Vibrational spectra and molecular structural investigation of quiniodochlor

Size: px
Start display at page:

Download "Vibrational spectra and molecular structural investigation of quiniodochlor"

Transcription

1 Indian Journal of Pure & Applied Physics Vol. 42, March 2004, pp Vibrational spectra and molecular structural investigation of quiniodochlor S Gunasekaran, U Ponnambalam *, S Muthu * & G Anand + PG & Research Department of Physics, Pachiyappa's College, Chennai * PG Department of Physics, Presidency College, Chennai Department of Physics, A M A College of Engineering, Vadamavandal Received 9 July 2003; revised 2 January 2004; accepted 28 January 2004 A normal coordinate analysis on quiniodochlor has been carried out with a systematic set of symmetry coordinates following Wilson's F-G Matrix method. The potential constants evaluated for the molecule are found to be in good agreement with literature values thereby confirming the vibrational assignments. To check whether the chosen set of vibrational frequencies contribute maximum to be potential energy associated with the normal coordinates of the molecule, the potential energy distribution has been evaluated. [Keywords: Normal coordinate analysis, vibrational spectra, quiniodochlor, F-G Matrix.] IPC Code: G 01J 3/44 1 Introduction Quiniodochlor is used as anti-bacterial and antifungal drug in the treatment of skin infections. An extensive work has been carried out on the title compound and its derivatives in recent years 1-5. The characteristic vibrational frequencies of this drug have been identified and assigned on the basis of their relative intensity, characteristic positions and correlation of vibrational bands of related compounds. Probable assignment has been made but no attempt has been made on normal coordinate analysis. Hence, in the present work, normal coordinate analysis has been carried out on the basis of C s symmetry. 2 Experimental Details The pure sample of quiniodochlor was obtained from Sigma Chemical Company, USA and used as such. The FTIR and FT-Raman spectra of the sample were recorded in the region cm -1 and cm -1 respectively using BRUCKER IFS 66V FTIR spectrometer at RSIC, Chennai, India. The FTIR and FT-Raman spectra are presented in Fig Normal Coordinate Analysis Quiniodochlor has 48 fundamental modes of vibration under C s symmetry point group which are distributed as Γ vib = 31 A + 16A", all the fundamentals are active both in the infrared and Raman. In the present work only 31 modes are considered. The structure, orientation of the principle axes and the nomenclature of the parameters of the quiniodochlor molecule are shown in Fig. 2. A set of symmetry coordinate has been arrived using the knowledge of projection operator and the character table pertaining to the C s point group symmetry. The symmetry coordinates thus obtained are as follows: A species S 1 = ΔD; S 2 = Δh; S 3 = 1/ 6 [Δa 1 + Δa 2 + Δa 3 + Δa 4 + Δa 5 + Δa 6 ] S 4 = 1/ 2 [Δd 1 +Δd 2 ]; S 6 =ΔT; S 7 =Δt; S 8 =Δr; S 9 =Δl S 10 = 1/ 3[ΔR 1 + ΔR 2 + ΔR 3 ]; S 11 = 1/ 6 [Δα 1 + Δα 2 + Δα 3 + Δα 4 + Δα 5 + Δα 6 ] S 12 = 1/ 2 [Δβ 1 + Δβ 2 ]; S 13 = Δγ ; S 14 = 1/ 3 [Δε 1 + Δε 2 + Δε 3 ]; S 15 = 1/ 2 [Δω 1 + Δω 2 ] S 16 =Δχ; S 17 =1/ 2[Δσ 1 + Δσ 2 ]; S 18 = 1/ 2 [Δθ 1 + Δθ 2 ]; S 19 = 1/ 2[Δφ 1 + Δφ 2 ] S 20 = Δτ

2 GUNASEKARAN et al.: VIBRATIONAL SPECTRA OF QUINIODOCHLOR 163 Fig. 1 Vibrational spectra of quiniodochlor (a) FT - Raman spectrum (b) FTIR spectrum A" Species S 21 = 1/ 2 [2Δa 1 - Δa 2 - Δa 3 + 2Δa 4 - Δa 5 - Δa 6 ]; S 22 = 1/ 2 [Δd 1 - Δd 2 ]; S 23 = 1/ 2 [Δb 1 - Δb 2 ]; S 24 = 1/ 6 [2ΔR 1 - ΔR 2 - ΔR 3 ] S 25 = 1/ 12[2Δα 1 - Δα 2 - Δα 3 + 2Δα 4 - Δα 5 - Δα 6 ]; S 26 = 1/ 2 [Δβ 1 - Δβ 2 ]; S 27 = 1/ 6 [2Δε 1 - Δε 2 - Δε 3 ]; S 28 = 1/ 2[Δω 1 - Δω 2 ]; S 29 = 1/ 2 [Δσ 1 - Δσ 2 ] S 30 = 1/ 2 [Δθ 1 - Δθ 2 ]; S 31 = 1/ 2 [Δφ 1 - Δφ 2 ]

3 164 INDIAN J PURE & APPL PHYS, VOL 42, MARCH 2004 Fig. 2 Structure, nomenclature of parameters and the orientation of the principle axes of quniniodochlor where Δ s represent changes in the corresponding bond distances and bond angles. The required structural data were taken from literature 5. 4 Results and Discussion A normal coordinate analysis for quiniodochlor has been carried out using the observed wave numbers from FTIR and FT-Raman spectra. The evaluation of force constants is made on the basis of general valence force field by applying Wilson's F-G matrix method. The initial set of force constants for the quiniodochlor have been taken from related molecules. This set of force constants was subsequently refined by keeping a few interaction constants fixed throughout the refinement process. (i) C-H vibrations The C-H stretching vibrations of a heterocyclic aromatic compound fall in the region cm -1. In this region the bands are not much affected by the nature and position of the substituents 6. In the present work band observed at 3028 cm -1 (υ 10 ) in FTIR and 3025 cm -1 in FT Raman is assigned to C-H symmetric stretching. The bands observed at 3100 cm -1 (υ 24 ) in FTIR and 3105 cm -1 in FT-Raman are assigned to C-H asymmetric stretching. (ii) C-O stretching The band due to the C-O stretching vibrations of lactones occurs in the region cm -1. In the present work, the bands observed at 1270 cm -1 (υ 8 ) in IR and 1275 cm -1 in Raman are assigned to C - O stretching vibration.

4 GUNASEKARAN et al.: VIBRATIONAL SPECTRA OF QUINIODOCHLOR 165 Table 1 Vibrational assignment, force constants and PED values of quiniodochlor Symmetry coordinate Frequency (cm -1 ) Assignment Force const 10 2 N/m PED % FTIR FTRaman A Species S (w) 1500(s) C - C stretching S 2 563(s) 566(w) C - I stretching S (m) 1463(w) ring C C symmetric stretching S (s) ring C N symmetric stretching S (s) 1580(w) ring C C symmetric stretching S 6 649(vs) C - Cl stretching S (w) 3125(m) C - H stretching S (s) 1275(w) C - O stretching S (m) O - H stretching S (w) 3205(m) C - H symmetric stretching S (w) 475(m) C - C - C symmetric bending S (w) 445(m) C - C - N symmetric bending S (w) 415(m) C - N - C symmetric bending S (w) 550(m) C - C - C symmetric bending S (w) 595(m) C - C - O symmetric bending S (w) 440(m) C - O - H bending S (w) 410(m) C - C - I symmetric bending S (w) 1090(m) C - C - H symmetric bending S (w) 460(m) C - C - Cl symmetric bending S (vs) 950(w) C - C - H bending A" Species S (m) 1640(w) ring C C asym stretching S (w) 1545(s) ring C N asym stretching S (m) 1610(w) ring C C asym stretching S (m) C - H asym stretching S (w) 505(m) C - C - C asym bending S (w) 535(m) C - C - N asym bending S (w) 575(m) C - C - C asym bending S (w) 615(m) C - C - O asym bending S (w) 425(m) C - C - I asym bending S (m) 1205(w) C - C - H asym bending S (m) 490(w) C - C - Cl asym bending (iii) C-Cl vibration The C-Cl stretching vibrations 8 give generally strong bands in the region cm -1. In the present work, the bands observed at 649 cm -1 (υ 6 ) in IR and 650 cm -1 in Raman are assigned to C - Cl stretching vibration. The remainder of the observed frequencies and their corresponding assignments are presented in Table 1.

5 166 INDIAN J PURE & APPL PHYS, VOL 42, MARCH Potential Energy Distribution To check whether the chosen set of vibrational frequencies contribute the maximum to the potential energy associated with the normal coordinates of the molecule, the potential energy distribution has been calculated using the relation PED = F ii L 2 ik / λ k. PED is the contribution of the i th symmetry coordinate to the potential energy of vibration whose frequency is υ, F ii is the force potential constant, L ik is the L matrix element and λ k = 4π 2 C 2 υ 2. The calculated force constants and the potential energy distribution are presented in Table 1. References 1 Acheson R M, An introduction to chemistry of hetero cyclic compounds. Third Edition (John Wiley, New York), Tripathi K D, Medical Pharmacology, 3E (Jaypee Medical Publishers, New York) Indian Pharmacopeia, Vol. 1 & 2 (Controller of Publications Civil Lines, New Delhi) Gunasekaran S, Ponnambalam U, Muthu S & Anand G, Proceedings of the national symposium on atomic molecular structure, interactions and laser spectroscopy, Varanasi (2002). 5 Sutton L E, The interatomic bond distances and bond angles in molecules and ions, (Chemical Society, London), Asish Sharma & Sharma S D, Acta Ciencia Indica, Vol. XXVII P, No.2 (2001) Silverstein R M, Clayton Basslor & Morril T C, Spectroscopic identification of organic compounds, 5E (John Wiley, New York) Shreemathi S, Ph.D. thesis, University of Madras, India, 2001.

Vibrational spectra and normal coordinate analysis on structure of nitrazepam

Vibrational spectra and normal coordinate analysis on structure of nitrazepam Indian Journal of Pure & Applied Physics Vol. 46, March 2008, pp. 162-168 Vibrational spectra and normal coordinate analysis on structure of nitrazepam S Gunasekaran*, R Arunbalaji*, S Seshadri + & S Muthu

More information

Vibrational spectra and normal coordinate analysis on an organic non-linear optical crystal-3-methoxy-4-hydroxy benzaldehyde

Vibrational spectra and normal coordinate analysis on an organic non-linear optical crystal-3-methoxy-4-hydroxy benzaldehyde Indian Journal of Pure & Applied Physics Vol. 43, November 2005, pp. 838-843 Vibrational spectra and normal coordinate analysis on an organic non-linear optical crystal-3-methoxy-4-hydroxy benzaldehyde

More information

Study of vibrational spectra of 4-methyl-3-nitrobenzaldehyde

Study of vibrational spectra of 4-methyl-3-nitrobenzaldehyde Indian Journal of Pure & Applied Physics Vol. 44, September 2006, pp. 644-648 Study of vibrational spectra of 4-methyl-3-nitrobenzaldehyde B S Yadav, S K Tyagi* & Seema** Molecular Spectroscopy and Biophysics

More information

Vibrational Spectra and Normal coordinate Calculations of 5, 6 Diamino 1H Pyrimidine 2, 4 Dione

Vibrational Spectra and Normal coordinate Calculations of 5, 6 Diamino 1H Pyrimidine 2, 4 Dione Forfaiting as a source of Finance for Global Trade Vibrational Spectra and Normal coordinate Calculations of 5, 6 Diamino 1 Pyrimidine 2, 4 Dione R.Gayathri Assistant Professor, Department of Physics,

More information

FTIR, FT-Raman spectral analysis and normal coordinate calculations of 2-hydroxy-3-methoxybenzaldehyde thiosemicarbozone

FTIR, FT-Raman spectral analysis and normal coordinate calculations of 2-hydroxy-3-methoxybenzaldehyde thiosemicarbozone Indian Journal of Pure & Applied Physics Vol. 42, May 2004, pp 313-318 FTIR, FT-Raman spectral analysis and normal coordinate calculations of 2-hydroxy-3-methoxybenzaldehyde thiosemicarbozone V Krishnakumar

More information

CHAPTER-IV. FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations

CHAPTER-IV. FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations 4.1. Introduction CHAPTER-IV FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations m-xylol is a material for thermally stable aramid fibers or alkyd resins [1]. In recent

More information

Chapter 2. FTZR and FT Raman Spectra, Vibrational Assignment and Analysis of l,2-cyclohexanedion

Chapter 2. FTZR and FT Raman Spectra, Vibrational Assignment and Analysis of l,2-cyclohexanedion Chapter 2 FTZR and FT Raman Spectra, Vibrational Assignment and Analysis of l,2-cyclohexanedion CHAPTER - 2 INTRODUCTION Cyclohexane is a cycloalkane which was Baeyer in 1893 and discovered in caucasian

More information

AB INITIO CALCULATIONS AND VIBRATIONAL SPECTROSCOPIC STUDIES OF 2-CHLORO-6- METHOXYPYRIDINE

AB INITIO CALCULATIONS AND VIBRATIONAL SPECTROSCOPIC STUDIES OF 2-CHLORO-6- METHOXYPYRIDINE AB INITIO CALCULATIONS AND VIBRATIONAL SPECTROSCOPIC STUDIES OF 2-CHLORO-6- METHOXYPYRIDINE L.Usha Kumari a, M.Fathima Beegum a, B.Harikumar b, Hema Tresa Varghese c, C.Yohannan Panicker a* a Department

More information

International Journal of Materials Science ISSN Volume 12, Number 2 (2017) Research India Publications

International Journal of Materials Science ISSN Volume 12, Number 2 (2017) Research India Publications HF, DFT Computations and Spectroscopic study of Vibrational frequency, HOMO-LUMO Analysis and Thermodynamic Properties of Alpha Bromo Gamma Butyrolactone K. Rajalakshmi 1 and A.Susila 2 1 Department of

More information

Ab-initio Hartee-Fock and Density functional theory calculations of 2-Chloro-6-methoxy-3-nitropyridine

Ab-initio Hartee-Fock and Density functional theory calculations of 2-Chloro-6-methoxy-3-nitropyridine Available online at www.scholarsresearchlibrary.com Scholars Research Library Archives of Applied Science Research, 211, 3 (2):334-344 (http://scholarsresearchlibrary.com/archive.html) ISSN 975-58X CODEN

More information

FT-IR, FT-Raman And UV Spectra and Ab-Initio HF and DFT Vibrational Study of 1-Propyl 4-Piperidone

FT-IR, FT-Raman And UV Spectra and Ab-Initio HF and DFT Vibrational Study of 1-Propyl 4-Piperidone FT-IR, FT-Raman And UV Spectra and Ab-Initio HF and DFT Vibrational Study of 1-Propyl 4-Piperidone K. Rajalakshmi 1 and E.Elumalai 2 1 Department of Physics, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya,

More information

Raman and infrared spectra of tere-phthalaldehyde

Raman and infrared spectra of tere-phthalaldehyde Pram[qa, Vol. 18, No. 4, April 1982, pp. 311-315. ~) Printed in India. Raman and infrared spectra of tere-phthalaldehyde R A YADAV, RAMAKANT, P C MISHRA and I S SINGH Spectroscopy Laboratory, Department

More information

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d )

B F N O. Chemistry 6330 Problem Set 4 Answers. (1) (a) BF 4. tetrahedral (T d ) hemistry 6330 Problem Set 4 Answers (1) (a) B 4 - tetrahedral (T d ) B T d E 8 3 3 2 6S 4 6s d G xyz 3 0-1 -1 1 G unmoved atoms 5 2 1 1 3 G total 15 0-1 -1 3 If we reduce G total we find that: G total

More information

HF, DFT Computations and Spectroscopic Study of the Vibrational and Thermodynamic Properties of Metformin

HF, DFT Computations and Spectroscopic Study of the Vibrational and Thermodynamic Properties of Metformin International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 09744304 Vol.3, No.3pp 13501358, JulySept 2011 HF, DFT Computations and Spectroscopic Study of the Vibrational and Thermodynamic Properties

More information

Fourier Transform IR Spectroscopy

Fourier Transform IR Spectroscopy Fourier Transform IR Spectroscopy Absorption peaks in an infrared absorption spectrum arise from molecular vibrations Absorbed energy causes molecular motions which create a net change in the dipole moment.

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI Page 1 Page 2 infrared and raman spectroscopy concepts and applications infrared and raman spectroscopy

More information

Frequencies and Normal Modes of Vibration of Benz[a]anthracene Radical Ions

Frequencies and Normal Modes of Vibration of Benz[a]anthracene Radical Ions Frequencies and Normal Modes of Vibration of Benz[a]anthracene Radical Ions Rehab M. Kubba, Raghida I. Al-ani, and Muthana Shanshal Department of Chemistry, College of Science, University of Baghdad, Jadiriya,

More information

IR, Raman, First Hyperpolarizability and Computational Study of 1-chloroethyl Benzene

IR, Raman, First Hyperpolarizability and Computational Study of 1-chloroethyl Benzene Material Science Research India Vol. 9(1), 117-121 (2012) IR, Raman, First Hyperpolarizability and Computational Study of 1-chloroethyl Benzene HEMA TRESA VARGHESE¹, C.YOHANNAN PANICKER²* and SHEENA MARY

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser Third 1-Hour Examination Vibrational Spectroscopy Monday, November 24, 1997, 8:40-9:30 Name: Answer Key Question 1 (Combination) 25 Question

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY

USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Proceedings of the South Dakota Academy of Science, Vol. 79 (2000) 63 USING THE OCEAN OPTICS R-2000 RAMAN SPECTROMETER IN THE UNDERGRADUATE LABORATORY Deanna L. Donohoue, Gary W. Earl and Arlen Viste Department

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by the sample is measured as wavelength

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential.

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential. IV. Molecular Vibrations IV-1 As discussed solutions, ψ, of the amiltonian, (Schrödinger Equation) must be representations of the group of the molecule i.e. energy cannot change due to a symmetry operation,

More information

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. IR spectroscopy AFB QO I 2007/08 1 AFB QO I 2007/08 2

Química Orgânica I. Ciências Farmacêuticas Bioquímica Química. IR spectroscopy AFB QO I 2007/08 1 AFB QO I 2007/08 2 Química Orgânica I Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 IR spectroscopy AFB QO I 2007/08 2 1 Adaptado de: Organic Chemistry, 6th Edition; L. G. Wade, Jr. Organic Chemistry, William

More information

Journal of Chemical and Pharmaceutical Research, 2015, 7(2): Research Article

Journal of Chemical and Pharmaceutical Research, 2015, 7(2): Research Article Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2015, 7(2):641-645 Research Article ISSN : 0975-7384 CODEN(USA) : JCPRC5 Synthesis, characterization and theoretical study

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES

AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES Int. J. Chem. Sci.: 9(4), 2011, 1564-1568 ISSN 0972-768X www.sadgurupublications.com AB INITIO MODELING OF THE STRUCTURAL DEFECTS IN AMIDES M. FATHIMA BEGUM, HEMA TRESA VARGHESE a, Y. SHEENA MARY a, C.

More information

Infrared spectroscopy. Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012

Infrared spectroscopy. Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012 Siriphorn Laomanacharoen Bureau of Drug and Narcotic Department of Medical Sciences 2 March 2012 1 Infrared region 2 Infrared region below red in the visible region at wavelengths between 2.5-25 µm more

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy IR Spectroscopy Used to identify organic compounds IR spectroscopy provides a 100% identification if the spectrum is matched. If not, IR at least provides information about the types

More information

Determining the Normal Modes of Vibration

Determining the Normal Modes of Vibration Determining the ormal Modes of Vibration Introduction vibrational modes of ammonia are shown below! 1 A 1 ) symmetric stretch! A 1 ) symmetric bend! 3a E) degenerate stretch Figure 1 Vibrational modes!

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Synthetic and 1 H and 13 C NMR Spectral Studies on N-(Mono-substitutedphenyl)-acetamides H 4. NH-CO- CH 3 i. ; X = Cl, CH 3

Synthetic and 1 H and 13 C NMR Spectral Studies on N-(Mono-substitutedphenyl)-acetamides H 4. NH-CO- CH 3 i. ; X = Cl, CH 3 Synthetic and 1 H and 13 C NMR Spectral Studies on N-(Mono-substitutedphenyl)-acetamides and Substituted Acetamides, 2/3/4-YC 6 H 4 NH-CO- CH 3 i X i (Y=CH 3, F, Cl, Br, NO 2 ; X = Cl, CH 3 ; i =0,1,2,3)

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

STRUCTURAL DEFECTS IN IMIDATES : AN AB INITIO STUDY

STRUCTURAL DEFECTS IN IMIDATES : AN AB INITIO STUDY Int. J. Chem. Sci.: 9(4), 2011, 1763-1767 ISSN 0972-768X www.sadgurupublications.com STRUCTURAL DEFECTS IN IMIDATES : AN AB INITIO STUDY M. FATHIMA BEGUM, HEMA TRESA VARGHESE a, Y. SHEENA MARY a, C. YOHANNAN

More information

Probing Bonding Using Infrared Spectroscopy Chem

Probing Bonding Using Infrared Spectroscopy Chem Probing Bonding Using Infrared Spectroscopy Chem 112-2011 INTRODUCTION First, watch the short video on how to record an infrared spectrum using an infrared spectrometer, linked at: http://employees.oneonta.edu/viningwj/chem112/labs/ir_video/ir_video_controller.swf

More information

FTIR, FT-Raman and DFT Calculations of 5-nitro-1,3-Benzodioxole

FTIR, FT-Raman and DFT Calculations of 5-nitro-1,3-Benzodioxole Est. 984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 202, Vol. 28, No. (2): Pg. 037-04 FTIR, FT-Raman

More information

Chapter 12 Mass Spectrometry and Infrared Spectroscopy

Chapter 12 Mass Spectrometry and Infrared Spectroscopy Organic Chemistry, 6 th Edition L. G. Wade, Jr. Chapter 12 Mass Spectrometry and Infrared Spectroscopy Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice

More information

CHAPTER INTRODUCTION

CHAPTER INTRODUCTION CHAPTER 3 A SCALED QUANTUM MECHANICAL APPROACH OF VIBRATIONAL ANALYSIS OF O-TOLUNITRILE BASED ON FTIR AND FT RAMAN SPECTRA, AB INITIO, HARTREE FOCK AND DFT METHODS 3.1. INTRODUCTION o-tolunitrile or ortho

More information

NITRATE. HOWRAH (West Bengal) INDIA e Thushara, Neethinagar-64, Pattathanam, KOLLAM (Kerala) INDIA ABSTRACT

NITRATE. HOWRAH (West Bengal) INDIA e Thushara, Neethinagar-64, Pattathanam, KOLLAM (Kerala) INDIA ABSTRACT Int. J. Chem. Sci.: 8(1), 2010, 176-182 SPECTROSCOIC INVESTIGATIONS OF ANILINIUM NITRATE C. YOHANNAN PANICKER *, HEMA TRESA VARGHESE a, P. E. EAPEN b, K. RAJU c, SUBARNA GANGULI d, FATHIMA BEEGUM and Y.

More information

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) INTRODUCTION THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in the

More information

IPC TECHNICAL PAPER SERIES NUMBER 53 MOLECULAR ORIENTATION IN PLANT CELL WALLS: DETECTION USING RAMAN SPECTRA OF INDIVIDUAL CELLS

IPC TECHNICAL PAPER SERIES NUMBER 53 MOLECULAR ORIENTATION IN PLANT CELL WALLS: DETECTION USING RAMAN SPECTRA OF INDIVIDUAL CELLS THE INSTITUTE OF PAPER CHEMISTRY, APPLETON, WISCONSIN IPC TECHNICAL PAPER SERIES NUMBER 53 MOLECULAR ORIENTATION IN PLANT CELL WALLS: DETECTION USING RAMAN SPECTRA OF INDIVIDUAL CELLS RAJAI H. ATALLA AND

More information

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012

Chemistry 5325/5326. Angelo R. Rossi Department of Chemistry The University of Connecticut. January 17-24, 2012 Symmetry and Group Theory for Computational Chemistry Applications Chemistry 5325/5326 Angelo R. Rossi Department of Chemistry The University of Connecticut angelo.rossi@uconn.edu January 17-24, 2012 Infrared

More information

Learning Guide for Chapter 3 - Infrared Spectroscopy

Learning Guide for Chapter 3 - Infrared Spectroscopy Learning Guide for hapter 3 - Infrared Spectroscopy I. Introduction to spectroscopy - p 1 II. Molecular vibrations - p 3 III. Identifying functional groups - p 6 IV. Interpreting an IR spectrum - p 12

More information

Key words: Infrared; Nuclear Magnetic Resonance; Arylsulphonamides. CH 3,5-Cl; 3-CH 3,4-Cl; 2,4-Cl 2 or 3,4-Cl 2 ). They are

Key words: Infrared; Nuclear Magnetic Resonance; Arylsulphonamides. CH 3,5-Cl; 3-CH 3,4-Cl; 2,4-Cl 2 or 3,4-Cl 2 ). They are Infrared and NMR Spectra of Arylsulphonamides, 4-X-C 6 H 4 SO 2 NH 2 and i-x, j-yc 6 H 3 SO 2 NH 2 (X ¼ H; CH 3 ;C 2 H 5 ; F; Cl; Br; I or NO 2 and i-x, j-y¼ 2,3-(CH 3 ) 2 ; 2,4-(CH 3 ) 2 ; 2,5- (CH 3

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

13, Applications of molecular symmetry and group theory

13, Applications of molecular symmetry and group theory Subject Paper No and Title Module No and Title Module Tag Chemistry 13, Applications of molecular symmetry and group theory 27, Group theory and vibrational spectroscopy: Part-IV(Selection rules for IR

More information

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy

PAPER No. 12: ORGANIC SPECTROSCOPY MODULE No. 7: Instrumentation for IR spectroscopy KNOW MORE Web links https://en.wikipedia.org/wiki/infrared_ http://hiq.lindegas.com/en/analytical_methods/infrared_/non_dispersive_infrared.html http://blamp.sites.truman.edu/files/2012/11/322-ir-and-ftir.pdf

More information

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies The hydrogen stretch region (3600 2500 cm 1 ). Absorption in this region is associated with the stretching vibration of hydrogen

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

(2) Read each statement carefully and pick the one that is incorrect in its information.

(2) Read each statement carefully and pick the one that is incorrect in its information. Organic Chemistry - Problem Drill 17: IR and Mass Spectra No. 1 of 10 1. Which statement about infrared spectroscopy is incorrect? (A) IR spectroscopy is a method of structure determination based on the

More information

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh RAMAN SPECTROSCOPY Scattering Mid-IR and NIR require absorption of radiation from a ground level to an excited state, requires matching of radiation from source with difference in energy states. Raman

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 XIV 67 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate,

More information

SPECIFICITY OF DECOMPOSITION OF SOLIDS IN NON-ISOTHERMAL CONDITIONS

SPECIFICITY OF DECOMPOSITION OF SOLIDS IN NON-ISOTHERMAL CONDITIONS Journal of Thermal Analysis and Calorimetry, Vol. 72 (2003) 597 604 SPECIFICITY OF DECOMPOSITION OF SOLIDS IN NON-ISOTHERMAL CONDITIONS T. Vlase *, G. Vlase, M. Doca and N. Doca West University of Timiºoara,

More information

Influence of Dilution with Methanol on Fermi's Resonance inccl 4 Vibrational Spectra

Influence of Dilution with Methanol on Fermi's Resonance inccl 4 Vibrational Spectra International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.6, No.1, pp 521-526, Jan-March 2014 Influence of Dilution with Methanol on Fermi's Resonance inccl 4 Vibrational Spectra

More information

Vibrations. Matti Hotokka

Vibrations. Matti Hotokka Vibrations Matti Hotokka Identify the stuff I ve seen this spectrum before. I know what the stuff is Identify the stuff Let s check the bands Film: Polymer Aromatic C-H Aliphatic C-H Group for monosubstituted

More information

Infrared spectroscopy Basic theory

Infrared spectroscopy Basic theory Infrared spectroscopy Basic theory Dr. Davide Ferri Paul Scherrer Institut 056 310 27 81 davide.ferri@psi.ch Importance of IR spectroscopy in catalysis IR Raman NMR XAFS UV-Vis EPR 0 200 400 600 800 1000

More information

IR, Raman and DFT Calculations of 5,6-benzo-2-pyrone

IR, Raman and DFT Calculations of 5,6-benzo-2-pyrone Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (2): Pg. 1071-1075 IR, Raman

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Symmetry requirement for coupling combination bands and Fermi resonance 2 3 V 3 1505 cm -1 (R, IR) E' stretches v 1 888 cm -1 (R) A 1 ' stretch V 2 718 cm -1 (IR) A

More information

Organic Spectra Infra Red Spectroscopy H. D. Roth. THEORY and INTERPRETATION of ORGANIC SPECTRA H. D. Roth. Infra Red Spectroscopy

Organic Spectra Infra Red Spectroscopy H. D. Roth. THEORY and INTERPRETATION of ORGANIC SPECTRA H. D. Roth. Infra Red Spectroscopy rganic Spectra Infra Red Spectroscopy. D. Roth TERY and INTERPRETATIN of RGANI SPETRA. D. Roth Infra Red Spectroscopy Infrared spectroscopy (IR) is an analytical technique concerned with molecular vibrations

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Compounds Synthesis and Bilogical Analysis

Compounds Synthesis and Bilogical Analysis Research Journal of Chemical Sciences E-ISSN 2231-606X Amino Phenolic AZO Compounds Synthesis and Bilogical Analysis Abstract Namrata S. Shelke * and N.S. Thakare Department of Chemistry, M. S. P. College,

More information

Vibrations of Carbon Dioxide and Carbon Disulfide

Vibrations of Carbon Dioxide and Carbon Disulfide Vibrations of Carbon Dioxide and Carbon Disulfide Purpose Vibration frequencies of CO 2 and CS 2 will be measured by Raman and Infrared spectroscopy. The spectra show effects of normal mode symmetries

More information

Types of Molecular Vibrations

Types of Molecular Vibrations Important concepts in IR spectroscopy Vibrations that result in change of dipole moment give rise to IR absorptions. The oscillating electric field of the radiation couples with the molecular vibration

More information

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II

PAPER No.12 :Organic Spectroscopy MODULE No.30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass - Part II Subject Chemistry Paper No and Title Module No and Title Module Tag 12 : rganic Spectroscopy 30: Combined problem on UV, IR, 1 H NMR, 13 C NMR and Mass Part-II CHE_P12_M30 TABLE F CNTENTS 1. Learning utcomes

More information

Fourier Transform Infrared Spectrophotometry Studies of Chromium Trioxide-Phthalic Acid Complexes

Fourier Transform Infrared Spectrophotometry Studies of Chromium Trioxide-Phthalic Acid Complexes DOI:10.7598/cst2016.1260 Chemical Science Transactions ISSN:2278-3458 2016, 5(3), 770-774 RESEARCH ARTICLE Fourier Transform Infrared Spectrophotometry Studies of Chromium Trioxide-Phthalic Acid Complexes

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

Symmetric Stretch: allows molecule to move through space

Symmetric Stretch: allows molecule to move through space BACKGROUND INFORMATION Infrared Spectroscopy Before introducing the subject of IR spectroscopy, we must first review some aspects of the electromagnetic spectrum. The electromagnetic spectrum is composed

More information

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries

The Unshifted Atom-A Simpler Method of Deriving Vibrational Modes of Molecular Symmetries Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (1): Pg. 189-202 The Unshifted

More information

Infra-red Spectroscopy

Infra-red Spectroscopy Molecular vibrations are associated with the absorption of energy (infrared activity) by the molecule as sets of atoms (molecular moieties) vibrate about the mean center of their chemical bonds. Infra-red

More information

Infrared And Raman Spectra Of Inorganic And Coordination Compounds Applications In Coordination Or

Infrared And Raman Spectra Of Inorganic And Coordination Compounds Applications In Coordination Or Infrared And Raman Spectra Of Inorganic And Coordination Compounds Applications In Coordination Or We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks

More information

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II

Course Syllabus. Department: Science & Technology. Date: April I. Course Prefix and Number: CHM 212. Course Name: Organic Chemistry II Department: Science & Technology Date: April 2012 I. Course Prefix and Number: CHM 212 Course Name: Organic Chemistry II Course Syllabus Credit Hours and Contact Hours: 5 credit hours and 7 (3:3:1) contact

More information

FT-Raman Spectroscopy of Heavy Metal-Nucleotide Complexes

FT-Raman Spectroscopy of Heavy Metal-Nucleotide Complexes Asian Journal of Chemistry Vol. 21, No. 6 (2009), 4241-4245 FT-Raman Spectroscopy of Heavy Metal-Nucleotide Complexes N. IYANDURAI, K. SENTHIL* and R. SAROJINI Department of Physics, Kongunadu Arts and

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Fall, 008

More information

DETERMINATION OF λ max OF ANTIBIOTIC F-40 PRODUCED BY Streptomyces sulfonensis sp.nov.,

DETERMINATION OF λ max OF ANTIBIOTIC F-40 PRODUCED BY Streptomyces sulfonensis sp.nov., WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES Venkateswara et al. SJIF Impact Factor 6.041 Volume 5, Issue 11, 1643-1647 Research Article ISSN 2278 4357 DETERMINATION OF λ max OF ANTIBIOTIC F-40

More information

Chapter 3 Introduction to Molecular Symmetry

Chapter 3 Introduction to Molecular Symmetry CHEM 511 Chapter 3 page 1 of 12 Chapter 3 Introduction to Molecular Symmetry This chapter will deal with the symmetry characteristics of individual molecules, i.e., how molecules can be rotated or imaged

More information

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or CHEM 241 UNIT 5: PART B INFRA-RED RED SPECTROSCOPY 1 Spectroscopy of the Electromagnetic Spectrum Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants

Introduction. The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Introduction The analysis of the outcome of a reaction requires that we know the full structure of the products as well as the reactants Spectroscopy and the Electromagnetic Spectrum Unlike mass spectrometry,

More information

Journal of Global Pharma Technology

Journal of Global Pharma Technology Journal of Global Pharma Technology ISS: 0975-8542 Available nline at www.jgpt.co.in RESEARCH ARTICLE Synthesis, Characterization of Some ew Heterocyclic Derivatives Asstabraq Mohsin Yasir Department of

More information

Study of Structural, FT-IR and Nonlinear optical properties of Lithium iodate

Study of Structural, FT-IR and Nonlinear optical properties of Lithium iodate Study of Structural, FT-IR and Nonlinear optical properties of Lithium iodate Abstract Sharda J. Shitole Z. B. Patil College, Dhule, Maharashtra, India sjshitole@hotmail.com Crystals of lithium iodate

More information

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis

Structure Determination. How to determine what compound that you have? One way to determine compound is to get an elemental analysis Structure Determination How to determine what compound that you have? ne way to determine compound is to get an elemental analysis -basically burn the compound to determine %C, %H, %, etc. from these percentages

More information

Spectroscopic Selection Rules

Spectroscopic Selection Rules E 0 v = 0 v = 1 v = 2 v = 4 v = 3 For a vibrational fundamental (Δv = ±1), the transition will have nonzero intensity in either the infrared or Raman spectrum if the appropriate transition moment is nonzero.

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

Lab 6. Use of VSEPR to Predict Molecular Structure and IR Spectroscopy to Identify an Unknown

Lab 6. Use of VSEPR to Predict Molecular Structure and IR Spectroscopy to Identify an Unknown Lab 6. Use of VSEPR to Predict Molecular Structure and IR Spectroscopy to Identify an Unknown Prelab Assignment Before coming to lab: In addition to reading introduction of this lab handout, read and understand

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane Office: CTH 311 Phone Office Hours:

Symmetry. Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane   Office: CTH 311 Phone Office Hours: Chemistry 481(01) Spring 2017 Instructor: Dr. Upali Siriwardane e-mail: upali@latech.edu Office: CT 311 Phone 257-4941 Office ours: M,W 8:00-9:00 & 11:00-12:00 am; Tu,Th, F 9:30-11:30 a.m. April 4, 2017:

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Organic Compound Identification Using Infrared Spectroscopy. Description

Organic Compound Identification Using Infrared Spectroscopy. Description Return to paper Organic Compound Identification Using Infrared Spectroscopy Dr. Walt Volland, Bellevue Community College All rights reserved 1999, Bellevue, Washington Description This exercise is intended

More information

Molecular Symmetry 10/25/2018

Molecular Symmetry 10/25/2018 Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy). Predict IR spectra or Interpret UV-Vis spectra Predict optical activity

More information

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY

INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY MAX DIEM Department of Chemistry City University of New York Hunter College A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane

More information

Asymmetry of Peaks in the XPS of Polymers

Asymmetry of Peaks in the XPS of Polymers Asymmetry of Peaks in the XPS of Polymers When a photon is absorbed by a material, the energy transferred may cause the excitation of both the electronic and atomic structure of the compounds on the surface.

More information

Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data. Problem solving session

Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data. Problem solving session Structure solving based on IR, UV-Vis, MS, 1 H and 13 C NMR spectroscopic data Problem solving session S. SANKARARAMAN DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI 600036 sanka@iitm.ac.in

More information