Supplementary information for. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and. their Mono-Layer Limit

Size: px
Start display at page:

Download "Supplementary information for. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and. their Mono-Layer Limit"

Transcription

1 Supplementary information for Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and their Mono-Layer Limit Hongtao Yuan 1,2, Zhongkai Liu 1,2,3,4, Gang Xu 1, Bo Zhou 5,6, Sanfeng Wu 7, Dumitru Dumcenco 8,9, Kai Yan 1,2, Yi Zhang 6, Sung-Kwan Mo 6, Pavel Dudin 10, Victor Kandyba 11, Mikhail Yablonskikh 11, Alexei Barinov 11, Zhixun Shen 1,2, Shoucheng Zhang 1,2, Yingsheng Huang 8, Xiaodong Xu 7, Zahid Hussain 6, Harold Y. Hwang 1,2*, Yi Cui 1,2,12*, and Yulin Chen 3,4,5,10* 1 Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA 2 Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA 3 School of Physical Science and Technology, ShanghaiTech University, Shanghai , China 4 CAS-Shanghai Science Research Center, 239 Zhang Heng Road, Shanghai , China 5 Physics Department, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK 6 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA 7 Department of Physics, Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA 8 Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan (ROC) 9 Electrical Engineering Institute, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland 10 Diamond Light Source, Didcot, Oxfordshire, UK 11 Elettra-Sincrotrone Trieste ScPA, Trieste, Basovizza 34149, Italy 12 Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA * Correspondence should be addressed to: hyhwang@stanford.edu, yicui@stanford.edu, Yulin.Chen@physics.ox.ac.uk (Fax: +44 (0) ) S1

2 Part I: Typical ARPES band structure of bulk MoS 2 compared with ab initio calculation Ab initio calculation of the electronic structure was performed by density functional theory (see the methods part for details). We note that the band structure calculated based on the published experimental bulk lattice parameters showed very different features from our ARPES observations, while those based on the fully relaxed lattice parameters agrees closely with the measurements (Fig. S1 and Table S1) - indicating that the lattice parameters of the surface layers and cleaved thin flakes needed to be carefully chosen for the band structure calculation to reflect the real electronic structure. Figure S1: The comparison of our ARPES band structure (bulk MoS 2 ) and ab initio calculation with relaxed lattice parameters (white lines). As discussed in the main text, the valence band maximum (VBM) of MoS 2 resides at Γ (Fig. 1d and f) and is ~0.5 ev above the apex of the valance band at K. From Γ to K, the valence bands evolve into two sub-bands with ~180 mev splitting (at K points) caused by the strong spin-orbit interaction (SOI), in good agreement with our calculations (Fig. S1). From our measurement, the effective mass of the hole pockets is ~0.8 m 0 for VBM at Γ and ~0.5 m 0 for VBM at K, also consistent with ab initio calculations. In general, our ab inito calculation and ARPES measurements on all three MX 2 materials we studied are summarized in Table S1 and S2 below, where they show excellent agreement: S2

3 Table S1: Comparison of the key parameters of electronic band structures in relaxed bulk MX 2 a (Å) c (Å) d (Å) gap (ev) E Γ (ev) CB E ΛK K VB E ΓK (ev) VB E KK (ev) Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. MoS > WS WSe < Table S2: Comparison of the effective masses in relaxed bulk MX 2 a (Å) c (Å) d (Å) * * mcb Λ ( m0 ) * * mcb K m0 mvb Γ ( m0 ) mvb K ( m0 ) Cal. Exp. Cal. Exp. Cal. Exp. Cal. Exp. MoS N/A ± ± ±0.1 WS ± ± ± ±0.07 WSe ± N/A ± ±0.05 Part II: Surface alkaline-metal doping and photon energy dependence of MX 2 band structures showing 2D/3D signatures The valence band information obtained from ARPES can be well captured by our ab initio calculations, as indicated in Fig. S1 above. However, the exact location of the conduction band minimum (CBM) in MX 2 has been quite controversial in prior theoretical band calculations. Taking MoS 2 as an example, most of the band calculations to date (Ref 16, 20, 23, 24, 25 in main text) suggest that the CBM sits somewhere along Γ-K (Λ point). Nevertheless, a conclusive understanding of where the exact CBM position is in momentum space remains elusive, particularly due to the fact that the as-grown and even n-doped MoS 2 (also other MX 2 ) samples typically form some impurity bands inside the band gap and the Fermi energy (E F ) is always pinned inside the band gap, making direct probe of the conduction bands difficult in ARPES measurements. S3

4 Figure S2: MoS 2 electronic band structure measured with various photon energies from 35 ev to 75 ev a) Band dispersions along the Γ-K high symmetry direction; b) and c) Energy Distribution Curves (EDCs) at K and Γ, respectively. To observe the conduction bands, we introduced potassium atoms (by in situ evaporation) onto the MX 2 sample surface, which allowed us to raise E F to reach the CBM. Potassium atoms were evaporated from an alkali metal dispenser (getter source from SAES Inc.). The evaporating current and duration was set at 5.7 A and 10 minutes, respectively. We can roughly estimate the K coverage by calculating the sheet carrier density from the size of the Fermi surface ( electrons per MoS 2 unit cell, or electrons/cm 2 ). With the assumption that each K atom donates one electron only to the first monolayer of MoS 2, the coverage is as low as layer. Such a low K coverage suggests that the K dosage in our measurement should not have observable effect in modifying the band structure in MX 2 crystals. As can be seen in Fig. 1 e (before K-dosage) and f (after K-dosage), although the band structure became slightly blurred due to the additional scattering by the random potassium atoms on the surface, the CBM was clearly identified at the K points after the potassium dosing, showing a 1.4 ev indirect band gap with respect to the VBM at the Γ point (Fig. 1e). Our S4

5 result provides the most direct measure of the CBM loci in momentum-space and shows a significant difference from most calculations. To investigate the origin and the dimensionality of the bands at high symmetry points, photon energy dependent ARPES study was performed and the k z -dispersion of the band structure of MoS 2 is illustrated in Fig. S2, from which one can clearly see that the band around Γ point moves down dramatically with increasing photon energies from 35 ev (corresponding to k z = 0) to 50 ev (corresponding to k z = π), while the band around the K points remains unchanged. Such clear difference indicates the bands around Γ disperse dramatically, while those around K show almost no dispersion along the k z momentum. Figure S3. The band valleys at K and Λ points originate from two different sub-bands with different orbital components. Valence band near the Γ point and conduction band near the K point originate from out-of-plane Mo- d orbital ( 2 2 d in figure) while conduction band near Λ point and valence 2 3z r z band near K point originate from in-plane Mo- 2 2 dx y and Mo- d xy orbitals. S5

6 The different photon energy dependence of the bands around Γ and Κ is consistent with our band calculation (Fig. S3) which shows that the 2D signature of the bands around K originates from the localized in-plane Mo- 2 2 dx y and Mo- d orbitals, while the 3D signature of the bands around Γ xy comes from the delocalized out-of-plane Mo- d and S-p 2 2 z orbitals. Indeed, the strong k z dispersion in the center of the BZ and its dramatic change with dimension plays a critical role in the indirect-direct band gap transition with decreasing thickness. 3z r Part III: Spatially resolved ARPES measurements The MoS 2 and WSe 2 flakes used for the spatially-resolved ARPES study were exfoliated from bulk single crystals. MX 2 flakes with varied thickness were transferred onto a CVD-graphene covered SiO 2 /Si wafer. The SiO 2 /Si wafer was used to enhance the optical contrast of flakes with different thicknesses (so they can be visually identified). The intermediate graphene layer is used to provide electrical conduction for ARPES measurements. The flake transferring process is as following: 1. Spin coat Polyvinyl alcohol (PVA) on a bared SiO 2 /Si substrate with a speed of 3000 rpm for 60 seconds and baking at 80 ºC for 5 minutes; 2. Spin coat PMMA (950 A5) on top of PVA with 3000 rpm for 60 seconds and baking at 80 ºC for 10 minutes; 3. Cleave MX 2 flakes on top of PMMA with tape mechanical exfoliation method; 4. Peel off the PMMA (with supported MX 2 flakes) with wet method and pick up the PMMA film with a washer; 5. Using the downward face of the PMMA, place it onto the surface of the target Graphene/SiO 2 /Si wafer, and heat the wafer to 120 ºC and press the PMMA onto the wafer surface for 5 minutes; 6. Remove the washer and dissolve the PMMA with acetone and further clean the wafer surface with IPA before loading into ultra high vacuum (UHV) for annealing. Fig. S4 shows optical images of typical samples (exfoliated MoS 2 and WSe 2 flakes on the substrate). The sample was annealed at 400 ºC for 20 minutes after loading into the ARPES UHV chamber. S6

7 Figure S4. a) Schematic of the samples measured in spatially resolved ARPES experiments (MX 2 flakes on graphene covered SiO 2 /Si wafer). b) and c) Optical images of the MoS 2 and WSe 2 flakes used in the main text with regions of different thicknesses labeled. A schematic of the spatially resolved ARPES spectrometer is illustrated in Fig. S5. The beam spot size is ~800 nm, and the stability of the beam position during measurements is ~100 nm. The photon energy used for the experiments is 74 ev. The hemispherical dispersive analyzer mounted on a goniometer located inside the main UHV chamber has an energy resolution of ~50 mev with the photon energy used. More details please refer to SI Ref [1]. Figure S5: Schematic of the spatially resolved ARPES spectrometer. The main components are Schwarzschild objectives (SO1 and SO2), electron analyzer (EA), goniometer (G), sample holder (SH), scanning stage (SS) and cryostat (C). S7

8 To perform spatially resolved ARPES measurements, we first scanned the samples to obtain their contrast map of the (angle integrated) photoemission signal. Judging from these contrast maps (and comparing to the optical image if necessary, see Fig. 5 in the main text and Fig. S6 below), we could accurately identify the MX 2 flakes with different thicknesses. We then positioned the photon beam (~800 nm in size) to different flakes and performed the ARPES study to obtain the band structure of flakes with different thicknesses. We observed the same evolution of the VBM valley position from K to Γ when the flake thickness increases from one to two layers (Fig. S6); the band structure of bi-layer and multi-layer flakes also show general similarity. In WSe 2, the energy difference of the valence band between K and Γ is ~100 mev [Fig. S6c(iii)], which is 5 times smaller than that of MoS 2 [Fig. 5c(iii)]. Figure S6: Band valley evolutions from multi-, bi- to mono-layer WSe 2 nano-flakes. a) 2D photoemission spectra intensity contrast map of WSe 2 flakes (measured at the Fermi level), with different magnifications from large area (i) to small area (iii), demonstrating the processes to locate the target mono-layer flake. Panel (iv) gives the optical image of the same flake, where the mono-, bi- and multi-layer WSe 2 flakes can be clearly seen. Points P1-P3 indicate the three measurement S8

9 positions for mono-, bi- and multi-layer WSe 2 flakes. b) Constant energy plots measured at monolayer (point P1), bilayer (point P2) and multilayer (point P3) spots, with the energy positions at E- E VBM = 0 ev and E-E VBM = ev, respectively. c) Band dispersions along the high symmetry K-Γ- K and M-Γ-M directions from point P1-P3, showing the band valley evolution with different flake thicknesses. Reference: (1) Dudin, P., Lacovig, P., Fava, C., Nicolini, E., Bianco, A., Cautero, G., Barinov, A. J. Synchrotron Rad , S9

Weyl semimetal phase in the non-centrosymmetric compound TaAs

Weyl semimetal phase in the non-centrosymmetric compound TaAs Weyl semimetal phase in the non-centrosymmetric compound TaAs L. X. Yang 1,2,3, Z. K. Liu 4,5, Y. Sun 6, H. Peng 2, H. F. Yang 2,7, T. Zhang 1,2, B. Zhou 2,3, Y. Zhang 3, Y. F. Guo 2, M. Rahn 2, P. Dharmalingam

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/9/eaat8355/dc1 Supplementary Materials for Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi 2 O 2 Se

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2 Yi Zhang, Tay-Rong Chang, Bo Zhou, Yong-Tao Cui, Hao Yan, Zhongkai Liu, Felix Schmitt, James Lee,

More information

Spatially resolving density-dependent screening around a single charged atom in graphene

Spatially resolving density-dependent screening around a single charged atom in graphene Supplementary Information for Spatially resolving density-dependent screening around a single charged atom in graphene Dillon Wong, Fabiano Corsetti, Yang Wang, Victor W. Brar, Hsin-Zon Tsai, Qiong Wu,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Topological insulator nanostructures for near-infrared transparent flexible electrodes Hailin Peng 1*, Wenhui Dang 1, Jie Cao 1, Yulin Chen 2,3, Di Wu 1, Wenshan Zheng 1, Hui Li 1, Zhi-Xun Shen 3,4, Zhongfan

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NPHYS4186 Stripes Developed at the Strong Limit of Nematicity in FeSe film Wei Li 1,2,3*, Yan Zhang 2,3,4,5, Peng Deng 1, Zhilin Xu 1, S.-K.

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/2/e1601832/dc1 Supplementary Materials for Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures Neil R. Wilson,

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2

Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2 SLAC-PUB-15927 Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2 Yi Zhang 1, 2, Tay-Rong Chang 3, Bo Zhou 1, 4, 5, Yong-Tao Cui 2, 4, Hao Yan 2, 4,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Stable Three-dimensional Topological Dirac Semimetal Cd 3 As 2 Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. -K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang,

More information

Supporting Information. Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers

Supporting Information. Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers Supporting Information Tuning Interlayer Coupling in Large-area Heterostructures with CVD-grown MoS 2 and WS 2 monolayers Sefaattin Tongay 1,, Wen Fan 1,2,, Jun Kang 3, Joonsuk Park 4,Unsal Koldemir 4,Joonki

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Lateral heterojunctions within monolayer MoSe 2 -WSe 2 semiconductors Chunming Huang 1,#,*, Sanfeng Wu 1,#,*, Ana M. Sanchez 2,#,*, Jonathan J. P. Peters 2, Richard Beanland 2, Jason S. Ross 3, Pasqual

More information

Simultaneous emergence of superconductivity, inter-pocket scattering and. nematic fluctuation in potassium-coated FeSe superconductor., and Y.

Simultaneous emergence of superconductivity, inter-pocket scattering and. nematic fluctuation in potassium-coated FeSe superconductor., and Y. Simultaneous emergence of superconductivity, inter-pocket scattering and nematic fluctuation in potassium-coated FeSe superconductor Z. R. Ye 1,, C. F. Zhang 2, 3,, H. L. Ning 1, W. Li 2, 3, L. Chen 1,

More information

Direct Optical Coupling to an Unoccupied Dirac Surface State in the Topological Insulator Bi 2 Se 3

Direct Optical Coupling to an Unoccupied Dirac Surface State in the Topological Insulator Bi 2 Se 3 SLAC-PUB-15731 Direct Optical Coupling to an Unoccupied Dirac Surface State in the Topological Insulator Bi 2 Se 3 J. A. Sobota, 1, 2, 3 S.-L. Yang, 1, 2, 3 A. F. Kemper, 4 J. J. Lee, 1, 2, 3 F. T. Schmitt,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family Z. K. Liu 1,2,3, L. X. Yang 4,5,6, Y. Sun 7, T. Zhang 4,5, H. Peng 5, H. F. Yang 5,8, C. Chen 5, Y. Zhang 6, Y.

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure S1: Ab initio band structures in presence of spin-orbit coupling. Energy bands for (a) MoS 2, (b) MoSe 2, (c) WS 2, and (d) WSe 2 bilayers. It is worth noting

More information

Spectro-microscopic photoemission evidence of surface dissociation and charge uncompensated areas in Pb(Zr,Ti)O 3 (001) layers

Spectro-microscopic photoemission evidence of surface dissociation and charge uncompensated areas in Pb(Zr,Ti)O 3 (001) layers Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information - Phys. Chem. Chem. Phys. Spectro-microscopic

More information

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene

Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene GCOE Symposium Tohoku University 2011 Electronic Properties of Hydrogenated Quasi-Free-Standing Graphene Danny Haberer Leibniz Institute for Solid State and Materials Research Dresden Co-workers Supervising

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures F. Amet, 1 J. R. Williams, 2 A. G. F. Garcia, 2 M. Yankowitz, 2 K.Watanabe, 3 T.Taniguchi, 3 and D. Goldhaber-Gordon

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Aharonov-Bohm interference in topological insulator nanoribbons Hailin Peng 1,2, Keji Lai 3,4, Desheng Kong 1, Stefan Meister 1, Yulin Chen 3,4,5, Xiao-Liang Qi 4,5, Shou- Cheng

More information

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies.

Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. PY482 Lecture. February 28 th, 2013 Studying Metal to Insulator Transitions in Solids using Synchrotron Radiation-based Spectroscopies. Kevin E. Smith Department of Physics Department of Chemistry Division

More information

Supporting Information

Supporting Information Supporting Information Yi et al..73/pnas.55728 SI Text Study of k z Dispersion Effect on Anisotropy of Fermi Surface Topology. In angle-resolved photoemission spectroscopy (ARPES), the electronic structure

More information

Supporting Information for. Persistent charge-density-wave order in single-layer TaSe 2

Supporting Information for. Persistent charge-density-wave order in single-layer TaSe 2 Supporting Information for Persistent charge-density-wave order in single-layer TaSe 2 Hyejin Ryu 1,2,,*, Yi Chen 3,, Heejung Kim 4, Hsin-Zon Tsai 3, Shujie Tang 1,5, Juan Jiang 1, Franklin Liou 3, Salman

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Abstract. Introduction

Abstract. Introduction Two Dimensional Maps of Photoluminescence and Second Harmonic Generation Tara Boland University of North Dakota University of Washington INT REU, 2014 Advisor: Xiaodong Xu (Dated: August 31, 2014) Abstract

More information

Self-Doping Effects in Epitaxially-Grown Graphene. Abstract

Self-Doping Effects in Epitaxially-Grown Graphene. Abstract Self-Doping Effects in Epitaxially-Grown Graphene D.A.Siegel, 1,2 S.Y.Zhou, 1,2 F.ElGabaly, 3 A.V.Fedorov, 4 A.K.Schmid, 3 anda.lanzara 1,2 1 Department of Physics, University of California, Berkeley,

More information

Tunable Dirac Fermion Dynamics in Topological Insulators

Tunable Dirac Fermion Dynamics in Topological Insulators Supplementary information for Tunable Dirac Fermion Dynamics in Topological Insulators Chaoyu Chen 1, Zhuojin Xie 1, Ya Feng 1, Hemian Yi 1, Aiji Liang 1, Shaolong He 1, Daixiang Mou 1, Junfeng He 1, Yingying

More information

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik

Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Angle-resolved photoemission spectroscopy (ARPES) Overview-Physics 250, UC Davis Inna Vishik Outline Review: momentum space and why we want to go there Looking at data: simple metal Formalism: 3 step model

More information

Supplementary Information: Supplementary Figure 1. Resistance dependence on pressure in the semiconducting region.

Supplementary Information: Supplementary Figure 1. Resistance dependence on pressure in the semiconducting region. Supplementary Information: Supplementary Figure 1. Resistance dependence on pressure in the semiconducting region. The pressure activated carrier transport model shows good agreement with the experimental

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2

Supplementary Information. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD. Grown Monolayer MoSe2 Supplementary Information Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2 Ke Chen 1, Rudresh Ghosh 2,3, Xianghai Meng 1, Anupam Roy 2,3, Joon-Seok Kim 2,3, Feng

More information

Supporting information. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals

Supporting information. Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals Supporting information Gate-optimized thermoelectric power factor in ultrathin WSe2 single crystals Masaro Yoshida 1, Takahiko Iizuka 1, Yu Saito 1, Masaru Onga 1, Ryuji Suzuki 1, Yijin Zhang 1, Yoshihiro

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Supporting Information Role of Anderson Rule in Determining Electronic, Optical

More information

Stripes developed at the strong limit of nematicity in FeSe film

Stripes developed at the strong limit of nematicity in FeSe film Stripes developed at the strong limit of nematicity in FeSe film Wei Li ( ) Department of Physics, Tsinghua University IASTU Seminar, Sep. 19, 2017 Acknowledgements Tsinghua University Prof. Qi-Kun Xue,

More information

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection

Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Supplementary material for High responsivity mid-infrared graphene detectors with antenna-enhanced photo-carrier generation and collection Yu Yao 1, Raji Shankar 1, Patrick Rauter 1, Yi Song 2, Jing Kong

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

Valley Zeeman effect in elementary optical excitations of monolayerwse 2

Valley Zeeman effect in elementary optical excitations of monolayerwse 2 Valley Zeeman effect in elementary optical excitations of monolayerwse 2 Ajit Srivastava 1, Meinrad Sidler 1, Adrien V. Allain 2, Dominik S. Lembke 2, Andras Kis 2, and A. Imamoğlu 1 1 Institute of Quantum

More information

Optimizing Graphene Morphology on SiC(0001)

Optimizing Graphene Morphology on SiC(0001) Optimizing Graphene Morphology on SiC(0001) James B. Hannon Rudolf M. Tromp Graphene sheets Graphene sheets can be formed into 0D,1D, 2D, and 3D structures Chemically inert Intrinsically high carrier mobility

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

The surface activation layer of GaAs negative electron affinity photocathode activated by

The surface activation layer of GaAs negative electron affinity photocathode activated by SLAC-PUB-13810 The surface activation layer of GaAs negative electron affinity photocathode activated by Cs, Li and NF 3 Y. Sun 1, a), R.E. Kirby 2, T. Maruyama 3, G. A. Mulhollan 2, J. C. Bierman 2 and

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/4/3/e1701373/dc1 Supplementary Materials for Atomically thin gallium layers from solid-melt exfoliation Vidya Kochat, Atanu Samanta, Yuan Zhang, Sanjit Bhowmick,

More information

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating Controlling Graphene Ultrafast Hot Carrier Response from Metal-like to Semiconductor-like by Electrostatic Gating S.-F. Shi, 1,2* T.-T. Tang, 1 B. Zeng, 1 L. Ju, 1 Q. Zhou, 1 A. Zettl, 1,2,3 F. Wang 1,2,3

More information

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA

Predicting New BCS Superconductors. Marvin L. Cohen Department of Physics, University of. Lawrence Berkeley Laboratory Berkeley, CA Predicting New BCS Superconductors Marvin L. Cohen Department of Physics, University of California, and Materials Sciences Division, Lawrence Berkeley Laboratory Berkeley, CA CLASSES OF SUPERCONDUCTORS

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting Information Controllable Atmospheric Pressure Growth of Mono-layer, Bi-layer and Tri-layer

More information

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition

SUPPLEMENTARY INFORMATION. Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition SUPPLEMENTARY INFORMATION Observation of tunable electrical bandgap in large-area twisted bilayer graphene synthesized by chemical vapor deposition Jing-Bo Liu 1 *, Ping-Jian Li 1 *, Yuan-Fu Chen 1, Ze-Gao

More information

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000 Electronic Structure of La 2 x Sr x CuO 4 in the Vicinity of the Superconductor-Insulator Transition arxiv:cond-mat/99248v3 [cond-mat.supr-con] 23 May 2 A. Ino, C. Kim 2, M. Nakamura 3, T. Yoshida, T.

More information

Supplementary Materials: Janus Monolayer Transition Metal Dichalcogenides

Supplementary Materials: Janus Monolayer Transition Metal Dichalcogenides Supplementary Materials: Janus Monolayer Transition Metal Dichalcogenides Jing Zhang 1, Shuai Jia 1, Kholmanov Iskandar 2, Liang Dong 3, Dequan Er 3, Weibing Chen 1, Hua Guo 1, Zehua Jin 1, Vivek B. Shenoy

More information

Generation and electric control of spin valleycoupled circular photogalvanic current in WSe 2

Generation and electric control of spin valleycoupled circular photogalvanic current in WSe 2 Generation and electric control of spin valleycoupled circular photogalvanic current in WSe 2 1. Electronic band structure of WSe 2 thin film and its spin texture with/without an external electric field

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

Discovery of a Three-dimensional Topological Dirac Semimetal, Na 3 Bi

Discovery of a Three-dimensional Topological Dirac Semimetal, Na 3 Bi Discovery of a Three-dimensional Topological Dirac Semimetal, Na 3 Bi (Submitted on Aug 22, 2013) Z. K. Liu 1*, B. Zhou 2, 3*, Z. J. Wang 4, H. M. Weng 4, D. Prabhakaran 2, S. -K. Mo 3, Y. Zhang 3, Z.

More information

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film

Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Topological edge states in a high-temperature superconductor FeSe/SrTiO 3 (001) film Z. F. Wang 1,2,3+, Huimin Zhang 2,4+, Defa Liu 5, Chong Liu 2, Chenjia Tang 2, Canli Song 2, Yong Zhong 2, Junping Peng

More information

Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators

Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators Mapping the orbital wavefunction of the surface states in three-dimensional topological insulators Yue Cao 1,*, J. A. Waugh 1, X.-W. Zhang 2, 3, J.-W. Luo 3, Q. Wang 1, #, T. J. Reber 1, %, S. K. Mo 4,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface J.-S. Lee 1,*, Y. W. Xie 2, H. K. Sato 3, C. Bell 3, Y. Hikita 3, H. Y. Hwang 2,3, C.-C. Kao 1 1 Stanford Synchrotron Radiation Lightsource,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NMAT3449 Topological crystalline insulator states in Pb 1 x Sn x Se Content S1 Crystal growth, structural and chemical characterization. S2 Angle-resolved photoemission measurements at various

More information

single-layer transition metal dichalcogenides MC2

single-layer transition metal dichalcogenides MC2 single-layer transition metal dichalcogenides MC2 Period 1 1 H 18 He 2 Group 1 2 Li Be Group 13 14 15 16 17 18 B C N O F Ne 3 4 Na K Mg Ca Group 3 4 5 6 7 8 9 10 11 12 Sc Ti V Cr Mn Fe Co Ni Cu Zn Al Ga

More information

PHOTOELECTRON SPECTROSCOPY (PES)

PHOTOELECTRON SPECTROSCOPY (PES) PHOTOELECTRON SPECTROSCOPY (PES) NTRODUCTON Law of Photoelectric effect Albert Einstein, Nobel Prize 1921 Kaiser-Wilhelm-nstitut (now Max-Planck- nstitut) für Physik Berlin, Germany High-resolution electron

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth.

Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 1 Experimental setup for crystal growth. Schematic drawing of the experimental setup for C 8 -BTBT crystal growth. Supplementary Figure 2 AFM study of the C 8 -BTBT crystal growth

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/333/6045/999/dc1 Supporting Online Material for Visualizing Individual Nitrogen Dopants in Monolayer Graphene Liuyan Zhao, Rui He, Kwang Taeg Rim, Theanne Schiros, Keun

More information

Supporting Information. Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment

Supporting Information. Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment Supporting Information Direct n- to p-type Channel Conversion in Monolayer/Few-Layer WS 2 Field-Effect Transistors by Atomic Nitrogen Treatment Baoshan Tang 1,2,, Zhi Gen Yu 3,, Li Huang 4, Jianwei Chai

More information

arxiv: v2 [cond-mat.mes-hall] 5 Jun 2014

arxiv: v2 [cond-mat.mes-hall] 5 Jun 2014 Observation of monolayer valence band spin-orbit effect and induced quantum well states in ox 2 Nasser Alidoust, 1 Guang Bian, 1 Su-Yang Xu, 1 Raman Sankar, 2 adhab Neupane, 1 Chang Liu, 1 Ilya Belopolski,

More information

Supporting Information. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials

Supporting Information. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials Supporting Information Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials Jingjing Lin 1, Liangbo Liang 2,3, Xi Ling 4, Shuqing Zhang 1, Nannan Mao 1, Na Zhang 1, Bobby G. Sumpter 2,5,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature06219 SUPPLEMENTARY INFORMATION Abrupt Onset of Second Energy Gap at Superconducting Transition of Underdoped Bi2212 Wei-Sheng Lee 1, I. M. Vishik 1, K. Tanaka 1,2, D. H. Lu 1, T. Sasagawa

More information

Supporting Information: Local Electronic Structure of a Single-Layer. Porphyrin-Containing Covalent Organic Framework

Supporting Information: Local Electronic Structure of a Single-Layer. Porphyrin-Containing Covalent Organic Framework Supporting Information: Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework Chen Chen 1, Trinity Joshi 2, Huifang Li 3, Anton D. Chavez 4,5, Zahra Pedramrazi 2,

More information

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even,

Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, Supplementary Figure S1: Number of Fermi surfaces. Electronic dispersion around Γ a = 0 and Γ b = π/a. In (a) the number of Fermi surfaces is even, whereas in (b) it is odd. An odd number of non-degenerate

More information

Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons.

Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Supplementary Information for Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons Sefaattin Tongay 1, 2 +, Joonki Suh 1, 2 +, Can

More information

Comparing graphene growth on Cu(111) versus oxidized Cu(111)

Comparing graphene growth on Cu(111) versus oxidized Cu(111) Comparing graphene growth on Cu(111) versus oxidized Cu(111) Stefano Gottardi 1 *, Kathrin Müller 1, Luca Bignardi 1,, Juan Carlos Moreno-López 1, Tuan Anh Pham 1, Oleksii Ivashenko 1,, Mikhail Yablonskikh

More information

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and Supporting Information: Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and MoSe 2 /WSe 2 Albert F. Rigosi, Heather M. Hill, Yilei

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters X. Lin 1,, J. C. Lu 1,, Y. Shao 1,, Y. Y. Zhang

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Comment on A de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs

Comment on A de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs Comment on A de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs S.V. Borisenko, 1 V. B. Zabolotnyy, 1 D.V. Evtushinsky, 1 T. K. Kim, 1,2 I.V. Morozov, 1,3 A. A. Kordyuk,

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1 Measured versus calculated optical transitions in the CPX. The UV/Vis/NIR spectrum obtained experimentally for the 1:1 blend of 4T and F4TCNQ (red curve) is

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator

Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator SLAC-PUB-14357 Massive Dirac Fermion on the Surface of a magnetically doped Topological Insulator Y. L. Chen 1,2,3, J.-H. Chu 1,2, J. G. Analytis 1,2, Z. K. Liu 1,2, K. Igarashi 4, H.-H. Kuo 1,2, X. L.

More information

Islamabad, Pakistan. Abstract

Islamabad, Pakistan. Abstract Semiconductor-to-Metal Transition in the Bulk of WSe2 upon Potassium Intercalation Mushtaq Ahmad 1,2, Eric Müller 1, Carsten Habenicht 1, Roman Schuster 1, Martin Knupfer 1, and Bernd Büchner 1 1 IFW Dresden,

More information

Scanning Tunneling Microscopy Studies of the Ge(111) Surface

Scanning Tunneling Microscopy Studies of the Ge(111) Surface VC Scanning Tunneling Microscopy Studies of the Ge(111) Surface Anna Rosen University of California, Berkeley Advisor: Dr. Shirley Chiang University of California, Davis August 24, 2007 Abstract: This

More information

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc.

Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals, Inc. 9702 Gayton Road, Suite 320, Richmond, VA 23238, USA Phone: +1 (804) 709-6696 info@nitride-crystals.com www.nitride-crystals.com Graphene films on silicon carbide (SiC) wafers supplied by Nitride Crystals,

More information

Hopping in CVD Grown Single-layer MoS 2

Hopping in CVD Grown Single-layer MoS 2 Supporting Information for Large Thermoelectricity via Variable Range Hopping in CVD Grown Single-layer MoS 2 Jing Wu 1,2,3, Hennrik Schmidt 1,2, Kiran Kumar Amara 4, Xiangfan Xu 5, Goki Eda 1,2,4, and

More information

Energy Spectroscopy. Ex.: Fe/MgO

Energy Spectroscopy. Ex.: Fe/MgO Energy Spectroscopy Spectroscopy gives access to the electronic properties (and thus chemistry, magnetism,..) of the investigated system with thickness dependence Ex.: Fe/MgO Fe O Mg Control of the oxidation

More information

Angular dependence of the photoelectron energy distribution of InP(100) and. GaAs(100) negative electron affinity photocathodes

Angular dependence of the photoelectron energy distribution of InP(100) and. GaAs(100) negative electron affinity photocathodes SLAC-PUB-12881 October 2007 Angular dependence of the photoelectron energy distribution of InP(100) and GaAs(100) negative electron affinity photocathodes Dong-Ick Lee Department of Materials Science and

More information

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems Wei-Sheng Lee Stanford Institute of Material and Energy Science (SIMES) SLAC & Stanford University Collaborators

More information

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information. A.A. Baker,, 2 A.I. Figueroa, 2 L.J. Collins-McIntyre, G. van der Laan, 2 and T., a) Hesjedal )

More information

On surface synthesis of a 2D boroxine framework: a route to a novel 2D material?

On surface synthesis of a 2D boroxine framework: a route to a novel 2D material? Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 On surface synthesis of a 2D boroxine framework: a route to a novel 2D material? Matus Stredansky,

More information

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3

Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi 2 Te 3 Eur. Phys. J. Special Topics 222, 1271 1275 (2013) EDP Sciences, Springer-Verlag 2013 DOI: 10.1140/epjst/e2013-01921-1 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Regular Article Time resolved ultrafast

More information

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene

Supplementary Information for. Origin of New Broad Raman D and G Peaks in Annealed Graphene Supplementary Information for Origin of New Broad Raman D and G Peaks in Annealed Graphene Jinpyo Hong, Min Kyu Park, Eun Jung Lee, DaeEung Lee, Dong Seok Hwang and Sunmin Ryu* Department of Applied Chemistry,

More information

Supplementary information. Defect Engineering. Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and

Supplementary information. Defect Engineering. Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Supplementary information Achieving Ultrafast Hole Transfer at the Monolayer MoS 2 and CH 3 NH 3 PbI 3 Perovskite Interface by Defect Engineering Bo Peng,,, Guannan Yu ѫ,, Yawen Zhao Э,, Qiang Xu ѫ, Guichuan

More information

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer

Supplementary Information. for. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer Supplementary Information for Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Fewlayer MoS 2 Films Yifei Yu 1, Chun Li 1, Yi Liu 3, Liqin Su 4, Yong Zhang 4, Linyou Cao 1,2 * 1 Department

More information

TEOS characterization of 2D materials from graphene to TMDCs

TEOS characterization of 2D materials from graphene to TMDCs Marc Chaigneau Yoshito Okuno, Andrey Krayev, Filippo Fabbri HORIBA Scientific AIST-NT Inc. IMEM-CNR Institute TEOS characterization of 2D materials from graphene to TMDCs 30-03-2017 Graphene2017 2015 2017

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Conductance Measurements The conductance measurements were performed at the University of Aarhus. The Ag/Si surface was prepared using well-established procedures [1, 2]. After

More information

Spin and angular resolved photoemission experiments on epitaxial graphene. Abstract

Spin and angular resolved photoemission experiments on epitaxial graphene. Abstract Spin and angular resolved photoemission experiments on epitaxial graphene Isabella Gierz, 1, Jan Hugo Dil, 2, 3 Fabian Meier, 2, 3 Bartosz Slomski, 2, 3 Jürg Osterwalder, 3 Jürgen Henk, 4 Roland Winkler,

More information

Large Single Crystals of Graphene on Melted. Copper using Chemical Vapour Deposition.

Large Single Crystals of Graphene on Melted. Copper using Chemical Vapour Deposition. Supporting information for Large Single Crystals of Graphene on Melted Copper using Chemical Vapour Deposition. Yimin A. Wu 1, Ye Fan 1, Susannah Speller 1, Graham L. Creeth 2, Jerzy T. Sadowski 3, Kuang

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy Journal of Electron Spectroscopy and Related Phenomena 137 140 (2004) 663 668 Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission

More information

Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG.

Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG. Supplementary Figure 1: MoS2 crystals on WSe2-EG and EG and WSe2 crystals on MoSe2-EG and EG. (a) The MoS2 crystals cover both of EG and WSe2/EG after the CVD growth (Scar bar: 400 nm) (b) shows TEM profiles

More information