Chemical Kinetics Ziyue Zhu 2015/2/4

Size: px
Start display at page:

Download "Chemical Kinetics Ziyue Zhu 2015/2/4"

Transcription

1 Chemical Kinetics Ziyue Zhu 2015/2/4

2 Introduction: The purpose of this experiment was to measure the effects of changes in the concentrations of reactants and temperature on the rate of a reaction. The definition of reaction rate is: the amount of reagent (conventionally reported in units of molarity) consumed or produced per unit of time Rate = - Δ[reactant]/Δt = Δ[product]/Δt (1) Effects of concentration on reaction rate can be mathematically summarized by a rate law: Rate = -Δ[A]/Δt = k[a] 1 [B] 1 (2) The rate law often has the form: Rate= k[a] x [B] y [C] z (3) Effects of a temperature Change on the Reaction Rate: K = Ae -Ea*/RT (4) The first step of this experiment was to run three qualitative tests before the measurements began. In the first step, a few drops of H2O2 was added into KI solution and the following reaction would occur: H2O2 + 2I - +2H + I2 + 2H2O (5) The second test was to divide the mixture into three portion and add a few drops of starch solution into the second portion. Finally, thiosulfate solution and a few starch was added into the third portions and the following reaction will occur: 2S2O I2 2I - + S4O6 2- (6) Take record of observations after each test was finished. The second step of this experiment was to measure the effects of concentration and temperature on the rate of reactions. The first step was to mix D.I. Water, Buffer, Na2S2O3, KI and starch for A-H measurements with different given volumes. Then poured H2O2 and take record of time from the moments H2O2 was poured to the moment the solution began to change color because the reaction (5) and (6) happened. In that case, the time could be used to calculate the rate of reaction by using equation (2). In addition, measurements E and H would need to record temperature and the temperature of measurements H should always be 5 o C lower than the temperature of measurements E. In that case, it was easy to tell the effects of temperature on the rate of reaction by comparing measurements E with H.

3 Data and Calculations Table 1: Molar concentrations of reagent solutions: Reagents S2O3 2- I - H2O M 0.06M 0.11M Concentrations Table 2: Data summary table Sol n Temp [I - ] Log[I - ] [H2O2] log[h2o2] Δt min Rate: -Δ[H2O2]/Δt log(rate) A x x B x x C 9x x x D 6x x x E 22 o C 6x x F 6x x G 6x x H 17 o C 6x x

4 Calculations: 1. a. Moles S2O3 2 in each solution. 9.5x10-5 mol (a). b. Number of moles of I2 required to exhaust the moles of S2O3 2 from 4.75x10-5 mol c. Number of moles of H2O2 required to produce number of moles of I2 in (b). 4.75x10-5 mol d. Change in H2O2 concentration, Δ [H2O2] The number of moles of H2O2 lost (from c above) IS the negative change in moles of H2O2 ( Δ moles H2O2). You just need to change moles to molarity (what is final solution volume?) 4.75x10-4 M (Note: Answers to a, b, c, and d are identical for all eight solutions.)

5 2. Reaction Order (attach graphs): Graph 1 : determining r, the order in HxOx: Graph 2: determining s, the order in I -: According to the two graph above, it is easily to tell the value of r and s. r = s =

6 3. Value of rate constant, k Run k A B C D E F G Average The units should be mol x L x min -1 Using the data above, Ea* = and units should be J/ (Δmol x o C) All the calculations are on the carbon copy of the calculation page.

7 Results and discussion: First of all, the results of the qualitative tests were: only the second portion turned to blue color. The reason why the first test did not change color was because that the H2O2 can change the I - into I2. However, I2 did not has much color in water when it was diluted. In the second test, the starch was added into the solution and OH group in starch reacted with I2 and formed some clathrate solution which could only relfect blue light so that the solution showed blue color. In the third test, the thiosulfate solution was added first and the S2O3 2- reacted with I2 and consumed all of I2 so that when the starch was added after the first step, no I2 was left to react with starch. In that case, the solution did not change into blue. The results of r value was and the s value was ,according to graph 1 and 2.The two graph shows that the log(rate) has a linear relation with log(h2o2) and log(i - ). These means the reaction order in H2O2 and I - was both in 1 st order. The expected value of r and s are both 1 so the error percentage of r was 16.26% and s was 28.68%. The results of k value was in average. This means that the reaction rate constant was mol per L per min. Because the expected k value was not found, the error percentage can not be calculated. The value of Ea* was J per Δmoles per minute. The most possible reason of the errors was that during the F trials, the starch was not added before the time was recorded. In that case, the Δt of trial F was higher than actual Δt. Another possible reason was when doing several trails, the actual compounds added into the solution was not as accurate as the given table. Post-Lab Questions: 1. The reason of the errors caused the actual value of r and s lower than 1 because if the starch was added later, it would let the Δt increase so that the rate of reaction will slow down. In that case, the log(rate) will be lower than expected value and the r and s value would also be lower. 2. According to the data of experiment, the rate of reaction was increased when the concentration of the reactants was increased. The rate of reaction was decreased when the temperature of the reaction was decreased. This two conclusion happened when the k value was determined to be 1 or close to 1.

Rate Properties of an Iodide Oxidation Reaction

Rate Properties of an Iodide Oxidation Reaction Rate Properties of an Iodide Oxidation Reaction GOAL AND OVERVIEW The rate law for the reduction reaction of peroxodisulfate (PODS) by iodide: S 2 O8 2 (aq) + 2 I (aq) I 2 (aq) + 2 SO4 2 (aq) will be determined.

More information

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Complete the following for Pre-Lab on a clean sheet of paper: (1) In your own words, explain the following: a. why the I 2 concentration

More information

A Clock Reaction: Determination of the Rate Law for a Reaction

A Clock Reaction: Determination of the Rate Law for a Reaction 1 A Clock Reaction: Determination of the Rate Law for a Reaction This experiment involves the study of the rate properties, or chemical kinetics, of the following reaction between iodide ion and bromate

More information

Investigating the Effect of Concentration on an Iodide Persulphate Reaction, and Rate Law Determination. Lab Performed on Monday, February 25 th, 2013

Investigating the Effect of Concentration on an Iodide Persulphate Reaction, and Rate Law Determination. Lab Performed on Monday, February 25 th, 2013 Investigating the Effect of Concentration on an Iodide Persulphate Reaction, and Rate aw Determination ab Performed on Monday, February 25 th, 2013 Introduction The purpose of this lab is to observe the

More information

Determining the Rate Law for a Chemical Reaction

Determining the Rate Law for a Chemical Reaction Determining the Rate Law for a Chemical Reaction Purpose: To determine the reaction orders, rate law, and rate constant for the reaction between persulfate ions, SO8 -, and iodide ions, I - Introduction

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview Measured volume of several solutions having known concentrations of reactants are mixed in a series of trials. The time required for a visible color change to appear

More information

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION PURPOSE: To determine the Rate Law and the Activation Energy for a reaction from experimental data. PRINCIPLES: The Rate Law is a mathematical expression that predicts the rate of a reaction from the concentration

More information

Experiment 26 - Kinetics

Experiment 26 - Kinetics Chem 1B Dr. White 175 Experiment 26 - Kinetics Objectives To determine the rate law for the reaction between iodide and bromate under acidic conditions To investigate the effect of temperature on rate

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

IODINE CLOCK REACTION KINETICS

IODINE CLOCK REACTION KINETICS Name: Section Chemistry 104 Laboratory University of Massachusetts Boston IODINE CLOCK REACTION KINETICS PRELAB ASSIGNMENT Calculate the initial concentration of H 2 O 2 that exists immediately after mixing

More information

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE INTRODUCTION FACTORS INFLUENCING REACTION RATE: The study of chemical reactions is not complete without a consideration of the rates at which

More information

Kinetics of an Iodine Clock Reaction Lab_Student Copy

Kinetics of an Iodine Clock Reaction Lab_Student Copy Kinetics of an Iodine Clock Reaction Lab_Student Copy Purpose: Purpose: In this lab, you will find the reaction rate, rate law,, and observe the effects of a catalyst for the oxidation of iodide ions by

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

PURPOSE: To determine the Rate Law for the following chemical reaction:

PURPOSE: To determine the Rate Law for the following chemical reaction: PURPOSE: To determine the Rate Law for the following chemical reaction: H 2 O 2 (aq) + 2 I - (aq) + 2 H 3 O + (aq) 4 H 2 O(l) + I 2 (aq) Hydrogen Iodide Hydronium Water Iodine Peroxide Ion Ion PRINCIPLES:

More information

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information

Kinetics of an Iodine Clock Reaction Lab_ Teacher s Key

Kinetics of an Iodine Clock Reaction Lab_ Teacher s Key Kinetics of an Iodine Clock Reaction Lab_ Teacher s Key Purpose: In this lab, you will find the reaction rate, rate law,, and observe the effects of a catalyst for the oxidation of iodide ions by bromate

More information

#5 Chemical Kinetics: Iodine Clock Reaction

#5 Chemical Kinetics: Iodine Clock Reaction #5 Chemical Kinetics: Iodine Clock Reaction In the previous experiment, we discussed the factors that influence the rate of a chemical reaction and presented the terminology used in quantitative relations

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 1 Δ [H2O] Δ[O 2] = 2 Δt Δt 2. Determine the

More information

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE INTRODUCTION FACTORS INFLUENCING REACTION RATE: The study of chemical reactions is not complete without a consideration of the rates at which

More information

Examining the Effect of Temperature on Reaction Rate

Examining the Effect of Temperature on Reaction Rate 1 Purpose: To measure reaction rate at different temperatures for the reaction between persulfate ions, S2O8-2, and iodide ions, I -, and thereby determine the activation energy and frequency factor for

More information

Kinetics; A Clock Reaction

Kinetics; A Clock Reaction Kinetics; A Clock Reaction Background This experiment involves the study of the rate properties, or chemical kinetics, of the following reaction between iodide ion (I - ) and bromate ion (BrO 3 - ) under

More information

Experiment 2: Factors Affecting Reaction Rates

Experiment 2: Factors Affecting Reaction Rates Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. Part B To study the effect of temperature on the rate

More information

When a solution of thiosulfate is acidified, the following reaction takes place: S2O3 2 - (aq) + 2H + (aq) H2O + SO2 (g) + S (s) (1)

When a solution of thiosulfate is acidified, the following reaction takes place: S2O3 2 - (aq) + 2H + (aq) H2O + SO2 (g) + S (s) (1) EXPERIMENT 1 The Kinetics of a Thiosulfate Solution INTRODUCTION: Various approaches are used to study the kinetics of reactions. A usual procedure is to monitor some property, such as intensity of color

More information

Lab #5 - Limiting Reagent

Lab #5 - Limiting Reagent Objective Chesapeake Campus Chemistry 111 Laboratory Lab #5 - Limiting Reagent Use stoichiometry to determine the limiting reactant. Calculate the theoretical yield. Calculate the percent yield of a reaction.

More information

CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information

Stoichiometry. Please take out your notebooks

Stoichiometry. Please take out your notebooks Stoichiometry Please take out your notebooks Stoichiometry stochio = Greek for element metry = measurement Stoichiometry is about measuring the amounts of elements and compounds involved in a reaction.

More information

Experiment #5. Iodine Clock Reaction Part 1

Experiment #5. Iodine Clock Reaction Part 1 Experiment #5. Iodine Clock Reaction Part 1 Introduction In this experiment you will determine the Rate Law for the following oxidation- reduction reaction: 2 H + (aq) + 2 I (aq) + H 2 O 2 (aq) I 2 (aq)

More information

CONSIDER THE FOLLOWING REACTIONS

CONSIDER THE FOLLOWING REACTIONS CONSIDER THE FOLLOWING REACTIONS BaCl 2 + MgSO 4 BaSO 4 + MgCl 2 2KI + Pb(NO3)2 PbI2 + 2KNO3 Fe + H20 (g) Fe2O3 + H2 All reactions have two reactants yielding the reaction. WHAT IS A LIMITING REACTANT?

More information

UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573)

UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573) UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573) UNIT 2: LAB 1. A Brief Introductory Kinetics Investigation A) Set up 4 test tubes containing about 5 ml of 0.1 M sodium oxalate sol n.

More information

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS

CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS CHAPTER 13 (MOORE) CHEMICAL KINETICS: RATES AND MECHANISMS OF CHEMICAL REACTIONS This chapter deals with reaction rates, or how fast chemical reactions occur. Reaction rates vary greatly some are very

More information

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS.

CHEMISTRY - CLUTCH CH.13 - CHEMICAL KINETICS. !! www.clutchprep.com CONCEPT: RATES OF CHEMICAL REACTIONS is the study of reaction rates, and tells us the change in concentrations of reactants or products over a period of time. Although a chemical

More information

Chapter 14 Chemical Kinetics

Chapter 14 Chemical Kinetics Chapter 14 Chemical Kinetics Factors that Affect Reaction rates Reaction Rates Concentration and Rate The Change of Concentration with Time Temperature and Rate Reactions Mechanisms Catalysis Chemical

More information

Making Buffers v010417

Making Buffers v010417 Making Buffers v010417 Purposes of the Experiment Make a buffer with a desired ph. Demonstrate the buffering capacity of this buffer. Background Buffers are solutions containing a mixture of a weak acid

More information

Goal: During this lab students will gain a quantitative understanding of limiting reagents.

Goal: During this lab students will gain a quantitative understanding of limiting reagents. LIMITING REAGENT LAB: THE REACTION BETWEEN VINEGAR AND BAKING SODA Goal: During this lab students will gain a quantitative understanding of limiting reagents. Safety: Safety goggles should be worn at all

More information

Chemistry 40S Chemical Kinetics (This unit has been adapted from

Chemistry 40S Chemical Kinetics (This unit has been adapted from Chemistry 40S Chemical Kinetics (This unit has been adapted from https://bblearn.merlin.mb.ca) Name: 1 2 Lesson 1: Introduction to Kinetics Goals: Identify variables used to monitor reaction rate. Formulate

More information

Rate of Reaction. Introduction

Rate of Reaction. Introduction 5 Rate of Reaction Introduction This experiment will allow you to study the effects of concentration, temperature, and catalysts on a reaction rate. The reaction whose rate you will study is the oxidation

More information

A Chemical Clock. 5. Consider each of the following questions regarding data and measurements:

A Chemical Clock. 5. Consider each of the following questions regarding data and measurements: A Chemical Clock Things to Consider 1. What are the three major objectives of this experiment? What methods will you try using to achieve each of these three objectives? 2. What is difference between reaction

More information

Chem 401 Unit 1 (Kinetics & Thermo) Review

Chem 401 Unit 1 (Kinetics & Thermo) Review KINETICS 1. For the equation 2 H 2(g) + O 2(g) 2 H 2 O (g) How is the rate of formation of H 2 O mathematically related to the rate of disappearance of O 2? 2. Determine the relative reaction rates of

More information

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems Name: Date: AP Chemistry Titrations - Volumetric Analysis Term Volumetric analysis Burette Pipette titrate titre aliquot end point equivalence point indicator primary standard standardisation secondary

More information

Experiment 7 Can You Slow It Down?

Experiment 7 Can You Slow It Down? Experiment 7 Can You Slow It Down? OUTCOMES After completing this experiment, the student should be able to: tell which factors influence the reaction rate and how they influence the rate. change the temperature

More information

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60

Unit The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 Unit 2 1- The mw of Na 2 CO 3 is : Na=23, O=16, C=12 A) 140 B) 106 C) 96 D) 100 E) 60 2- How many grams of Na 2 CO 3 (mw = 106 ) A) 318 B) 0.028 C) 134 D) 201 E) 67 in 3 moles, 3- Calculate the normal

More information

The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1

The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1 16. Kinetics II The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1 When a graph of concentration of reactant is plotted vs time,

More information

Exp. 2: The Superconductor YBa 2 Cu 3 O 7 (Text #1)

Exp. 2: The Superconductor YBa 2 Cu 3 O 7 (Text #1) Exp. 2: The 1-2-3 Superconductor YBa 2 Cu 3 O 7 (Text #1) Last week: Performed high-temperature, solid-state reaction to prepare YBa 2 Cu 3 O x Thursday: Determine product stoichiometry ( x ) based on

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

B. Activation Energy: Ea

B. Activation Energy: Ea B. Activation Energy: Ea a) Example reaction: the burning of charcoal in the BBQ C (s) + O 2(g) CO 2 (remember, burning is VERY exothermic) Question: Will charcoal in your BBQ spontaneously catch fire?

More information

Edexcel Chemistry A-level

Edexcel Chemistry A-level Edexcel Chemistry A-level Topic 5 - Formulae, Equations and Amounts of Substance Flashcards What is the symbol for amount of substance? What is the symbol for amount of substance? n What is the unit used

More information

Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question.

Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question. Kinetics Practice Test 2017 Name: date: 1. Use the data provided the answer the question. The data above was obtained for a reaction in which X + Y Z. Which of the following is the rate law for the reaction?

More information

Iodine Clock Part I Chemical Kinetics

Iodine Clock Part I Chemical Kinetics Collect: Iodine Clock Part I Chemical Kinetics (2015/11/17 revised) 50 ml Erlenmeyer flask (10): wash clean, dry, and cool 5 ml graduated pipet (2), pipet filler (1) Cork stopper (6) Stopwatch (1) (given

More information

Equilibrium. Why? Model 1 A Reversible Reaction. At what point is a reversible reaction completed?

Equilibrium. Why? Model 1 A Reversible Reaction. At what point is a reversible reaction completed? Why? Equilibrium At what point is a reversible reaction completed? Most of the reactions that we have studied this year have been forward reactions once the reactant has changed into the product it stays

More information

What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate?

What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate? What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate? Introduction The collision theory of reactions suggests that the rate of a reaction depends on three important factors.

More information

Name. Chem 116 Sample Examination #2

Name. Chem 116 Sample Examination #2 page 1 of 8 Name Last 5 digits of Student Number: XXX X Chem 116 Sample Examination #2 This exam consists of eight (8) pages, including this cover page. Be sure your copy is complete before beginning your

More information

Experiment 4: Rates of Chemical Reactions II: Kinetic Study of the Reaction between Ferric and Iodine Ions

Experiment 4: Rates of Chemical Reactions II: Kinetic Study of the Reaction between Ferric and Iodine Ions Experiment 4: Rates of Chemical Reactions II: Kinetic Study of the Reaction between Ferric and Iodine Ions PURPOSE: To study kinetics of the reaction between ferric (Fe 3+ ) and iodide (I - ) ions, i.e.

More information

, but bursts into flames in pure oxygen.

, but bursts into flames in pure oxygen. Chemical Kinetics Chemical kinetics is concerned with the speeds, or rates of chemical reactions Chemical kinetics is a subject of broad importance. How quickly a medicine can work The balance of ozone

More information

Acid-Base Titration Lab

Acid-Base Titration Lab Acid-Base Titration Lab Name Objectives: - To apply knowledge of molarity to properly dilute a concentrated base - To apply knowledge of solution stoichiometry in order to correctly determine the unknown

More information

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide: Weak Acid Titration v010516 You are encouraged to carefully read the following sections in Tro (3 rd ed.) to prepare for this experiment: Sec 4.8, pp 168-174 (Acid/Base Titrations), Sec 16.4, pp 769-783

More information

U N I T T E S T P R A C T I C E

U N I T T E S T P R A C T I C E South Pasadena AP Chemistry Name 2 Chemical Kinetics Period Date U N I T T E S T P R A C T I C E Part 1 Multiple Choice You should allocate 30 minutes to finish this portion of the test. No calculator

More information

EXPERIMENT 23 Lab Report Guidelines

EXPERIMENT 23 Lab Report Guidelines EXPERIMENT 23 Listed below are some guidelines for completing the lab report for Experiment 23: For each part, follow the procedure outlined in the lab manual. Observe all safety rules, including wearing

More information

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction 1 EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate the formation of a precipitate in a chemical

More information

The Mole. Relative Atomic Mass Ar

The Mole. Relative Atomic Mass Ar STOICHIOMETRY The Mole Relative Atomic Mass Ar Relative Molecular Mass Mr Defined as mass of one atom of the element when compared with 1/12 of an atom of carbon-12 Some Ar values are not whole numbers

More information

Lecture (8) Effect of Changing Conditions on the Rate Constant

Lecture (8) Effect of Changing Conditions on the Rate Constant Lecture (8) Effect of Changing Conditions on the Rate Constant The relationship between the rate of a chemical reaction and the concentration of the reactants is shown by the rate equation of the reaction.

More information

EXPERIMENT - 2 DETERMINE THE PRODUCT OF A REDOX REACTION REACTION OF BROMATE AND HYDROXYLAMMONIUM IONS CHM110H5F

EXPERIMENT - 2 DETERMINE THE PRODUCT OF A REDOX REACTION REACTION OF BROMATE AND HYDROXYLAMMONIUM IONS CHM110H5F EXPERIMENT - 2 DETERMINE THE PRODUCT OF A REDOX REACTION REACTION OF BROMATE AND HYDROXYLAMMONIUM IONS CHM110H5F EXPERIMENT PERFORMED ON: 03 OCTOBER, 2012 REPORT SUBMITTED ON: 10 OCTOBER, 2012 SUBMITTED

More information

Preparation of a Coordination Compound. Step 1 Copy the balanced equation for the preparation of FeC 2 O 4.. 3H2 O from FeC 2 O 4. Mass of watch glass

Preparation of a Coordination Compound. Step 1 Copy the balanced equation for the preparation of FeC 2 O 4.. 3H2 O from FeC 2 O 4. Mass of watch glass Student Name Lab Partner Demonstrator Lab Section DATA SHEET Marking scheme Prelab exercise Lab performance Sig figs, units Calculations Crystals Preparation of a Coordination Compound Step 1 Copy the

More information

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Purpose Determine the solubility product constant (K sp ) for a sparingly soluble salt. Study

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION

RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Rate Law Determination of Crystal Violet Hydroxylation Revised 5/22/12 RATE LAW DETERMINATION OF CRYSTAL VIOLET HYDROXYLATION Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997

More information

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE INTRODUCTION Electrolytes are compounds that are present in solution as ions. They are more likely to be soluble in water than in most other liquids

More information

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Measure the solubility product constant for a sparingly soluble salt.

More information

Chapter 12. Chemical Kinetics

Chapter 12. Chemical Kinetics Chapter 12 Chemical Kinetics Chapter 12 Table of Contents 12.1 Reaction Rates 12.2 Rate Laws: An Introduction 12.3 Determining the Form of the Rate Law 12.4 The Integrated Rate Law 12.5 Reaction Mechanisms

More information

Experiment 2: Analysis of Commercial Bleach Solutions

Experiment 2: Analysis of Commercial Bleach Solutions Experiment 2: Analysis of Commercial Bleach Solutions I. Introduction The ability of household bleach to remove stains is related to the amount of oxidizing agent in it. The oxidizing agent in bleach is

More information

Chapter: Chemical Kinetics

Chapter: Chemical Kinetics Chapter: Chemical Kinetics Rate of Chemical Reaction Question 1 Nitrogen pentaoxide decomposes according to equation: This first order reaction was allowed to proceed at 40 o C and the data below were

More information

The Kinetics of the Iodine Clock Reaction

The Kinetics of the Iodine Clock Reaction Experiment 2 Pre-lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered on a separate (new)

More information

Date Completed: Lab Partner(s):

Date Completed: Lab Partner(s): Name: Lab Partner(s): Date Completed: Lab # 23: Factors Affecting Reaction Rate Accelerated Chemistry 1 Purpose Did you ever wonder why certain chemicals when mixed do not react; yet others upon immediate

More information

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles)

L = 6.02 x mol Determine the number of particles and the amount of substance (in moles) 1.1 The Mole 1.1.1 - Apply the mole concept to substances A mole is the name given to a certain quantity. It represents 6.02 x 10 23 particles. This number is also known as Avogadro's constant, symbolised

More information

Clocking the Effect of Molarity on Speed of Reaction. reaction. While most people do assume that the temperature of the solution is often the most

Clocking the Effect of Molarity on Speed of Reaction. reaction. While most people do assume that the temperature of the solution is often the most Ding 1 Chunyang Ding Mr. Rierson AP/IB Chemistry SL 28 January 2013 Clocking the Effect of Molarity on Speed of Reaction In basic levels of chemistry, most of the experimenter s attention is on the reaction

More information

There is not enough activation energy for the reaction to occur. (Bonds are pretty stable already!)

There is not enough activation energy for the reaction to occur. (Bonds are pretty stable already!) Study Guide Chemical Kinetics (Chapter 12) AP Chemistry 4 points DUE AT QUIZ (Wednesday., 2/14/18) Topics to be covered on the quiz: chemical kinetics reaction rate instantaneous rate average rate initial

More information

Right Side NOTES ONLY

Right Side NOTES ONLY Ch. 8 Stoichiometry Title and Highlight TN Ch 8.1 Topic: EQ: Right Side NOTES ONLY Date Write Question out (left side of red line) and answer it (Highlight answer) based on from what you read. Write out

More information

Rate law: rate = - [ ]/ t = k [ ] x where x = order. Rate constant = k depends on T (k = Ae -Ea/RT )

Rate law: rate = - [ ]/ t = k [ ] x where x = order. Rate constant = k depends on T (k = Ae -Ea/RT ) Chem 1B Objective 5: Understand factors that determine reaction rate and describe reaction rate with rate law, order, rate constant, and activation energy. Key Ideas: Important in preserving food, curing

More information

CHEM 116 Collision Theory and Reaction Mechanisms

CHEM 116 Collision Theory and Reaction Mechanisms CHEM 116 Collision Theory and Reaction Mechanisms Lecture 13 Prof. Sevian Note: If there is anything we do not finish about reaction mechanisms today, that is where we will start on Tuesday with Lecture

More information

The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1

The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1 5.1.1 ow Fast? The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1 When a graph of concentration of reactant is plotted vs time,

More information

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA ii TABLE OF CONTENTS TABLE OF CONTENTS... i LIST OF FIGURES... iii Chapter 1... 4 SOLUTIONS...

More information

ALE 1. Chemical Kinetics: Rates of Chemical Reactions

ALE 1. Chemical Kinetics: Rates of Chemical Reactions Name Chem 163 Section: Team Number: ALE 1. Chemical Kinetics: Rates of Chemical Reactions (Reference: Sections 16.1 16.2 + parts of 16.5 16.6 Silberberg 5 th edition) How do the surface area, concentration

More information

5. What is the name of the phase transition that occurs when a solid is converted directly into a gas (without going through the liquid phase)?

5. What is the name of the phase transition that occurs when a solid is converted directly into a gas (without going through the liquid phase)? 1. If the volume of a confined gas is doubled while the temperature remains constant, what change (if any) would be observed in the pressure? a. It would be half as large. b. It would double. c. It would

More information

LIMITING REAGENT. Taking Stoichiometric conversions one step further

LIMITING REAGENT. Taking Stoichiometric conversions one step further LIMITING REAGENT Taking Stoichiometric conversions one step further Limiting Reagent The reactant that limits the amount of product that can be formed. The reaction will stop when all of the limiting reactant

More information

1. KINETICS. Kinetics answers

1. KINETICS. Kinetics answers 1. KINETICS 1.1. Rate determining step 1.2. Calculating reaction rate 1.3. Measuring reaction rate in the lab 1.4. Determining the rate equation 1.5. Arrhenius and rate Kinetics answers 1.1. Rate determining

More information

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Safety Note: Safety glasses and laboratory coats are required when performing this experiment The Determination of Hypochlorite in Bleach Reading assignment: Burdge, Chemistry 4 th edition, section 4.6. We will study an example of a redox titration in order to determine the concentration of sodium

More information

Titration of HCl with Sodium Hydroxide

Titration of HCl with Sodium Hydroxide Titration of HCl with Sodium Hydroxide Lab Report for the Subject of Advanced Chemistry Anon Durongpisitkul, Karis Katekovit, Varun Saketharam,Thanon Thamvorapol, Chanon Anektanasup- January 28, 2017 1

More information

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2

Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) (aq) as product for the reaction : 5 Br (aq) + Br(aq) + 6H + (aq) 3 Br 2 Unit - 4 CHEMICAL KINETICS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Define the term rate of reaction. 2. Mention the units of rate of reaction. 3. Express the rate of reaction in terms of Br (aq) as reactant

More information

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates KINETICS Kinetics Study of the speed or rate of a reaction under various conditions Thermodynamically favorable reactions DO NOT mean fast reactions Some reactions take fraction of a second (explosion)

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 9 Chemical Quantities Information

More information

1. An aqueous solution of calcium bromide has a concentration of molal. The percent by mass of calcium bromide in the solution is:

1. An aqueous solution of calcium bromide has a concentration of molal. The percent by mass of calcium bromide in the solution is: 1. An aqueous solution of calcium bromide has a concentration of 0.441 molal. The percent by mass of calcium bromide in the solution is: a. 5.00% b. 8.10% c. 10.10% d. 12.15% e. 16.20% 2. The melting point

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 20: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 5 Study Guide Concepts. rate of reaction: the speed at which reactants disappear and products form. 2. There can only be one numerical

More information

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g

15.0 g Fe O 2 mol Fe 55.8 g mol Fe = g CHAPTER Practice Questions.1 1 Mg, O, H and Cl (on each side).. BaCl (aq) + Al (SO ) (aq) BaSO (s) + AlCl (aq).5 0.15 mol 106 g mol 1 = 1. g 15.0 g Fe O mol Fe 55.8 g mol Fe = 10.9 g 1 159.7 g mol FeO

More information

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM

DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM DETERMINATION OF K c FOR AN EQUILIBRIUM SYSTEM 1 Purpose: To determine the equilibrium constant K c for an equilibrium system using spectrophotometry to measure the concentration of a colored complex ion.

More information

Determination of the Rate Constant for an Iodine Clock Reaction

Determination of the Rate Constant for an Iodine Clock Reaction CHEM 122L General Chemistry Laboratory Revision 1.3 Determination of the Rate Constant for an Iodine Clock Reaction To learn about Integrated Rate Laws. To learn how to measure a Rate Constant. To learn

More information

Titrations Worksheet and Lab

Titrations Worksheet and Lab Titrations Worksheet and Lab Vocabulary 1. Buret: a piece of glassware used for dispensing accurate volumes, generally reads to two places of decimal. 2. Titrant: the substance of known concentration added

More information

Rates and Temperature

Rates and Temperature Rates and Temperature N Goalby Chemrevise.org Activation Energy Molecules will only react if they collide with enough energy to break the relevant bonds in one or either of the reactant molecules. This

More information

Partner: Judy 29 March Analysis of a Commercial Bleach

Partner: Judy 29 March Analysis of a Commercial Bleach Partner: Judy 29 March 2012 Analysis of a Commercial Bleach Purpose: The purpose of this lab is to determine the amount of sodium hypochlorite (NaClO) in commercial bleach. This can be done by forming

More information

Experiment 7 Buffer Capacity & Buffer Preparation

Experiment 7 Buffer Capacity & Buffer Preparation Chem 1B Dr. White 57 Experiment 7 Buffer Capacity & Buffer Preparation Objectives To learn how to choose a suitable conjugate acid- base pair for making a buffer of a given ph To gain experience in using

More information

b. Free energy changes provide a good indication of which reactions are favorable and fast, as well as those that are unfavorable and slow.

b. Free energy changes provide a good indication of which reactions are favorable and fast, as well as those that are unfavorable and slow. Chem 130 Name Exam 3, Ch 7, 19, 14 November 9, 2018 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct

More information