INVESTIGATION OF ELECTRONIC PROPERTIES OF THE GRAPHENE SINGLE-WALL CARBON NANOTUBES *

Size: px
Start display at page:

Download "INVESTIGATION OF ELECTRONIC PROPERTIES OF THE GRAPHENE SINGLE-WALL CARBON NANOTUBES *"

Transcription

1 INVESTIGATION OF ELECTRONIC PROPERTIES OF THE GRAPHENE SINGLE-WALL CARBON NANOTUBES * Grafen ve Tek Duvarlı Karbon Nanotüplerin Elektronik Özelliklerinin İncelenmesi Erkan TETİK Fizik Anabilim Dalı Faruk KARADAĞ Fizik Anabilim Dalı ÖZET Grafen ve karbon nanotüpleri ab initio yoğunluk fonksiyoneli teorisini kullanarak yapısal ve elektronik özelliklerine göre 5 gurupta inceledik. Bu guruplar zigzag (metalik ve yarıiletken), chiral (metalik ve yarıiletken) ve armchair (metalik) şeklindedir. Yapısal ve elektronik özellikleri 3 boyutlu süper hücre Grafen tek duvarlı karbon nanotüpleri kullanarak çalıştık. Zigzag (6, 0), zigzag (7, 0) ve armchair (7, 7) grafen ve tek duvarlı karbon Nanotüplerin elektronik özelliklerini detaylı bir şekilde araştırdık. Bu yapıların enerji bant grafiklerini, yasak bant aralıklarını ve durum yoğunluklarını elde ettik. Grafen ve karbon nanotüplerin bant yapılarını karşılaştırdık ve döndürmenin etkilerini gözledik. Anahtar Kelimeler : Karbon Nanotüp, DFT, Elektronik Özellikler, Yük Yoğunluğu ABSTRACT We examined the graphene and carbon nanotubes in 5 groups according to their structural and electronic properties by using ab initio density functional theory: zigzag (metallic and semiconducting), chiral (metallic and semiconducting) and armchair (metallic). We studied the structural and electronic properties of the 3D supercell graphene and SWCNTs. So, we reported comprehensively the graphene and SWCNTs that consist zigzag (6, 0), zigzag (7, 0) and armchair (7, 7). We obtained the energy band graphics, band gaps and density of state for these structures. We compared the band structure and density of state of graphene and SWCNTs and examined the effect of rolling for nanotubes. Key Words : Carbon Nanotube, DFT, Electronic Properties, Charge Density Introduction The physics of carbon nanotubes (CNTs) has evolved into a research field since their discovery (Iijima, 1991). CNTs have been researched a lot of forms from single-walled (SWCNT) and multi-walled (MWCNT) carbon nanotubes to array and bundle carbon nanotubes. A SWCNT can be described as a graphene sheet rolled into a cylindrical shape along a vector with specified direction which is called chiral vector. SWCNTs can be characterized by the chiral vector (n, m is integers and 0 m n). SWCNTs can be classified as armchair (n, n), zigzag (n, 0) and chiral (n, m) nanotubes (Hamada and frd., 1992; Dresselhaus and frd., 1992; White and frd., 1993; Mintmire and frd., 1992; Saito and frd., 1992). Geometrical * PhD Thesis-Doktora Tezi

2 structure of SWCNTs can directly affect their electronic properties and other several characteristics like mechanical, thermal and transport. Experimental studies and electronic band structure calculations (Mintmire and frd., 1992; Saito and frd., 1992) indicate that the (n, m) indices determine the metallic and semiconducting behavior of SWCNTs. The semiconducting energy gap in the SWCNTs depends on the nanotube diameter (Dresselhaus and frd., 1996). Zigzag (n, 0) SWCNTs are two types as the tubes that show the metallic characteristic when n/3 is an integer. Otherwise, they are semiconducting. When rotates away from zigzag (n, 0), chiral (n, m) SWCNTs are obtained. Chiral (n, m) SWCNTs show the metallic characteristic when (2n+m)/3 is an integer. Otherwise, they are semiconducting. Finally, when rotates 30⁰ relative to zigzag (n, 0), armchair (n, n) SWCNTs are obtained and their n and m indices are equal. The armchair (n, n) SWCNTs are expected to show metallic characteristic (Saito and frd., 2007). Here we reported on a detailed study of the band structure, density of state (DOS) and charge density of graphene and isolated SWCNTs. We examined the carbon nanotubes according their structures and electronic properties: zigzag (metallic and semiconducting) and armchair (metallic). We investigate the effects of rolling from graphene to nanotube and discuss the electronic properties of zigzag (6, 0) (24 atoms), zigzag (7, 0) (28 atoms) and armchair (7, 7) (28 atoms) nanotubes. In section II we describe the computational method used in this work. The band structure and density of state of graphene and isolated nanotubes are presented in section III, respectively. Finally, in section IV summarizes our work and contains our conclusions. Material and Method In our work we used two program which are the Tubegen code (Frey and Doren, 2003) and SIESTA ab initio package (Sanchez-Portal and frd., 1997). We relaxed the nanotubes by using the radius_conv, error_conv and gamma_conv which are parameters in the Tubenges code and obtained the atomic position and the lattice parameters which were used in the SIESTA input file. Total energy and electronic structure calculations are performed via first principles density functional theory, as implemented in the SIESTA. For the solution method we used the diagon is a parameter in the SIESTA. For the exchange and correlation terms, we used the local density approximation (LDA) parameterized by Ceperley and Zunger and nonlocal norm-conserving pseudo potentials. For carbon atoms 1s state is the core state, while the 2s and 2p states form the valence states. The valence electrons were described by localized pseudoatimic orbitals with a double-ζ singly polarized (DZP) basis set. Basis sets of this size have been shown to yield structures and total energies in the good agreement with those of standard plane-wave calculations. Real-space integration was performed on a regular gird corresponding to a plane-wave cutoff around 300 Ry, for which the structural relaxations and the electronic energies are fully converged. For the total energy calculations of graphene and isolated CNTs we used 25 k points. We relaxed the isolated CNTs until the stress tensors were below

3 0,04 ev/a 3 and calculated the theoretical lattice constant. In the band structure calculations we used 161 band k vectors for the A,, M, K, and A points. Research Results We first relaxed the zigzag (6, 0) and (7, 0) and armchair (7, 7) graphene and nanotubes. We considered their geometrical and electronic properties while we selected these structures. For graphene structure, we constituted the super cell structure by increasing atom number along x-axis so that we could obtain the suitable nanotubes. Then, we rolled into a cylindrical shape along the chiral vector of graphenes and created the nanotubes. Consequently, we calculated the band structure, DOS and the charge density of these structures. Zigzag Carbon Nanotubes In figure 1(b) we show the band structure for an isolated (6, 0) nanotube. Also, figure 1(a) contains the graphene electronic dispersion. The right part of both graphic is the density of state of graphene and nanotube. The supercell graphene and isolated (6, 0) nanotube include 24 carbon atoms. The maximum valence and minimum conduction bands are indicated by the black dots in the band structure figures. Figure 1. Electronic band structure and DOS of zigzag (6, 0) graphene (a) and nanotube (b). We examine the electronic bands of graphene and nanotube along the high-symmetry A-Г-M-K-Г-A directions. The Femi level is set to zero in the Fig. 1(a), 1(b) and other band structure graphics. The graphene is a semimetal, but the Fermi surface consists only of six distinct points. This peculiar Fermi surface is responsible, e.g., for the sometimes metallic and sometimes semiconducting character of carbon nanotubes but also for effects like phonon softening in metallic tubes [9]. There are two carbon atoms in the unit cell of graphene. Along x-axis, we increased up to 24 atoms the atom number of graphene and obtained a supercell graphene has = A. As a result of this process, the band structure of graphene shows similarities to the zigzag (6, 0) nanotube has diameter = A. Nevertheless, the electronic structure of zigzag (6, 0) nanotube shows significantly differences according to (6, 0) graphene, e.g., we see more intense

4 bands near the Fermi level. The conduction band minimum that has energy ev is between the A-Г points and close to the Г point. The valence band minimum that has energy ev is between the K-Г points and close to the Г point. Thus we can tell that zigzag (6, 0) nanotube shows metallic behavior. In fig. 1, both the valence and conduction bands are affected by the rolling up of the graphene sheet. The conduction bands, however, are strongly affected by curvature of the nanotube. Figure 2. Electronic band structure and DOS of zigzag (7, 0) graphene (a) and nanotube (b). To investigate the effect of rolling on the band structure of a nanotube, we realize a similar calculation for a zigzag (7, 0) nanotube. The Fig. 2 shows the band structure and DOS of zigzag (7, 0) graphene (a) and nanotube (b). In the calculation of (7, 0) graphene and nanotube, we only changed the chiral vector of graphene along to the x-axis. Thus we obtained that the chiral vector of graphene is A and the diameter of (7, 0) nanotube is A. This difference did not affect too much the electronic structure of graphene except for the valence and conduction band number. The valence band number of (6, 0) graphene and nanotube is 48 and (7, 0) graphene and nanotube is 56. Band structure of (7, 0) graphene is almost the same with (6, 0) graphene. However, the electronic properties of (7, 0) nanotube significantly changes. We have seen that zigzag (7, 0) nanotube shows semiconducting properties. We found that the semiconducting energy gap is E g = ev for this nanotube. Also, we can see the band gap change in the Fermi level by examining the DOS graphic. Armchair Carbon Nanotubes To research the effect of curvature on the band structure of SWCNTs, we show the same calculations for different a graphene in the fig. 3(a). To obtain armchair (7, 7) graphene, vector rotates 30⁰ relative to zigzag (7, 0). This chiral angle difference affects the structure of graphene band according to a zigzag graphene. We obtained that the chiral vector of (7, 7) graphene is A and the diameter of (7, 7) nanotube is A. We show the band gap in the Г-M-K- Г points of (6, 0) and (7, 0) graphene where band gaps are ev and ev, respectively. But, armchair (7, 7) graphene hasn t a similar band gap. Also, it

5 clearly shows metallic properties. After constitute armchair (7, 7) nanotube, the tube s kz direction is now along the Г-K-M line of graphene. The graphene Fermi point at K is thus always included in the allowed states of an armchair tube and these tubes have metallic properties. Figure 3. Electronic band structure and DOS of the armchair (7, 7) graphene (a) and nanotube (b). In the Fig. 1(a), 2(a) and 3(a), because we generate a supercell graphene along the x-axis, the geometrical structure of these graphenes contain the defects. So, the maximum valence band in the band structure of graphene exceeds the Fermi level. When we generate a nanotube by using supercell graphenes, these defects has been eliminated. Discussion and Conclusions We have reported the structural and electronic properties of the supercell graphene and SWCNTs consist of zigzag (6, 0), zigzag (7, 0) and armchair (7, 7) and investigated the effect of rolling for nanotubes. The zigzag and armchair supercell graphenes have structural defects because of charge density dispersion on their surface. When these graphene sheets rolled into a cylindrical shape, the obtained nanotubes don t have defects. While the zigzag (6, 0) nanotube show metallic behavior, zigzag (7, 0) nanotube show semiconducting behavior and its band gap is. The armchair (7, 7) nanotube show similar properties with armchair (7, 7) graphene and is metallic. References DRESSELHAUS, M.S., DRESSELHAUS, G., SAITO, R., Carbon fibers based on C60 and their symmetry. Phys. Rev. B, 45: DRESSELHAUS, G., DRESSELHAUS, M. S., EKLUND, P.C., Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego, 137s. HAMADA, N., SAWADA, S.I., OSHIYAMA, A., New One-Dimensional Conductors: Graphitic Microtubules. Phys. Rev. Lett., 68: IIJIMA, S., Helical Microtubules of Graphitic Carbon. Letters to Nature, 354:

6 MINTMIRE, J.W., DUNLAP, B.I., WHITE, C.T., Are Fullerene Tubules Metallic?. Phys. Rev. Lett., 68: SAITO, R., FUJITA, M., DRESSELHAUS, G. AND DRESSELHAUS, M. S., Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 60: SAITO, R., FUJITA, M., DRESSELHAUS, G., and DRESSELHAUS, M. S., Electronic Structure of Graphene Tubules Based on C60. Phys. Rev. B, 46: SAITO, R., FUJITA, M., DRESSELHAUS, G., DRESSELHAUS, M.S., Physical Properties of Carbon Nanotubes, sixth ed., Imperial College Press, London, 274s. WHITE, C.T, ROBERTSON, D.H., MINTMIRE, J.W., Helical and rotational symmetries of nanoscale graphitic tubules. Phys. Rev. B, 47: FREY, J. T. and D. J. DOREN, D.J., TubeGen 3.2. University of Delaware, Newark DE. SANCHEZ-PORTAL, D., ORDEJON, P., ARTACHO, E. and SOLER, J.M., Density-functional method for very large systems with LCAO basis sets. Quantum Chemistry, 65:

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model Yang Jie( ) a), Dong Quan-Li( ) a), Jiang Zhao-Tan( ) b), and Zhang Jie( ) a) a) Beijing

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

Calculation of Cutting Lines of Single-Walled Carbon Nanotubes

Calculation of Cutting Lines of Single-Walled Carbon Nanotubes 65 C.Ü. Fen Fakültesi Fen Bilimleri Dergisi, Cilt 33, No. 1 (2012) Calculation of Cutting Lines of Single-Walled Carbon Nanotubes Erdem UZUN 1* 1 Karamanoğlu Mehmetbey Üniversitesi, Fen Fakültesi, Fizik

More information

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes W. Orellana and P. Fuentealba Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

More information

Pressure Dependent Compressibility of Single Carbon Nanotubes and Graphite

Pressure Dependent Compressibility of Single Carbon Nanotubes and Graphite International Journal of Applied Chemistry. ISSN 973-1792 Volume 14, Number 4 (218) pp. 271-279 Research India Publications http://www.ripublication.com Pressure Dependent Compressibility of Single Carbon

More information

From Graphene to Nanotubes

From Graphene to Nanotubes From Graphene to Nanotubes Zone Folding and Quantum Confinement at the Example of the Electronic Band Structure Christian Krumnow christian.krumnow@fu-berlin.de Freie Universität Berlin June 6, Zone folding

More information

doi: /PhysRevLett

doi: /PhysRevLett doi:.3/physrevlett.86.3835 VOLUME 86, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 3 APRIL Energetics and Electronic Structures of Encapsulated C 6 in a Carbon Nanotube Susumu Okada, Susumu Saito,

More information

Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes

Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes PHYSICAL REVIEW B 66, 155410 2002 Ab initio calculations of the optical properties of 4-Å-diameter single-walled nanotubes M. Machón, S. Reich, and C. Thomsen Institut für Festkörperphysik, Technische

More information

Quasiparticle band structure of carbon nanotubes

Quasiparticle band structure of carbon nanotubes Quasiparticle band structure of carbon nanotubes Takashi Miyake and Susumu Saito Department of Physics, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan Received 11 August

More information

Giant magneto-conductance in twisted carbon nanotubes

Giant magneto-conductance in twisted carbon nanotubes EUROPHYSICS LETTERS 1 July 2002 Europhys. Lett., 59 (1), pp. 75 80 (2002) Giant magneto-conductance in twisted carbon nanotubes S. W. D. Bailey 1,D.Tománek 2, Y.-K. Kwon 2 ( )andc. J. Lambert 1 1 Department

More information

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 395 400 Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique KHURSHED AHMAD

More information

Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy

Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy EUROPHYSICS LETTERS 1 September 1999 Europhys. Lett., 47 (5), pp. 601-607 (1999) Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy W. Clauss( ), D. J. Bergeron,

More information

A polyhedral model for carbon nanotubes

A polyhedral model for carbon nanotubes University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2007 A polyhedral model for carbon nanotubes Barry

More information

Magnetic Behaviour of Transition Metal Complexes with Functionalized Chiral and C 60 -Filled Nanotubes as Bridging Ligands: A Theoretical Study

Magnetic Behaviour of Transition Metal Complexes with Functionalized Chiral and C 60 -Filled Nanotubes as Bridging Ligands: A Theoretical Study Magnetochemistry 2015, 1, 62-71; doi:10.3390/magnetochemistry1010062 OPEN ACCESS magnetochemistry ISSN 2312-7481 www.mdpi.com/journal/magnetochemistry Article Magnetic Behaviour of Transition Metal Complexes

More information

Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah , India. Abstract

Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah , India. Abstract Bond Lengths of Single-Walled Carbon Nanotubes Ali Nasir Imtani and V. K. Jindal Department of Physics, Panjab University, Changdigrah-6004, India. Abstract Results of the bond lengths for various chiralities

More information

doi: /PhysRevLett

doi: /PhysRevLett doi:./physrevlett.9.68 VOLUME 9, NUMBER NOVEMBER Curvature-Induced Metallization of Double-Walled Semiconducting Zigzag Carbon Nanotubes Susumu Okada and Atsushi Oshiyama Institute of Physics and Center

More information

Effects of mutual arrangements in the optical response of carbon nanotube films

Effects of mutual arrangements in the optical response of carbon nanotube films Facoltà di Scienze Matematiche, Fisiche e Naturali Laurea Triennale in Fisica Effects of mutual arrangements in the optical response of carbon nanotube films Relatore: Prof. Nicola Manini Stella Valentina

More information

Calculating the Electronic Transport Properties of Different Carbon Nanotube Based Intramolecular Junctions

Calculating the Electronic Transport Properties of Different Carbon Nanotube Based Intramolecular Junctions World Applied Sciences Journal 11 (4): 418-45, 010 ISSN 1818-495 IDOSI Publications, 010 Calculating the Electronic Transport Properties of Different Carbon Nanotube Based Intramolecular Junctions 1 1

More information

From Graphene to Nanotubes

From Graphene to Nanotubes From Graphene to Nanotubes Zone Folding and Quantum Confinement at the Example of the Electronic Band Structure Christian Krumnow Freie Universität Berlin May 6, 011 Christian Krumnow (FU Berlin) From

More information

Electronic band structure of isolated and bundled carbon nanotubes

Electronic band structure of isolated and bundled carbon nanotubes PHYSICAL REVIEW B, VOLUME 65, 155411 Electronic band structure of isolated and bundled carbon nanotubes S. Reich and C. Thomsen Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr.

More information

Density Functional Theory (DFT) modelling of C60 and

Density Functional Theory (DFT) modelling of C60 and ISPUB.COM The Internet Journal of Nanotechnology Volume 3 Number 1 Density Functional Theory (DFT) modelling of C60 and N@C60 N Kuganathan Citation N Kuganathan. Density Functional Theory (DFT) modelling

More information

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 20 Feb 2001

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 20 Feb 2001 Polarons in Carbon Nanotubes arxiv:cond-mat/0007483v [cond-mat.mtrl-sci] 0 Feb 001 M. Verissimo-Alves 1, R. B. Capaz 1, Belita Koiller 1, Emilio Artacho, and H. Chacham 3 1 Instituto de Física, Universidade

More information

Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes

Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes PHYSICAL REVIEW B 75, 19518 7 Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes K. V. Christ 1, and H. R. Sadeghpour, * 1 Department of Mechanical Engineering,

More information

Key word: DensityFunctional Theory, Endohedral Energy gap, Electonic properties.

Key word: DensityFunctional Theory, Endohedral Energy gap, Electonic properties. First Principle Studies of Electronic Properties of Nitrogen-doped Endohedral Fullerene 1 M. R. Benam, 2 N. Shahtahmasbi, 1 H. Arabshahi and 1 Z.Zarei 1 Department of Physics, Payame Noor University, P.

More information

Carbon nanotubes: Models, correlations and the local density of states

Carbon nanotubes: Models, correlations and the local density of states Carbon nanotubes: Models, correlations and the local density of states Alexander Struck in collaboration with Sebastián A. Reyes Sebastian Eggert 15. 03. 2010 Outline Carbon structures Modelling of a carbon

More information

Observation and modeling of single-wall carbon nanotube bend junctions

Observation and modeling of single-wall carbon nanotube bend junctions PHYSICAL REVIEW B VOLUME 57, NUMBER 23 15 JUNE 1998-I Observation and modeling of single-wall carbon nanotube bend junctions Jie Han, M. P. Anantram, and R. L. Jaffe NASA Ames Research Center, Moffett

More information

ECE 474: Principles of Electronic Devices. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University

ECE 474: Principles of Electronic Devices. Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ECE 474: Principles of Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University ayresv@msu.edu Lecture 07: Quantify physical structures of crystal systems that

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

S ince their discovery1, carbon nanotubes and their unique electronic properties have been an area of great

S ince their discovery1, carbon nanotubes and their unique electronic properties have been an area of great OPEN SUBJECT AREAS: ELECTRONIC PROPERTIES AND MATERIALS NANOWIRES Received 24 September 2013 Accepted 10 December 2013 Published 9 January 2014 Correspondence and requests for materials should be addressed

More information

Random Telegraph Signal in Carbon Nanotube Device

Random Telegraph Signal in Carbon Nanotube Device Random Telegraph Signal in Carbon Nanotube Device Tsz Wah Chan Feb 28, 2008 1 Introduction 1. Structure of Single-walled Carbon Nanotube (SWCNT) 2. Electronic properties of SWCNT 3. Sample preparation:

More information

Dependence of workfunction on the geometries of single-walled carbon nanotubes

Dependence of workfunction on the geometries of single-walled carbon nanotubes INSTITUTE OF PHYSICS PUBLISHING Nanotechnology 15 () 8 8 Dependence of workfunction on the geometries of single-walled carbon nanotubes NANOTECHNOLOGY PII: S9578()77 Chun-Wei Chen 1 and Ming-Hsien Lee

More information

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube Journal of Physics: Conference Series PAPER OPEN ACCESS Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube To cite this article: Jyotirmoy Deb et al 2016 J. Phys.: Conf. Ser.

More information

Isotropic Knight shift of metallic carbon nanotubes

Isotropic Knight shift of metallic carbon nanotubes PHYSICAL REVIEW B 72, 245416 2005 Isotropic Knight shift of metallic carbon nanotubes Oleg V. Yazyev* and Lothar Helm Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and

More information

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA

Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA Why are we so excited about carbon nanostructures? Mildred Dresselhaus Massachusetts Institute of Technology Cambridge, MA Conference for Undergraduate Women in Physics at Yale January 18, 2009 Why are

More information

Effect of strain on the band gap and effective mass of zigzag single-wall carbon nanotubes: First-principles density-functional calculations

Effect of strain on the band gap and effective mass of zigzag single-wall carbon nanotubes: First-principles density-functional calculations PHYSICAL REVIEW B 77, 1553 8 Effect of strain on the band gap and effective mass of zigzag single-wall carbon nanotubes: First-principles density-functional calculations S. Sreekala, 1, * X.-H. Peng, 1

More information

Quantized Electrical Conductance of Carbon nanotubes(cnts)

Quantized Electrical Conductance of Carbon nanotubes(cnts) Quantized Electrical Conductance of Carbon nanotubes(cnts) By Boxiao Chen PH 464: Applied Optics Instructor: Andres L arosa Abstract One of the main factors that impacts the efficiency of solar cells is

More information

Band Structure of Isolated and Bundled Nanotubes

Band Structure of Isolated and Bundled Nanotubes Chapter 5 Band Structure of Isolated and Bundled Nanotubes The electronic structure of carbon nanotubes is characterized by a series of bands (sub- or minibands) arising from the confinement around the

More information

Ab Initio Study of the Mechanical, Electronic, Thermal and Optical Properties of Ge 2 Sb 2 Te 5

Ab Initio Study of the Mechanical, Electronic, Thermal and Optical Properties of Ge 2 Sb 2 Te 5 Ab Initio Study of the Mechanical, Electronic, Thermal and Optical Properties of Ge 2 Sb 2 Te 5 Odhiambo H. 1, Amolo G. 2, Makau N. 2, Othieno H. 1, and Oduor A. 1 1 Department of Physics, Maseno University,

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 May 2005

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 7 May 2005 First Principles Study of Work Functions of Single Wall Carbon Nanotubes arxiv:cond-mat/0505187v1 [cond-mat.mtrl-sci] 7 May 2005 Bin Shan Department of Applied Physics, Stanford University, Stanford CA,

More information

Novel Magnetic Properties of Carbon Nanotubes. Abstract

Novel Magnetic Properties of Carbon Nanotubes. Abstract Novel Magnetic Properties of Carbon Nanotubes Jian Ping Lu Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 jpl@physics.unc.edu arxiv:cond-mat/94779v1

More information

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Photophysics of Nano Carbons Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Electronic Structure of Graphene Near the K point E ( ) v F linear relation where and and 0

More information

Calculate The Density And The Potential Energy When Charge Particle Channeling In Single And Double Carbon Nanotubes

Calculate The Density And The Potential Energy When Charge Particle Channeling In Single And Double Carbon Nanotubes Vol. 3 Issue 4, April - 07 Calculate The Density And The Potential Energy When Charge Particle Channeling In Single And Double Carbon Nanotubes Bahaa H. Abbass, Khalid A. Ahmad, Riyahd K. Ahmed Al-Mustansiriyah

More information

Determining Carbon Nanotube Properties from Raman. Scattering Measurements

Determining Carbon Nanotube Properties from Raman. Scattering Measurements Determining Carbon Nanotube Properties from Raman Scattering Measurements Ying Geng 1, David Fang 2, and Lei Sun 3 1 2 3 The Institute of Optics, Electrical and Computer Engineering, Laboratory for Laser

More information

ANALYTICAL COMPUTATION OF BAND STRUCTURE AND DENSITY OF STATES OF ZIGZAG SINGLE-WALL CARBON NANOTUBE FOR DIFFERENT STRUCTURAL PARAMETERS

ANALYTICAL COMPUTATION OF BAND STRUCTURE AND DENSITY OF STATES OF ZIGZAG SINGLE-WALL CARBON NANOTUBE FOR DIFFERENT STRUCTURAL PARAMETERS Journal of Electron Devices, Vol. 9, 4, pp. 686-694 JED [ISSN: 68-347 ] ANALYTICAL COMPUTATION OF BAND STRUCTURE AND DENSITY OF STATES OF ZIGZAG SINGLE-WALL CARBON NANOTUBE FOR DIFFERENT STRUCTURAL PARAMETERS

More information

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics

An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics Journal of Computational Electronics X: YYY-ZZZ,? 6 Springer Science Business Media, Inc. Manufactured in The Netherlands An Extended Hückel Theory based Atomistic Model for Graphene Nanoelectronics HASSAN

More information

In today s lecture, we will cover:

In today s lecture, we will cover: In today s lecture, we will cover: Metal and Metal oxide Nanoparticles Semiconductor Nanocrystals Carbon Nanotubes 1 Week 2: Nanoparticles Goals for this section Develop an understanding of the physical

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information

Band Gaps of Single-Walled Carbon Nanotubes: A Computational Study

Band Gaps of Single-Walled Carbon Nanotubes: A Computational Study 1 Band Gaps of Single-Walled Carbon Nanotubes: A Computational Study Brittany Chase May 21, 2008 I Introduction Carbon Nanotube (CNT) structures are a recently discovered (1991) phase of carbon first synthesized

More information

Design of nanomechanical sensors based on carbon nanoribbons and nanotubes in a distributed computing system

Design of nanomechanical sensors based on carbon nanoribbons and nanotubes in a distributed computing system Design of nanomechanical sensors based on carbon nanoribbons and nanotubes in a distributed computing system T. L. Mitran a, C. M. Visan, G. A. Nemnes, I. T. Vasile, M. A. Dulea Computational Physics and

More information

Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014

Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014 Katheryn Penrod York College of Pennsylvania Department of Physical Science CHM482 Independent Study Advisor Dr. James Foresman Spring 2014 Functionalization of SWCNTs with Stone-Wales and vacancy defects:

More information

physical Carbon Nanotubes Properties of Physical Properties of Carbon Nanotubes Downloaded from

physical Carbon Nanotubes Properties of Physical Properties of Carbon Nanotubes Downloaded from physical Properties of Carbon Nanotubes This page is intentionally left blank Rysical Properties of Carbon Nanotubes GDRESSELElAUS & M S DRBSELMUS MZT Imperial College Press Published by Imperial College

More information

Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field

Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse electric field INSTITUTE OF PHYSICS PUBLISHING Nanotechnology 15 (2004) 1837 1843 NANOTECHNOLOGY PII: S0957-4484(04)84638-5 Band gap modification of single-walled carbon nanotube and boron nitride nanotube under a transverse

More information

Manipulating and determining the electronic structure of carbon nanotubes

Manipulating and determining the electronic structure of carbon nanotubes Manipulating and determining the electronic structure of carbon nanotubes (06.12.2005 NTHU, Physics Department) Po-Wen Chiu Department of Electrical Engineering, Tsing Hua University, Hsinchu, Taiwan Max-Planck

More information

Crystallography Picture Book

Crystallography Picture Book Steffen Weber's Crystallography Picture Book 02 Nanotubes & Nanocones Preface This is the first in a series of picture books that I plan to create for educational purposes. All images in this volume were

More information

NANOGRAPHITES AND THEIR COMPOUNDS

NANOGRAPHITES AND THEIR COMPOUNDS NANOGRAPHITES AND THEIR COMPOUNDS Albert M. Ziatdinov Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences. Vladivostok, Russia E-mail: albert_ziatdinov@mail.primorye.ru Introduction

More information

GRAPHENE NANORIBBONS Nahid Shayesteh,

GRAPHENE NANORIBBONS Nahid Shayesteh, USC Department of Physics Graduate Seminar GRAPHENE NANORIBBONS Nahid Shayesteh, Outlines 2 Carbon based material Discovery and innovation of graphen Graphene nanoribbons structure and... FUNCTIONS 3 Carbon-based

More information

O-attaching on the NMR Parameters in the Zigzag and Armchair AlN Nanotubes: A DFT Study

O-attaching on the NMR Parameters in the Zigzag and Armchair AlN Nanotubes: A DFT Study Est. 1984 ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2012, Vol. 28, No. (2): Pg. 703-713 The Influence

More information

2 Symmetry. 2.1 Structure of carbon nanotubes

2 Symmetry. 2.1 Structure of carbon nanotubes 2 Symmetry Carbon nanotubes are hollow cylinders of graphite sheets. They can be viewed as single molecules, regarding their small size ( nm in diameter and µm length), or as quasi-one dimensional crystals

More information

The Young s Modulus of Single-Walled Carbon Nanotubes

The Young s Modulus of Single-Walled Carbon Nanotubes The Young s Modulus of Single-Walled Carbon Nanotubes Douglas Vodnik Faculty Advisor: Dr. Kevin Crosby Department of Physics, Carthage College, Kenosha, WI Abstract A new numerical method for calculating

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing

Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing V. Zólyomi,,2 J. Koltai, 3 Á. Rusznyák, 3 J. Kürti, 3 Á. Gali, 4 F. Simon, 5 H. Kuzmany, 5 Á. Szabados, 2 and

More information

Ab initio study of Mn doped BN nanosheets Tudor Luca Mitran

Ab initio study of Mn doped BN nanosheets Tudor Luca Mitran Ab initio study of Mn doped BN nanosheets Tudor Luca Mitran MDEO Research Center University of Bucharest, Faculty of Physics, Bucharest-Magurele, Romania Oldenburg 20.04.2012 Table of contents 1. Density

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Unusual Optical Properties of Aligned Carbon Nanotube Mats in Infrared Energy Region

Unusual Optical Properties of Aligned Carbon Nanotube Mats in Infrared Energy Region Unusual Optical Properties of Aligned Carbon Nanotube Mats in Infrared Energy Region G. L. Zhao 1,*, D. Bagayoko 1, and L. Yang 2 1 Department of Physics and High Performance Computing Laboratory Southern

More information

Strain-induced electronic property heterogeneity of a carbon nanotube

Strain-induced electronic property heterogeneity of a carbon nanotube PHYSICAL REVIEW B, VOLUME 64, 035419 Strain-induced electronic property heterogeneity of a carbon nanotube D. Tekleab and D. L. Carroll Department of Physics and Astronomy, Clemson University, Kinard Laboratory

More information

3-month progress Report

3-month progress Report 3-month progress Report Graphene Devices and Circuits Supervisor Dr. P.A Childs Table of Content Abstract... 1 1. Introduction... 1 1.1 Graphene gold rush... 1 1.2 Properties of graphene... 3 1.3 Semiconductor

More information

Effect of dimensionality in polymeric fullerenes and single-wall nanotubes

Effect of dimensionality in polymeric fullerenes and single-wall nanotubes Physica B 244 (1998) 186 191 Effect of dimensionality in polymeric fullerenes and single-wall nanotubes H. Kuzmany*, B. Burger, M. Fally, A.G. Rinzler, R.E. Smalley Institut fu( r Materialphysik, Universita(

More information

Electron diffraction from elliptical nanotubes

Electron diffraction from elliptical nanotubes Chemical Physics Letters 406 (2005) 106 110 www.elsevier.com/locate/cplett Electron diffraction from elliptical nanotubes ejian Liu a, Lu-Chang Qin a,b, * a Department of Physics and Astronomy, University

More information

Electronic band structure, electron-phonon interaction, and superconductivity of (5,5), (10,10), and (5,0) carbon nanotubes

Electronic band structure, electron-phonon interaction, and superconductivity of (5,5), (10,10), and (5,0) carbon nanotubes Electronic band structure, electron-phonon interaction, and superconductivity of (5,5), (10,10), and (5,0) carbon nanotubes K. Iyakutti, 1, * A. Bodapati, 2 Xihong Peng, 3 P. Keblinski, 1,2 and S. K. Nayak

More information

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet

Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet Copyright 05 Tech Science Press CMC, vol.8, no., pp.03-7, 05 Small-Scale Effect on the Static Deflection of a Clamped Graphene Sheet G. Q. Xie, J. P. Wang, Q. L. Zhang Abstract: Small-scale effect on the

More information

Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes

Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes JOURNAL OF APPLIED PHYSICS VOLUME 96, NUMBER 4 15 AUGUST 2004 Electrical conductance of carbon nanotori in contact with single-wall carbon nanotubes Y. Y. Chou and G.-Y. Guo Department of Physics, National

More information

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1%

We are IntechOpen, the first native scientific publisher of Open Access books. International authors and editors. Our authors are among the TOP 1% We are IntechOpen, the first native scientific publisher of Open Access books 3,350 108,000 1.7 M Open access books available International authors and editors Downloads Our authors are among the 151 Countries

More information

AB INITIO STUDY OF NANO STRUCTURED FUNCTIONALIZED GRAPHENE WITH 30C ATOMS

AB INITIO STUDY OF NANO STRUCTURED FUNCTIONALIZED GRAPHENE WITH 30C ATOMS International Journal of Science, Environment and Technology, Vol. 1, No 3, 2012, 108-112 AB INITIO STUDY OF NANO STRUCTURED FUNCTIONALIZED GRAPHENE WITH 30C ATOMS Naveen Kumar* and Jyoti Dhar Sharma Deptt.

More information

Optical & Transport Properties of Carbon Nanotubes II

Optical & Transport Properties of Carbon Nanotubes II Optical & Transport Properties of Carbon Nanotubes II Duncan J. Mowbray Nano-Bio Spectroscopy Group European Theoretical Spectroscopy Facility (ETSF) Donostia International Physics Center (DIPC) Universidad

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

New metallic allotropes of planar and tubular carbon

New metallic allotropes of planar and tubular carbon New metallic allotropes of planar and tubular carbon Article (Published Version) Terrones, H, Terrones, M, Hernández, E, Grobert, N, Charlier, J-C and Ajayan, P M (2000) New metallic allotropes of planar

More information

Review. Bandgap opening in metallic carbon nanotubes due to silicon adatoms. CMC Manuscript

Review. Bandgap opening in metallic carbon nanotubes due to silicon adatoms. CMC Manuscript Copyright 2013 Tech Science Press CMC, vol.1, no.1, pp.1-16, 2013 Bandgap opening in metallic carbon nanotubes due to silicon adatoms Branden B. Kappes 1 and Cristian V. Ciobanu 2 Abstract: Controlling

More information

Carbon nanotubes and Graphene

Carbon nanotubes and Graphene 16 October, 2008 Solid State Physics Seminar Main points 1 History and discovery of Graphene and Carbon nanotubes 2 Tight-binding approximation Dynamics of electrons near the Dirac-points 3 Properties

More information

Electron energy loss spectroscopy (EELS)

Electron energy loss spectroscopy (EELS) Electron energy loss spectroscopy (EELS) Phil Hasnip Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~pjh503 Many slides courtesy of Jonathan

More information

How to run SIESTA. Introduction to input & output files

How to run SIESTA. Introduction to input & output files How to run SIESTA Introduction to input & output files Linear-scaling DFT based on Numerical Atomic Orbitals (NAOs) Born-Oppenheimer DFT Pseudopotentials Numerical atomic orbitals relaxations, MD, phonons.

More information

structure of graphene and carbon nanotubes which forms the basis for many of their proposed applications in electronics.

structure of graphene and carbon nanotubes which forms the basis for many of their proposed applications in electronics. Chapter Basics of graphene and carbon nanotubes This chapter reviews the theoretical understanding of the geometrical and electronic structure of graphene and carbon nanotubes which forms the basis for

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Lehtinen, P. O. & Foster, A. S. & Ayuela, A. & Vehviläinen, T. T. & Nieminen, Risto M.

Lehtinen, P. O. & Foster, A. S. & Ayuela, A. & Vehviläinen, T. T. & Nieminen, Risto M. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Lehtinen, P. O.

More information

BAND STRUCTURE, DENSITY OF STATES AND SUPERCONDUCTIVITY OF ADSORBED TITANIUM CHAINS ON (8,8) and (14,0) CARBON NANOTUBES

BAND STRUCTURE, DENSITY OF STATES AND SUPERCONDUCTIVITY OF ADSORBED TITANIUM CHAINS ON (8,8) and (14,0) CARBON NANOTUBES Materials Physics and Mechanics 10 (2010) 72-81 Received: December 4, 2010 BAND STRUCTURE, DENSITY OF STATES AND SUPERCONDUCTIVITY OF ADSORBED TITANIUM CHAINS ON (8,8) and (14,0) CARBON NANOTUBES C. Nirmala

More information

Supplementary Information

Supplementary Information Supplementary Information a b Supplementary Figure 1. Morphological characterization of synthesized graphene. (a) Optical microscopy image of graphene after transfer on Si/SiO 2 substrate showing the array

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information Rational modifications on champion porphyrin

More information

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus Quantum Transport and Dynamics in Nanostructures The 4 th Windsor Summer School on Condensed Matter Theory 6-18 August 2007, Great Park Windsor (UK) Physics of Nanotubes, Graphite and Graphene Mildred

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Two-dimensional BX (X=P, As, Sb) Semiconductors with Mobilities

More information

arxiv: v1 [cond-mat.mtrl-sci] 22 Mar 2016

arxiv: v1 [cond-mat.mtrl-sci] 22 Mar 2016 Electronic and Quantum Transport Properties of Substitutionally Doped Double-Walled Carbon Nanotubes Alejandro Lopez-Bezanilla 1 1 Materials Science Division, Argonne National Laboratory, 9700 S. Cass

More information

Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality

Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality Electronic transport through carbon nanotubes -- effects of structural deformation and tube chirality Amitesh Maiti, 1, Alexei Svizhenko, 2, and M. P. Anantram 2 1 Accelrys Inc., 9685 Scranton Road, San

More information

Explaining the apparent arbitrariness of the LDA-1/2 self-energy. correction method applied to purely covalent systems

Explaining the apparent arbitrariness of the LDA-1/2 self-energy. correction method applied to purely covalent systems Explaining the apparent arbitrariness of the LDA-1/2 self-energy correction method applied to purely covalent systems Kan-Hao Xue, 1,2 Leonardo R. C. Fonseca, 3 and Xiang-Shui Miao 1,2 1 School of Optical

More information

Magnetic properties of vacancies in graphene and single-walled carbon nanotubes

Magnetic properties of vacancies in graphene and single-walled carbon nanotubes Magnetic properties of vacancies in graphene and single-walled carbon nanotubes Contents Yuchen Ma, P O Lehtinen, A S Foster and R M Nieminen Laboratory of Physics, Helsinki University of Technology, PO

More information

Modeling and Performance analysis of Metallic CNT Interconnects for VLSI Applications

Modeling and Performance analysis of Metallic CNT Interconnects for VLSI Applications IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834, p- ISSN: 2278-8735. Volume 4, Issue 6 (Jan. - Feb. 2013), PP 32-36 Modeling and Performance analysis of Metallic

More information

Nonlocal material properties of single walled carbon nanotubes

Nonlocal material properties of single walled carbon nanotubes Nonlocal material properties of single walled carbon nanotubes J. V. Araújo dos Santos * and C. M. Mota Soares IDMEC, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal Av. Rovisco Pais,

More information

Computational Nanotechnology: From Clusters to Devices

Computational Nanotechnology: From Clusters to Devices Computational Nanotechnology: From Clusters to Devices David Tománek Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824-2320 Abstract. This contribution describes

More information

Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes a first-principle study

Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes a first-principle study Applied Surface Science 228 (2004) 143 150 Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes a first-principle study Chun-Wei Chen a,*, Ming-Hsien

More information

Optical spectra of single-wall carbon nanotube bundles

Optical spectra of single-wall carbon nanotube bundles PHYSICAL REVIEW B VOLUME 6, NUMBER 19 15 NOVEMBER 000-I Optical spectra of single-wall carbon nanotube bundles M. F. Lin Department of Physics, National Cheng Kung University, Tainan, Taiwan 701, The Republic

More information

Refering to Fig. 1 the lattice vectors can be written as: ~a 2 = a 0. We start with the following Ansatz for the wavefunction:

Refering to Fig. 1 the lattice vectors can be written as: ~a 2 = a 0. We start with the following Ansatz for the wavefunction: 1 INTRODUCTION 1 Bandstructure of Graphene and Carbon Nanotubes: An Exercise in Condensed Matter Physics developed by Christian Schönenberger, April 1 Introduction This is an example for the application

More information