processed ZnO nanoparticles Efficiency degradation of organic solar cells with solution processed ZnO nanoparticles P.S. Mbule 1, H.C. Swart 1 and O.M. Ntwaeaborwa 1 1 Department of Physics, University of the Free State, Bloemfontein,

More information

Lithography-Free Broadband Ultrathin Film. Photovoltaics

Lithography-Free Broadband Ultrathin Film. Photovoltaics Supporting Information Lithography-Free Broadband Ultrathin Film Absorbers with Gap Plasmon Resonance for Organic Photovoltaics Minjung Choi 1, Gumin Kang 1, Dongheok Shin 1, Nilesh Barange 2, Chang-Won

More information

School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon , Korea.

School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon , Korea. Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary information (ESI) Highly Efficient and Bending Durable

More information

Customized Energy Down-Shift Using Iridium Complexes for Enhanced Performance of Polymer Solar Cells

Customized Energy Down-Shift Using Iridium Complexes for Enhanced Performance of Polymer Solar Cells Supporting Information for Customized Energy Down-Shift Using Iridium Complexes for Enhanced Performance of Polymer Solar Cells Hyun-Tak Kim,, ǁ Ji Hoon Seo,, ǁ Jeong Hyuk Ahn,, ǁ Myung-Jin Baek, Han-Don

More information

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100%

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100% (black) and 80% (red) external quantum efficiency (EQE)

More information

Organic Solar Cell: Optics in Smooth and Pyramidal Rough Surface

Organic Solar Cell: Optics in Smooth and Pyramidal Rough Surface IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 10, Issue 4 Ver. III (July Aug. 2015), PP 67-72 www.iosrjournals.org Organic Solar Cell: Optics

More information

Numerical model of planar heterojunction organic solar cells

Numerical model of planar heterojunction organic solar cells Article Materials Science July 2011 Vol.56 No.19: 2050 2054 doi: 10.1007/s11434-011-4376-4 SPECIAL TOPICS: Numerical model of planar heterojunction organic solar cells MA ChaoZhu 1 PENG YingQuan 12* WANG

More information

Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide

Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide University of Groningen Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells Photoconductive AFM of Organic Solar Cells APP NOTE 15 Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells Xuan-Dung Dang and Thuc-Quyen Nguyen

More information

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 60, NO. 1, JANUARY 2013 451 Performance Comparison of Conventional and Inverted Organic Bulk Heterojunction Solar Cells From Optical and Electrical Aspects Dazheng

More information

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch*

Supporting information. and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Supporting information Inverted P3HT:PC61BM organic solar cells incorporating a -extended squaraine dye with H- and/or J -aggregation. Sergey V. Dayneko, Abby-Jo Payne and Gregory C. Welch* Department

More information

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells

Thermally Stable Silver Nanowires-embedding. Metal Oxide for Schottky Junction Solar Cells Supporting Information Thermally Stable Silver Nanowires-embedding Metal Oxide for Schottky Junction Solar Cells Hong-Sik Kim, 1 Malkeshkumar Patel, 1 Hyeong-Ho Park, Abhijit Ray, Chaehwan Jeong, # and

More information

POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE

POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE POLYMER-FULLERENE BASED BULK HETEROJUNCTION P3HT:PCBM SOLAR CELL: THE INFLUENCE OF PTU AS A CHEMICAL ADDITIVE ON PHOTOVOLTAIC PERFORMANCE Eyob Daniel 1 1 Department of Physics, Wollo University, Dessie,

More information

Solar Energy Materials & Solar Cells

Solar Energy Materials & Solar Cells Solar Energy Materials & Solar Cells ] (]]]]) ]]] ]]] Contents lists available at ScienceDirect Solar Energy Materials & Solar Cells journal homepage: www.elsevier.com/locate/solmat The effect of a concentration

More information

Effect of Composition on Conjugation Structure and Energy Gap of P3HT:PCBM Organic Solar Cell

Effect of Composition on Conjugation Structure and Energy Gap of P3HT:PCBM Organic Solar Cell Int. J. New. Hor. Phys. 2, No. 2, 87-93 (2015) 87 International Journal of New Horizons in Physics http://dx.doi.org/10.12785/ijnhp/020208 Effect of Composition on Conjugation Structure and Energy Gap

More information

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee

1. Depleted heterojunction solar cells. 2. Deposition of semiconductor layers with solution process. June 7, Yonghui Lee 1. Depleted heterojunction solar cells 2. Deposition of semiconductor layers with solution process June 7, 2016 Yonghui Lee Outline 1. Solar cells - P-N junction solar cell - Schottky barrier solar cell

More information

ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES

ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES ORGANIC-BASED LIGHT HARVESTING ELECTRONIC DEVICES Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Organic-based light harvesting devices From power

More information

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures

Supplementary Information. Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye. Nanostructures Supplementary Information Light Manipulation for Organic Optoelectronics Using Bio-inspired Moth's Eye Nanostructures Lei Zhou, Qing-Dong Ou, Jing-De Chen, Su Shen, Jian-Xin Tang,* Yan-Qing Li,* and Shuit-Tong

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.1: Overview of Organic Photovoltaic Devices Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

Role of coherence and delocalization in photo-induced electron transfer at organic interfaces Supplementary Information to Role of coherence and delocalization in photo-induced electron transfer at organic interfaces V. Abramavicius,, V. Pranckevičius, A. Melianas, O. Inganäs, V. Gulbinas, D. Abramavicius

More information

Mixed Plasmonic Nanoparticles for. Enhanced-Performance Organic Solar Cells

Mixed Plasmonic Nanoparticles for. Enhanced-Performance Organic Solar Cells Mixed Plasmonic Nanoparticles for Enhanced-Performance Organic Solar Cells Neda Etebari Alamdari A Thesis in the Department of Physics Presented in Partial Fulfillment of the Requirements for the Degree

More information

Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles

Reducing hole transporter use and increasing perovskite solar cell stability with dual-role polystyrene microgel particles Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 217 SUPPORTING INFORMATION 1 Reducing hole transporter use and increasing perovskite solar cell stability

More information

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction Among the renewable energy sources that are called to satisfy the continuously increased

More information

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources

Super Flexible, High-efficiency Perovskite Solar Cells Employing Graphene Electrodes: Toward Future Foldable Power Sources Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Super Flexible, High-efficiency Perovskite

More information

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass

Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass Supplementary Figure 1 XRD pattern of a defective TiO 2 thin film deposited on an FTO/glass substrate, along with an XRD pattern of bare FTO/glass and a reference pattern of anatase TiO 2 (JSPDS No.: 21-1272).

More information

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 The driving force dependence of charge Carrier dynamics in donor-acceptor

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1. AFM profiles of the charge transport and perovskite layers. AFM Image showing the thickness (y axis) of the layer with respect to the horizontal position of

More information

Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport. Layer for Colloidal Quantum Dot Solar Cells

Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport. Layer for Colloidal Quantum Dot Solar Cells Supporting Information Poly(3-hexylthiophene-2,5-diyl) as a Hole Transport Layer for Colloidal Quantum Dot Solar Cells Darren C. J. Neo 1, Nanlin Zhang 1, Yujiro Tazawa 1, Haibo Jiang 1,2, Gareth M. Hughes

More information

Challenges in to-electric Energy Conversion: an Introduction

Challenges in to-electric Energy Conversion: an Introduction Challenges in Solar-to to-electric Energy Conversion: an Introduction Eray S. Aydil Chemical Engineering and Materials Science Department Acknowledgements: National Science Foundation Minnesota Initiative

More information

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells

Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of Ternary Solar Cells Electron. Mater. Lett., Vol. 11, No. 2 (2015), pp. 236-240 DOI: 10.1007/s13391-014-4326-9 Doping a D-A Structural Polymer Based on Benzodithiophene and Triazoloquinoxaline for Efficiency Improvement of

More information

The Current Status of Perovskite Solar Cell Research at UCLA

The Current Status of Perovskite Solar Cell Research at UCLA The Current Status of Perovskite Solar Cell Research at UCLA Lijian Zuo, Sanghoon Bae, Lei Meng, Yaowen Li, and Yang Yang* Department of Materials Science and Engineering University of California, Los

More information

Supplementary information for the paper

Supplementary information for the paper Supplementary information for the paper Structural correlations in the generation of polaron pairs in lowbandgap polymers for photovoltaics Supplementary figures Chemically induced OD 0,1 0,0-0,1 0,1 0,0-0,1

More information

Research Article Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles

Research Article Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber and Copper Nanoparticles e Scientific World Journal, Article ID 128414, 6 pages http://dx.doi.org/1.1155/214/128414 Research Article Plasmonic Structure Enhanced Exciton Generation at the Interface between the Perovskite Absorber

More information

University of Groningen. Cathode dependence of the open-circuit voltage of polymer Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, Jan; Rispens, M. T.

University of Groningen. Cathode dependence of the open-circuit voltage of polymer Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, Jan; Rispens, M. T. University of Groningen Cathode dependence of the open-circuit voltage of polymer Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, Jan; Rispens, M. T. Published in: Journal of Applied Physics DOI: 10.1063/1.1620683

More information

Electronic Supplementary Information. inverted organic solar cells, towards mass production

Electronic Supplementary Information. inverted organic solar cells, towards mass production Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Polyelectrolyte interlayers with a

More information

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU)

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU) Federal Agency for Science and Innovations, Russia (grant 2.74.11.5155) NGC211, Moscow, 12-16 Sep 211 Artem A. Bakulin (Cambridge U) Almis Serbenta Jan C. Hummelen Vlad Pavelyev Paul H.M. van Loosdrecht

More information

Organic Electronic Devices

Organic Electronic Devices Organic Electronic Devices Week 4: Organic Photovoltaic Devices Lecture 4.2: Characterizing Device Parameters in OPVs Bryan W. Boudouris Chemical Engineering Purdue University 1 Lecture Overview and Learning

More information

( P ) Thales Photo-Electrochemical Techniques. Outline. Photo-Electrochemical Set-Up. Standard Solar Cell Measurements

( P ) Thales Photo-Electrochemical Techniques. Outline. Photo-Electrochemical Set-Up. Standard Solar Cell Measurements Outline Thales hoto-electrochemical Techniques Dynamic- and Spectral Methods for Measurements on DSSC, OSC, OLED and Electro-Chromic Devices C.-A. Schiller Standard Solar Cell Measurements Basics and the

More information

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell Copyright 2015 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoelectronics and Optoelectronics Vol. 10, 1 5, 2015 Theoretical Study on Graphene

More information

Effect of doping on performance of organic solar cells

Effect of doping on performance of organic solar cells 1 Effect of doping on performance of organic solar cells V. A. Trukhanov, V.V. Bruevich, D.Yu. Paraschuk International Laser Center and Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow

More information

RSC Advances PAPER. Study of Schottky contact in binary and ternary hybrid CdSe quantum dot solar cells. 1. Introduction. 2. Experimental details

RSC Advances PAPER. Study of Schottky contact in binary and ternary hybrid CdSe quantum dot solar cells. 1. Introduction. 2. Experimental details PAPER Cite this: RSC Adv., 2014,4, 32651 Received 26th May 2014 Accepted 16th July 2014 DOI: 10.1039/c4ra04966g www.rsc.org/advances Study of Schottky contact in binary and ternary hybrid CdSe quantum

More information

Enhanced Charge Extraction in Organic Solar Cells through. Electron Accumulation Effects Induced by Metal

Enhanced Charge Extraction in Organic Solar Cells through. Electron Accumulation Effects Induced by Metal Electronic Supplementary Information Enhanced Charge Extraction in Organic Solar Cells through Electron Accumulation Effects Induced by Metal Nanoparticles Feng-xian Xie, a Wallace C. H. Choy, * a Wei

More information

Organic Electronics. Polymer solar cell by blade coating

Organic Electronics. Polymer solar cell by blade coating Organic Electronics 10 (2009) 741 746 Contents lists available at ScienceDirect Organic Electronics journal homepage: www.elsevier.com/locate/orgel Polymer solar cell by blade coating Yu-Han Chang a, Shin-Rong

More information

Supporting Information

Supporting Information Supporting Information Modulation of PEDOT:PSS ph for Efficient Inverted Perovskite Solar Cells with Reduced Potential Loss and Enhanced Stability Qin Wang 1,2, Chu-Chen Chueh 1, Morteza Eslamian 2 * and

More information

OPV Workshop September 20, Materials for Polymer Solar Cells: Achievements and Challenges. Wei You

OPV Workshop September 20, Materials for Polymer Solar Cells: Achievements and Challenges. Wei You OPV Workshop September 20, 2012 Materials for Polymer Solar Cells: Achievements and Challenges Wei You Department of Chemistry University of North Carolina at Chapel Hill 1 Bulk Heterojunction Solar Cell

More information

Nanostructured Electrodes and Their Use in Organic Solar Cells

Nanostructured Electrodes and Their Use in Organic Solar Cells Nanostructured Electrodes and Their Use in Organic Solar Cells Master Thesis Reza Abolhassani Mads Clausen Institute University of Southern Denmark Supervisors: Associate Professor Morten Madsen Associate

More information

SYNTHESIS AND CHARACTERIZATION OF CDSE/ZNS CORE/SHELL QUANTUM DOT SENSITIZED PCPDTBT-P3HT:PCBM ORGANIC PHOTOVOLTAICS. A Thesis.

SYNTHESIS AND CHARACTERIZATION OF CDSE/ZNS CORE/SHELL QUANTUM DOT SENSITIZED PCPDTBT-P3HT:PCBM ORGANIC PHOTOVOLTAICS. A Thesis. SYNTHESIS AND CHARACTERIZATION OF CDSE/ZNS CORE/SHELL QUANTUM DOT SENSITIZED PCPDTBT-P3HT:PCBM ORGANIC PHOTOVOLTAICS A Thesis presented to the Faculty of California Polytechnic State University, San Luis

More information

2.626 Fundamentals of Photovoltaics

2.626 Fundamentals of Photovoltaics MIT OpenCourseWare http://ocw.mit.edu 2.626 Fundamentals of Photovoltaics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Charge Separation:

More information

Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots

Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots Supporting Information Facile and purification-free synthesis of nitrogenated amphiphilic graphitic carbon dots Byung Joon Moon, 1 Yelin Oh, 1 Dong Heon Shin, 1 Sang Jin Kim, 1 Sanghyun Lee, 1,2 Tae-Wook

More information

Supplementary Information of. The Role of Fullerenes in Environmental Stability of Polymer:Fullerene Solar Cells

Supplementary Information of. The Role of Fullerenes in Environmental Stability of Polymer:Fullerene Solar Cells Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2018 Supplementary Information of The Role of Fullerenes in Environmental Stability

More information

Supporting information for Effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses

Supporting information for Effect of donor content on the efficiency of P3HT:PCBM bilayers: optical and photocurrent spectral data analyses Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting information for Effect of donor content on the efficiency of P3HT:PCBM

More information

Comparative Study of APFO-3 Solar Cells Using Monoand Bisadduct Fullerenes as Acceptor

Comparative Study of APFO-3 Solar Cells Using Monoand Bisadduct Fullerenes as Acceptor Institutionen för fysik, kemi och biologi Examenarbete Comparative Study of APFO-3 Solar Cells Using Monoand Bisadduct Fullerenes as Acceptor Yu-Te Hsu 2010-06-01 LITH-IFM-A-EX--10/2320 SE Linköpings universitet

More information

Multipolymer Interactions in Bulk Heterojunction Photovoltaic Devices Grant Olson Senior Project Cal Poly, San Luis Obispo June 25, 2012

Multipolymer Interactions in Bulk Heterojunction Photovoltaic Devices Grant Olson Senior Project Cal Poly, San Luis Obispo June 25, 2012 Multipolymer Interactions in Bulk Heterojunction Photovoltaic Devices Grant Olson Senior Project Cal Poly, San Luis Obispo June 25, 2012 Multipolymer Interactions in Bulk Heterojunction Photovoltaic Devices

More information

Mesoporous titanium dioxide electrolyte bulk heterojunction

Mesoporous titanium dioxide electrolyte bulk heterojunction Mesoporous titanium dioxide electrolyte bulk heterojunction The term "bulk heterojunction" is used to describe a heterojunction composed of two different materials acting as electron- and a hole- transporters,

More information

The Effect of Graphene/Ag Nanoparticles Addition on the Performances of Organic Solar Cells

The Effect of Graphene/Ag Nanoparticles Addition on the Performances of Organic Solar Cells Journal of Materials Science and Chemical Engineering, 2014, *, ** Published Online **** 2014 in SciRes. http://www.scirp.org/journal/msce http://dx.doi.org/10.4236/msce.2014.***** The Effect of Graphene/Ag

More information

Supporting Information

Supporting Information Supporting Information Multilayered Perovskite Materials Based on Polymeric-Ammonium Cations for Stable and Large-Area Solar Cell Experimental Section Kai Yao, Xiaofeng Wang, Yun-xiang Xu, Fan Li, Lang

More information

Bin Yang, Yongbo Yuan, and Jinsong Huang* 1. INTRODUCTION

Bin Yang, Yongbo Yuan, and Jinsong Huang* 1. INTRODUCTION pubs.acs.org/jpcc Reduced Bimolecular Charge Recombination Loss in Thermally Annealed Bilayer Heterojunction Photovoltaic Devices with Large External Quantum Efficiency and Fill Factor Bin Yang, Yongbo

More information

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline

Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Supplementary Information Plasmonic Hot Hole Generation by Interband Transition in Gold-Polyaniline Tapan Barman, Amreen A. Hussain, Bikash Sharma, Arup R. Pal* Plasma Nanotech Lab, Physical Sciences Division,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Supporting Information A minimal non-radiative recombination loss for efficient

More information

Mini-project report. Organic Photovoltaics. Rob Raine

Mini-project report. Organic Photovoltaics. Rob Raine Mini-project report Organic Photovoltaics Rob Raine dtp11rdr@sheffield.ac.uk 10/2/2012 ASSIGNMENT COVER SHEET 2010/2011 A completed copy of this sheet MUST be attached to coursework contributing towards

More information

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing

Goal for next generation solar cells: Efficiencies greater than Si with low cost (low temperature) processing Multi-junction cells MBE growth > 40% efficient Expensive Single crystal Si >20% efficient expensive Thin film cells >10% efficient Less expensive Toxic materials Polymers

More information

Nanomaterials for Hybrid Solar Cells. Silvija Gradečak Department of Materials Science and Engineering, MIT

Nanomaterials for Hybrid Solar Cells. Silvija Gradečak Department of Materials Science and Engineering, MIT Nanomaterials for Hybrid Solar Cells Silvija Gradečak Department of Materials Science and Engineering, MIT November 14 th, 2012 1 Solar energy Hybrid organic-inorganic photovoltaics Most of the world's

More information

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique Organic solar cells. State of the art and outlooks Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique Solar energy Solar energy on earth: 75,000 tep/year 6000 times the world consumption in 2007

More information

Absorbance/Transmittance/Reflectance of PCDTBT:PC 70 BM Organic Blend Layer

Absorbance/Transmittance/Reflectance of PCDTBT:PC 70 BM Organic Blend Layer March 14 Absorbance/Transmittance/Reflectance of PCDTBT:PC 7 BM Organic Blend Layer ABSTRACT Rashmi Swami*, Rajesh Awasthy, B.P.Chandra and Sanjay Tiwari Photonics Research Laboratory School of Studies

More information

SCAPS Simulation of P3HT:Graphene Nanocomposites-Based Bulk-Heterojunction Organic Solar Cells

SCAPS Simulation of P3HT:Graphene Nanocomposites-Based Bulk-Heterojunction Organic Solar Cells INTERNATIONAL JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH SCAPS Simulation of P3HT:Graphene Nanocomposites-Based Bulk-Heterojunction Organic Solar Cells Nur Shakina Mohd Shariff, Puteri Sarah

More information

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells

Impact of Contact Evolution on the Shelf Life of Organic Solar Cells Impact of Contact Evolution on the Shelf Life of Organic Solar Cells By Matthew T. Lloyd, Dana C. Olson, Ping Lu, Erica Fang, Diana L. Moore, Matthew S. White, Matthew O. Reese, David S. Ginley, and Julia

More information

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013

(Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University. GCEP Research Symposium 2013 Stanford, CA October 9, 2013 High-efficiency thin film nano-structured multi-junction solar James S. cells Harris (PI) (Co-PIs-Mark Brongersma, Yi Cui, Shanhui Fan) Stanford University GCEP Research Symposium 2013 Stanford, CA October

More information

The influence of doping on the performance of organic bulk heterojunction solar cells

The influence of doping on the performance of organic bulk heterojunction solar cells The influence of doping on the performance of organic bulk heterojunction solar cells Markus Glatthaar a, Nicola Mingirulli b, Birger Zimmermann a, Florian Clement b, Moritz Riede a, Bas van der Wiel b,

More information

MONTE CARLO SIMULATION OF POLYMER SOLAR CELLS

MONTE CARLO SIMULATION OF POLYMER SOLAR CELLS International Journal of Physics and Research Vol., Issue (0) -9 TJPRC Pvt. Ltd., MONTE CARLO SIMULATION OF POLYMER SOLAR CELLS G.U. Panapitiya * and K.A.I.L.Wijewardena Gamalath** Department of Physics,

More information

In-situ prepared composite materials of conducting polymermetal nanoparticles and their application to organic solar cells

In-situ prepared composite materials of conducting polymermetal nanoparticles and their application to organic solar cells 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS In-situ prepared composite materials of conducting polymermetal nanoparticles and their application to organic solar cells S. Woo 1,2*, H. K. Lyu 1,

More information

2008 Solar Annual Review Meeting

2008 Solar Annual Review Meeting 2008 Solar Annual Review Meeting Session: Organic Photovoltaics Company: Konarka Funding Opportunity: $3.6M (DOE) $8.7M (total) Jeremiah Mwaura (jmwaura@konarka.com) Presenter s Name, Contact Information

More information

Tandem polymer photovoltaic cells current status, challenges and future outlook

Tandem polymer photovoltaic cells current status, challenges and future outlook Energy & Environmental Science Dynamic Article Links C < Cite this: Energy Environ. Sci., 2011, 4, 1606 www.rsc.org/ees Tandem polymer photovoltaic cells current status, challenges and future outlook Srinivas

More information

Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts

Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts CIMTEC Forum 2010 (0) 5 pages (0) Trans Tech Publications, Switzerland Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts G. Khrypunov 1, A. Meriuts 1, H. Klochko 1, T.

More information

NANO-MORPHOLOGY OF POLYMER BULK HEROJUNCTIONS STUDIED BY TIME- RESOLVED SYNCHROTRON X-RAY SCATTERING SOO KIM

NANO-MORPHOLOGY OF POLYMER BULK HEROJUNCTIONS STUDIED BY TIME- RESOLVED SYNCHROTRON X-RAY SCATTERING SOO KIM NANO-MORPHOLOGY OF POLYMER BULK HEROJUNCTIONS STUDIED BY TIME- RESOLVED SYNCHROTRON X-RAY SCATTERING by SOO KIM Presented to the Faculty of the Graduate School of The University of Texas at Arlington in

More information

Photovoltaic Cells incorporating Organic and Inorganic Nanostructures

Photovoltaic Cells incorporating Organic and Inorganic Nanostructures Photovoltaic Cells incorporating rganic and Inorganic Nanostructures Jiangeng Xue Department of Materials Science and Engineering University of Florida, Gainesville, FL, USA (jxue@mse.ufl.edu, http://xue.mse.ufl.edu)

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information (ESI) Sifting α,ω-di(thiophen-2-yl)alkanes

More information

Impact of metal oxide/bulk-heterojunction interface on performance of organic solar cells

Impact of metal oxide/bulk-heterojunction interface on performance of organic solar cells Hong Kong Baptist University HKBU Institutional Repository Open Access Theses and Dissertations Electronic Theses and Dissertations 9-4-2015 Impact of metal oxide/bulk-heterojunction interface on performance

More information

Novel device Substrates and Materials for Organic based Photovoltaics

Novel device Substrates and Materials for Organic based Photovoltaics Novel device Substrates and Materials for Organic based Photovoltaics Frank Nüesch Laboratory for Functional Polymers Empa Materials Science and Technology Überlandstrasse 129 8600 Dübendorf SwissLaserNet,

More information

Laser Crystallization of Organic-Inorganic Hybrid

Laser Crystallization of Organic-Inorganic Hybrid Supporting information Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells Taewoo Jeon, Hyeong Min Jin, Seung Hyun Lee, Ju Min Lee, Hyung Il Park, Mi Kyung Kim, Keon Jae Lee, Byungha

More information

MASTER THESIS WORK. Study about the performance of Small Molecule Organic Solar Cells, Fabricated Based on Bulk-Hetrojunction and PIN-Junction

MASTER THESIS WORK. Study about the performance of Small Molecule Organic Solar Cells, Fabricated Based on Bulk-Hetrojunction and PIN-Junction MSc in Photonics Universitat Politècnica de Catalunya (UPC) Universitat Autònoma de Barcelona (UAB) Universitat de Barcelona (UB) Institut de Ciències Fotòniques (ICFO) PHOTONICSBCN http://www.photonicsbcn.eu

More information