Experiment 2: Factors Affecting Reaction Rates

Size: px
Start display at page:

Download "Experiment 2: Factors Affecting Reaction Rates"

Transcription

1 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. Part B To study the effect of temperature on the rate of a reaction. Part C To study the effect of a catalyst on the rate of a reaction.

2 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) ( clear solution ) ( pale yellow solution ) Reactants: Ammonium persulfate (NH 4 ) 2 S 2 O 8 Potassium iodide KI CHEM 0012 Lecture Notes 2

3 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. How do we do this? Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) ( clear solution ) ( pale yellow solution ) Observe a COLOUR CHANGE! Problem: The pale yellow solution is visually very difficult to judge. CHEM 0012 Lecture Notes 3

4 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. How do we do this? Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) ( clear solution ) ( pale yellow solution ) Introduce two substances to help us observe the colour change more accurately: 1. Starch indicator 2. Sodium thiosulfate, Na 2 S 2 O 3, of a fixed quantity CHEM 0012 Lecture Notes 4

5 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) (1) ( clear solution ) I 2 (aq) + 2 S 2 O 3 (aq) S 4 O 6 (aq) + 2 I (aq) (2) thiosulfate ion We time how long it takes for the solution to turn colour. I 2 (aq) + starch iodine starch complex (3) ( coloured solution ) As the I 2 is formed (1), it reacts with the fixed amount of sodium thiosulfate that has been added to the reaction mixture (2). When the sodium thiosulfate is used up, the next quantity of I 2 that is formed reacts with the starch indicator to form a colour complex, and turns the clear solution into a coloured solution (3). CHEM 0012 Lecture Notes 5

6 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) Make solutions of different concentrations. Prepare 14 solutions in 14 Erlenmeyer flasks with different concentrations of S 2 O 8 and I solutions! Label them: A1, A2, A3, A4, A5, A6, A7. B1, B2, B3, B4, B5, B6, B7. SEPARATE the reactants until we are ready to mix them! KI (I ) in A solutions; (NH 4 ) 2 S 2 O 8 (S 2 O 8 ) in B solutions CHEM 0012 Lecture Notes 6

7 Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) Total volume of A solutions = 30.0 ml. CHEM 0012 Lecture Notes 7

8 Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) Total volume of B solutions = 20.0 ml. CHEM 0012 Lecture Notes 8

9 Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) Total volume of the combined solution = 50.0 ml. MIX and TIME: A1 + B1 A2 + B2 A3 + B3 A4 + B4 A5 + B5 A6 + B6 A7 + B7 (expt 1) (expt 2) (expt 3) (expt 4) (expt 5) (expt 6) (expt 7) CHEM 0012 Lecture Notes 9

10 When solutions A1 and B1 are combined, what is the concentration of (NH 4 ) 2 S 2 O 8 in moles/l? ( L) x (0.100 moles/l) = moles (NH 4 ) 2 S 2 O 8 Total volume of the combined solution = 50.0 ml moles (NH 4 ) 2 S 2 O 8 = M (NH 4 ) 2 S 2 O L CHEM 0012 Lecture Notes in the combined A1 + B1 solution 10

11 Follow the example on the previous slide and calculate the concentrations of (NH 4 ) 2 S 2 O 8 in moles/l when A2+B2, A3+B3, A4+B4, A5+B5, A6+B6 and A7+B7 are combined? ( L) x (0.100 moles/l) = moles (NH 4 ) 2 S 2 O moles (NH 4 ) 2 S 2 O 8 = M (NH 4 ) 2 S 2 O L Note: The concentrations of (NH 4 ) 2 S 2 O 8 should be the same for the A4/B4, A5/B5, A6/B6 and A7/B7 solutions because the B4, B5, B6, and B7 solutions each contains 20.0 ml of (NH 4 ) 2 S 2 O 8. CHEM 0012 Lecture Notes 11

12 Follow the example on the previous slide and calculate the concentrations of (NH 4 ) 2 S 2 O 8 in moles/l when A2+B2, A3+B3, A4+B4, A5+B5, A6+B6 and A7+B7 are combined? Enter concentrations in Table 2-4 and Table 2-6 in the post-lab questions of Experiment 2. Note: The concentrations of (NH 4 ) 2 S 2 O 8 should be the same for the A4/B4, A5/B5, A6/B6 and A7/B7 solutions. CHEM 0012 Lecture Notes 12

13 When solutions A1 and B1 are combined, what is the concentration of KI in moles/l? ( L) x (0.200 moles/l) = moles KI Total volume of the combined solution = 50.0 ml moles KI = M KI L CHEM 0012 Lecture Notes in the combined A1 + B1 solution 13

14 Follow the example on the previous slide and calculate the concentrations of KI in moles/l when A2+B2, A3+B3, A4+B4, A5+B5, A6+B6 and A7+B7 are combined? ( L) x (0.200 moles/l) = moles KI moles KI = M KI L Note: The concentrations of KI should be the same for the A1/B1, A2/B2, A3/B3 and A4/B4 solutions because the A1, A2, A3, and A4 solutions each contains 20.0 ml of KI. CHEM 0012 Lecture Notes 14

15 Follow the example on the previous slide and calculate the concentrations of KI in moles/l when A2+B2, A3+B3, A4+B4, A5+B5, A6+B6 and A7+B7 are combined? Enter concentrations in Table 2-4 and Table 2-6 in the post-lab questions of Experiment 2. Note: The concentrations of KI should be the same for the A1/B1, A2/B2, A3/B3 and A4/B4 solutions. CHEM 0012 Lecture Notes 15

16 How many moles of Na 2 S 2 O 3 are available? ( L) x ( moles/l) = moles Na 2 S 2 O 3 This is the same amount of Na 2 S 2 O 3 that is added to ALL the A solutions. CHEM 0012 Lecture Notes 16

17 Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) (1) ( clear solution ) 1 I 2 (aq) + 2 S 2 O 3 (aq) S 4 O 6 (aq) + 2 I (aq) (2) thiosulfate ion ( clear solution ) How many moles of I 2 will consume the Na 2 S 2 O 3 added? From the previous slide, we calculated that there is moles Na 2 S 2 O 3 in each A solution. From equation (2), the I 2 and S 2 O 3 is 1:2. It takes /2 = moles of I 2 to consume the S 2 O 3. CHEM 0012 Lecture Notes 17

18 What is the concentration of I 2 when the Na 2 S 2 O 3 is consumed? From the previous slide, we calculated that it takes moles of I 2 to consume the S 2 O 3. Total volume of the combined solution = 50.0 ml moles I 2 = M I L When you time how long it takes for the solution to turn colour, you are actually timing how long it takes to produce M I 2!!! Remember this number. You ll need the [I 2 ] in the rate calculation. CHEM 0012 Lecture Notes 18

19 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) ( clear solution ) ( pale yellow solution ) What is a reaction s rate law? CHEM 0012 Lecture Notes 19

20 What is a reaction s rate law? Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) The rate law for a chemical reaction is an experimentally determined mathematical equation that describes the progress of the reaction. For the Iodine clock reaction, the reaction rate of formation of I 2 is proportional to the product of the concentrations each reactant each raised to some power, x and y. Rate [S 2 O 8 ] x [I - ] y CHEM 0012 Lecture Notes 20

21 What is a reaction s rate law? Iodine clock Reaction S 2 O 8 (aq) + 2 I (aq) 2 SO 4 (aq) + I 2 (aq) Rate [S 2 O 8 ] x [I - ] y We can remove the proportional symbol and introduce a proportionality constant, k. Rate k [S 2 O 8 ] x [I - ] y The proportionality constant, k, is known as the rate constant. We will experimentally determine the values of x and y. CHEM 0012 Lecture Notes 21

22 Objective: Part A To determine the effect of concentration on the rate of formation of Iodine, I 2, and therefore, determine the reaction s rate law. Experiment Solution Time (sec) Table 2-4 Sample Calculation [S 2 O 8 ] (moles/l) [I ] (moles/l) 1 A1/B1 264* Rate of formation of I 2 (moles/l) * Sample data Rate of formation of I [I ] formed time M s 1.89 x 10-6 M/s CHEM 0012 Lecture Notes 22

23 Experiment Solution Time (sec) Table 2-4 Sample Calculation [S 2 O 8 ] (moles/l) 1 A1/B [I ] (moles/l) Rate of formation of I 2 (moles/l) 1.89 x A2/B2 122* x 10 6 * Sample data Similarly, we can calculate the Rate of formation of I 2 for expt 2. CHEM 0012 Lecture Notes 23

24 Table 2-5 Sample Calculation of x Experiment pairs 1 and 2 x, the order of the reaction with respect to [S 2 O 8 ] Average value of x Rate k [S 2 O 8 ] x [I - ] y Expt 1: Expt 2: 1.89 x x k [S k [S 2 2 O O ] ] x x [I [I - - ] ] y y k(0.0100) k(0.0200) CHEM 0012 Lecture Notes 24 x x (0.0800) (0.0800) x = 0.5 x X = y y

25 Similar calculation can be carried out to calculate y for Table 2-7. Rate k [S 2 O 8 ] x [I - ] y x is the order of the reaction with respect to S 2 O 2-8 y is the order of the reaction with respect to I - x + y is the overall order of the reaction CHEM 0012 Lecture Notes 25

26 Once x and y are determined, we can calculate the rate constant, k. Table 2-9 Sample Calculation Experiment Rate constant, k Average value of k x 10 6 = k (0.0100) x (0.0800) y Substitute x and y and solve for k. CHEM 0012 Lecture Notes 26

27 Objective: Part B To study the effect of temperature on the rate of a reaction. How do we do this? Keep the concentrations of the reactants constant, but let the Reaction react at different temperatures: 0 o C, 20 o C, 30 o C, 40 o C Use A4, B4 solutions for all the temperatures!! Part B calculations for Table 2-10 is similar to Part A. CHEM 0012 Lecture Notes 27

28 Objective: Part B To study the effect of temperature on the rate of a reaction. Verify Arrhenius Equation k Ae E act RT A is the pre-exponential or frequency factor, a constant related to the collision frequency R is the gas constant (8.314 J / K mole) T is the absolute temperature (K) k is the rate constant at temperature T E act is the activation energy, the energy required by the reacting species for their collisions to be effective (ie - those that lead to the formation of products) CHEM 0012 Lecture Notes 28

29 Objective: Part B To study the effect of temperature on the rate of a reaction. Rewrite Arrhenius Equation k Ae Eact RT ln k E act R 1 T ln A y = m x + b Plot "ln k versus 1 T " should yield a straight line!! CHEM 0012 Lecture Notes 29

30 Objective: Part B To study the effect of temperature on the rate of a reaction. Ea m R b ln( A) E a A e Rm b CHEM 0012 Lecture Notes 30

31 Objective: Part C To study the effect of a catalyst on the rate of a reaction. Use the A4, B4 solutions and add copper as a catalyst. A catalyst speeds up a reaction. When Cu is added, by how many times does the reaction increase? Rate of formation of Rate of formation of I with Cu added 2 I 2 without Cu 1 Data from Part B. CHEM 0012 Lecture Notes 31

CHEM Experiment 1. of Chemical Reactions

CHEM Experiment 1. of Chemical Reactions Experiment 1 Factors Governing the Speed of Chemical Reactions Experiment 1: Factors Affecting Reaction Rates Part A Effect of Concentration on Reaction Rate 2 Iodine clock Reaction S 2 O 8 (aq) + 2 I

More information

CHEM Experiment 1 Factors Governing the Speed of Chemical Reactions

CHEM Experiment 1 Factors Governing the Speed of Chemical Reactions CHEM 3310 Experiment 1 Factors Governing the Speed of Chemical Reactions Experiment 1: Factors Affecting Reaction Rates Part A Effect of Concentration on Reaction Rate CHEM 3310 2 Iodine clock Reaction

More information

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Complete the following for Pre-Lab on a clean sheet of paper: (1) In your own words, explain the following: a. why the I 2 concentration

More information

#5 Chemical Kinetics: Iodine Clock Reaction

#5 Chemical Kinetics: Iodine Clock Reaction #5 Chemical Kinetics: Iodine Clock Reaction In the previous experiment, we discussed the factors that influence the rate of a chemical reaction and presented the terminology used in quantitative relations

More information

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION PURPOSE: To determine the Rate Law and the Activation Energy for a reaction from experimental data. PRINCIPLES: The Rate Law is a mathematical expression that predicts the rate of a reaction from the concentration

More information

Rate of Reaction. Introduction

Rate of Reaction. Introduction 5 Rate of Reaction Introduction This experiment will allow you to study the effects of concentration, temperature, and catalysts on a reaction rate. The reaction whose rate you will study is the oxidation

More information

Kinetics; A Clock Reaction

Kinetics; A Clock Reaction Kinetics; A Clock Reaction Background This experiment involves the study of the rate properties, or chemical kinetics, of the following reaction between iodide ion (I - ) and bromate ion (BrO 3 - ) under

More information

EXPERIMENT 3 THE IODINE CLOCK

EXPERIMENT 3 THE IODINE CLOCK EXPERIMENT 3 THE IODINE CLOCK Introduction The Rates of Chemical Reactions Broadly defined, chemical kinetics is the study of the rates at which chemical reactions proceed. Oftentimes, reaction rate data

More information

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 2 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

Kinetics of an Iodine Clock Reaction

Kinetics of an Iodine Clock Reaction Kinetics of an Iodine Clock Reaction Introduction: In this experiment, you will determine the rate law for a reaction and the effect of concentration on the rate of the reaction by studying the initial

More information

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE

THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE THE EFFECT OF TEMPERATURE AND CONCENTRATION ON REACTION RATE INTRODUCTION FACTORS INFLUENCING REACTION RATE: The study of chemical reactions is not complete without a consideration of the rates at which

More information

The rate equation relates mathematically the rate of reaction to the concentration of the reactants.

The rate equation relates mathematically the rate of reaction to the concentration of the reactants. 1.9 Rate Equations Rate Equations The rate equation relates mathematically the rate of reaction to the concentration of the reactants. For the following reaction, aa + bb products, the generalised rate

More information

Examining the Effect of Temperature on Reaction Rate

Examining the Effect of Temperature on Reaction Rate 1 Purpose: To measure reaction rate at different temperatures for the reaction between persulfate ions, S2O8-2, and iodide ions, I -, and thereby determine the activation energy and frequency factor for

More information

Experiment 2: The Rate of an Iodine Clock Reaction

Experiment 2: The Rate of an Iodine Clock Reaction Experiment 2: The Rate of an Iodine Clock Reaction Introduction: Some reactions, including most of the ones that you have seen before, occur so rapidly that they are over as soon as the reactants are mixed.

More information

Lecture (8) Effect of Changing Conditions on the Rate Constant

Lecture (8) Effect of Changing Conditions on the Rate Constant Lecture (8) Effect of Changing Conditions on the Rate Constant The relationship between the rate of a chemical reaction and the concentration of the reactants is shown by the rate equation of the reaction.

More information

A Chemical Clock. 5. Consider each of the following questions regarding data and measurements:

A Chemical Clock. 5. Consider each of the following questions regarding data and measurements: A Chemical Clock Things to Consider 1. What are the three major objectives of this experiment? What methods will you try using to achieve each of these three objectives? 2. What is difference between reaction

More information

Determining the Rate Law for a Chemical Reaction

Determining the Rate Law for a Chemical Reaction Determining the Rate Law for a Chemical Reaction Purpose: To determine the reaction orders, rate law, and rate constant for the reaction between persulfate ions, SO8 -, and iodide ions, I - Introduction

More information

Determination of the Rate Constant for an Iodine Clock Reaction

Determination of the Rate Constant for an Iodine Clock Reaction CHEM 122L General Chemistry Laboratory Revision 1.3 Determination of the Rate Constant for an Iodine Clock Reaction To learn about Integrated Rate Laws. To learn how to measure a Rate Constant. To learn

More information

PURPOSE: To determine the Rate Law for the following chemical reaction:

PURPOSE: To determine the Rate Law for the following chemical reaction: PURPOSE: To determine the Rate Law for the following chemical reaction: H 2 O 2 (aq) + 2 I - (aq) + 2 H 3 O + (aq) 4 H 2 O(l) + I 2 (aq) Hydrogen Iodide Hydronium Water Iodine Peroxide Ion Ion PRINCIPLES:

More information

A Clock Reaction: Determination of the Rate Law for a Reaction

A Clock Reaction: Determination of the Rate Law for a Reaction 1 A Clock Reaction: Determination of the Rate Law for a Reaction This experiment involves the study of the rate properties, or chemical kinetics, of the following reaction between iodide ion and bromate

More information

UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573)

UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573) UNIT 2: KINETICS RATES of Chemical Reactions (TEXT: Chap 13-pg 573) UNIT 2: LAB 1. A Brief Introductory Kinetics Investigation A) Set up 4 test tubes containing about 5 ml of 0.1 M sodium oxalate sol n.

More information

Investigating the Effect of Concentration on an Iodide Persulphate Reaction, and Rate Law Determination. Lab Performed on Monday, February 25 th, 2013

Investigating the Effect of Concentration on an Iodide Persulphate Reaction, and Rate Law Determination. Lab Performed on Monday, February 25 th, 2013 Investigating the Effect of Concentration on an Iodide Persulphate Reaction, and Rate aw Determination ab Performed on Monday, February 25 th, 2013 Introduction The purpose of this lab is to observe the

More information

KINETICS II - THE IODINATION OF ACETONE Determining the Activation Energy for a Chemical Reaction

KINETICS II - THE IODINATION OF ACETONE Determining the Activation Energy for a Chemical Reaction KINETICS II - THE IODINATION OF ACETONE Determining the Activation Energy for a Chemical Reaction The rate of a chemical reaction depends on several factors: the nature of the reaction, the concentrations

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

Chemical Kinetics -- Chapter 14

Chemical Kinetics -- Chapter 14 Chemical Kinetics -- Chapter 14 1. Factors that Affect Reaction Rate (a) Nature of the reactants: molecular structure, bond polarity, physical state, etc. heterogeneous reaction: homogeneous reaction:

More information

IODINE CLOCK REACTION KINETICS

IODINE CLOCK REACTION KINETICS Name: Section Chemistry 104 Laboratory University of Massachusetts Boston IODINE CLOCK REACTION KINETICS PRELAB ASSIGNMENT Calculate the initial concentration of H 2 O 2 that exists immediately after mixing

More information

Kinetics of an Iodine Clock Reaction Lab_Student Copy

Kinetics of an Iodine Clock Reaction Lab_Student Copy Kinetics of an Iodine Clock Reaction Lab_Student Copy Purpose: Purpose: In this lab, you will find the reaction rate, rate law,, and observe the effects of a catalyst for the oxidation of iodide ions by

More information

Rate Properties of an Iodide Oxidation Reaction

Rate Properties of an Iodide Oxidation Reaction Rate Properties of an Iodide Oxidation Reaction GOAL AND OVERVIEW The rate law for the reduction reaction of peroxodisulfate (PODS) by iodide: S 2 O8 2 (aq) + 2 I (aq) I 2 (aq) + 2 SO4 2 (aq) will be determined.

More information

Experiment 26 - Kinetics

Experiment 26 - Kinetics Chem 1B Dr. White 175 Experiment 26 - Kinetics Objectives To determine the rate law for the reaction between iodide and bromate under acidic conditions To investigate the effect of temperature on rate

More information

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to: 1 EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Measure the solubility product constant for a sparingly soluble salt.

More information

Exp. 2: The Superconductor YBa 2 Cu 3 O 7 (Text #1)

Exp. 2: The Superconductor YBa 2 Cu 3 O 7 (Text #1) Exp. 2: The 1-2-3 Superconductor YBa 2 Cu 3 O 7 (Text #1) Last week: Performed high-temperature, solid-state reaction to prepare YBa 2 Cu 3 O x Thursday: Determine product stoichiometry ( x ) based on

More information

How Do Certain Factors Affect the Rate of a Chemical Reaction?

How Do Certain Factors Affect the Rate of a Chemical Reaction? EXPERIMENT 7 How Do Certain Factors Affect the Rate of a Chemical Reaction? INTRODUCTION Two important questions may be asked about a chemical reaction. () How completely do the reactants combine to give

More information

Copper (II) Glycinate Titration

Copper (II) Glycinate Titration Copper (II) Glycinate Titration In this experiment you will standardize (determine the concentration of) a solution of sodium thiosulfate. You will then use that sodium thiosulfate solution to titrate

More information

Kinetics of an Iodine Clock Reaction Lab_ Teacher s Key

Kinetics of an Iodine Clock Reaction Lab_ Teacher s Key Kinetics of an Iodine Clock Reaction Lab_ Teacher s Key Purpose: In this lab, you will find the reaction rate, rate law,, and observe the effects of a catalyst for the oxidation of iodide ions by bromate

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *3430269783* CHEMISTRY 9701/51 Paper 5 Planning, Analysis and Evaluation October/November 2017 1 hour

More information

Experiment #5. Iodine Clock Reaction Part 1

Experiment #5. Iodine Clock Reaction Part 1 Experiment #5. Iodine Clock Reaction Part 1 Introduction In this experiment you will determine the Rate Law for the following oxidation- reduction reaction: 2 H + (aq) + 2 I (aq) + H 2 O 2 (aq) I 2 (aq)

More information

The Kinetics of the Iodine Clock Reaction

The Kinetics of the Iodine Clock Reaction Experiment 2 Pre-lab Assignment Before coming to lab: Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise. The questions should be answered on a separate (new)

More information

Experiment 2: Analysis of Commercial Bleach Solutions

Experiment 2: Analysis of Commercial Bleach Solutions Experiment 2: Analysis of Commercial Bleach Solutions I. Introduction The ability of household bleach to remove stains is related to the amount of oxidizing agent in it. The oxidizing agent in bleach is

More information

CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric

CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric Name Team Name CHM112 Lab Iodine Clock Reaction Part 1 Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Initial concentrations completed

More information

Iodine Clock Part I Chemical Kinetics

Iodine Clock Part I Chemical Kinetics Collect: Iodine Clock Part I Chemical Kinetics (2015/11/17 revised) 50 ml Erlenmeyer flask (10): wash clean, dry, and cool 5 ml graduated pipet (2), pipet filler (1) Cork stopper (6) Stopwatch (1) (given

More information

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility.

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility. E09 Exp 09 - Solubility Solubility Solvation The reaction coefficient Precipitating Insoluble Substances Comparing Q to Ksp Solubility Equilibrium Solubility Product, Ksp Relating Molar Solubility Factors

More information

Announcements. due tomorrow at start of discussion. 10/22 and (Type II) due Wednesday 10/24 by 7:00pm. Thurs. Must be present to get grade!

Announcements. due tomorrow at start of discussion. 10/22 and (Type II) due Wednesday 10/24 by 7:00pm. Thurs. Must be present to get grade! Announcements 1. Limiting Reactants lab write-up due tomorrow at start of discussion. 2. Online HW 5 (Type I) due Monday 10/22 and (Type II) due Wednesday 10/24 by 7:00pm. 3. Stoichiometry workshop next

More information

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE INTRODUCTION Electrolytes are compounds that are present in solution as ions. They are more likely to be soluble in water than in most other liquids

More information

It must be determined from experimental data, which is presented in table form.

It must be determined from experimental data, which is presented in table form. Unit 10 Kinetics The rate law for a reaction describes the dependence of the initial rate of a reaction on the concentrations of its reactants. It includes the Arrhenius constant, k, which takes into account

More information

21-Jan-2018 Chemsheets A Page 1

21-Jan-2018 Chemsheets A Page 1 www.chemsheets.co.uk 21-Jan-2018 Chemsheets A2 1001 Page 1 SECTION 1 Recap of AS Kinetics What is reaction rate? The rate of a chemical reaction is a measure of how fast a reaction takes place. It is defined

More information

PRACTICAL NUMBER 1 AN EXPERIMENT TO DETERMINE THE RATE CONSTANT AND THE REACTION ORDER FOR THE OXIDATION OF IODIDE BY PEROXODISULFATE

PRACTICAL NUMBER 1 AN EXPERIMENT TO DETERMINE THE RATE CONSTANT AND THE REACTION ORDER FOR THE OXIDATION OF IODIDE BY PEROXODISULFATE PRACTICAL NUMBER 1 AN EXPERIMENT TO DETERMINE THE RATE CONSTANT AND THE REACTION ORDER FOR THE OXIDATION OF IODIDE BY PEROXODISULFATE INTRODUCTION In this experiment you will determine the initial rate

More information

What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate?

What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate? What Is the Rate Law for the Reaction Between Hydrochloric Acid and Sodium Thiosulfate? Introduction The collision theory of reactions suggests that the rate of a reaction depends on three important factors.

More information

Synthesis and Analysis of a Coordination Compound

Synthesis and Analysis of a Coordination Compound Synthesis and Analysis of a Coordination Compound In addition to forming salts with anions, transition metal cations can also associate with neutral molecules (and ions) through a process called ligation.

More information

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03 Chapter Chemical Kinetics Reaction Rates 0 Reaction Rate: The change in the concentration of a reactant or a product with time (M/s). Reactant Products aa bb Rate = [A] t Rate = [B] t Reaction Rates 0

More information

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility

Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility Purpose Determine the solubility product constant (K sp ) for a sparingly soluble salt. Study

More information

AP Chemistry Laboratory Review

AP Chemistry Laboratory Review Part I MATCH the following procedures with the correct descriptions or pictures in Part II (not all are shown you should review these procedures from your laboratory notebook) - Gravimetric Analysis -

More information

[Ca 2+ ] = s (3) [IO - 3 ] = 2s (4)

[Ca 2+ ] = s (3) [IO - 3 ] = 2s (4) E10 Chemical Equilibria: K sp of Calcium Iodate Objective! Understand the relation between the molar solubility and the solubility product constant of a sparingly soluble salt.! Measure the molar solubility

More information

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Safety Note: Safety glasses and laboratory coats are required when performing this experiment The Determination of Hypochlorite in Bleach Reading assignment: Burdge, Chemistry 4 th edition, section 4.6. We will study an example of a redox titration in order to determine the concentration of sodium

More information

Chapter 14: Chemical Kinetics

Chapter 14: Chemical Kinetics 1. Which one of the following units would not be an acceptable way to express reaction rate? A) M/s B) M min 1 C) L mol 1 s 1 D) mol L 1 s 1 E) mmhg/min 3. For the reaction BrO 3 + 5Br + 6H + 3Br 2 + 3H

More information

A STUDY OF REACTION RATES

A STUDY OF REACTION RATES CH095 A Study of Reaction Rates Page 1 A STUDY OF REACTION RATES Chemical reaction rates are affected by changes in concentration of the reactants and temperature. How concentration and temperature affect

More information

Partner: Judy 29 March Analysis of a Commercial Bleach

Partner: Judy 29 March Analysis of a Commercial Bleach Partner: Judy 29 March 2012 Analysis of a Commercial Bleach Purpose: The purpose of this lab is to determine the amount of sodium hypochlorite (NaClO) in commercial bleach. This can be done by forming

More information

Colours in common redox reactions

Colours in common redox reactions Colours in common redox reactions Fe 3+ Cr 2 O 7 MnO 4 - Cl 2 Br 2 I 2 Fe 2+ Cr 3+ Mn 2+ Cl - Br - I - Oxidation of metals Cu Fe Zn Mg Na Cu 2+ Fe 2+ Zn 2+ Mg 2+ Na + CHEM 2.7 Assessment For A: link one

More information

PRACTICAL NUMBER 1 AN INVESTIGATION OF THE EFFECT OF CHANGING CONCEN- TRATION ON THE RATE OF OXIDATION OF IODIDE BY PER- OXODISULFATE

PRACTICAL NUMBER 1 AN INVESTIGATION OF THE EFFECT OF CHANGING CONCEN- TRATION ON THE RATE OF OXIDATION OF IODIDE BY PER- OXODISULFATE PRACTICAL NUMBER 1 AN INVESTIGATION OF THE EFFECT OF CHANGING CONCEN- TRATION ON THE RATE OF OXIDATION OF IODIDE BY PER- OXODISULFATE INTRODUCTION In this experiment you will determine the initial rate

More information

CHM 134 General Chemistry I Exam 2 Review, Dr. Steel. 1. Give the oxidation number of sulfur in each of these compounds.

CHM 134 General Chemistry I Exam 2 Review, Dr. Steel. 1. Give the oxidation number of sulfur in each of these compounds. CHM 1 General Chemistry I Exam Review, Dr. Steel Name 1. Give the oxidation number of sulfur in each of these compounds. H S SO H SO SO -. In the lab you reacted magnesium metal and oxygen gas to produce

More information

Chemical Kinetics. System LENGTH: VOLUME MASS Temperature. 1 gal = 4 qt. 1 qt = in 3. 1 L = qt. 1 qt = L

Chemical Kinetics. System LENGTH: VOLUME MASS Temperature. 1 gal = 4 qt. 1 qt = in 3. 1 L = qt. 1 qt = L Chemical Kinetics Practice Exam Chemical Kinetics Name (last) (First) Read all questions before you start. Show all work and explain your answers to receive full credit. Report all numerical answers to

More information

Chapter Electrical work is given by a. w elec = Qε b. w elec = -QΔε c. w elec = -Q/Δε d. w elec = -Δε/Q e. none of these Answer: b

Chapter Electrical work is given by a. w elec = Qε b. w elec = -QΔε c. w elec = -Q/Δε d. w elec = -Δε/Q e. none of these Answer: b Exam 4 practice test, Fall 2005, Williams, 12/9, chapter 14 questions added. 12/12, some comments and revisions to chapter 14 questions. 12/14 some more comments and revisions, to chapter 13 questions.

More information

Exercise 6: Determination of Hardness of Water

Exercise 6: Determination of Hardness of Water Fundamentals of Analytical Chemistry, CHC014011L Exercise 6: Determination of Hardness of Water Introduction: Hardness in water is generally caused by the presence of dissolved calcium and magnesium carbonates

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview Measured volume of several solutions having known concentrations of reactants are mixed in a series of trials. The time required for a visible color change to appear

More information

Exp. 2: The Superconductor YBa 2 Cu 3 O 7 (Text #1)

Exp. 2: The Superconductor YBa 2 Cu 3 O 7 (Text #1) Exp. 2: The 1-3 Superconductor YBa 2 Cu 3 O 7 (Text #1) Last week: Performed high-temperature, solid-state reaction to prepare YBa 2 Cu 3 O x Thursday: Determine product stoichiometry ( x ) based on lost

More information

Year 10 Chemistry. Practice questions. Topics

Year 10 Chemistry. Practice questions. Topics Year 10 Chemistry Practice questions Topics 1 Group 1 2 Group 7 3 Reactivity series 4 Air and Water 5 Rates of reaction 6 Electrolysis 7 Acids, Alkali and Salts Objective: Evaluate group 1 & 7 reactivity

More information

Chapter 13 Rates of Reactions

Chapter 13 Rates of Reactions Chapter 13 Rates of Reactions Chemical reactions require varying lengths of time for completion, depending on the characteristics of the reactants and products. The study of the rate, or speed, of a reaction

More information

X + Ω --> Φ (1) 5X + 3Ω --> 2Φ (3) d[φ]/dt = -d(2/5)[x]/dt = -d(2/3)[ω]/dt (4)

X + Ω --> Φ (1) 5X + 3Ω --> 2Φ (3) d[φ]/dt = -d(2/5)[x]/dt = -d(2/3)[ω]/dt (4) CHEMICAL KINETICS OVERVIEW Reaction rates are seldom related to thermodynamic functions of state of reactants and products. What determines the rate are the properties of the reactants and the intermediate

More information

Q1. (a) State what is meant by the term activation energy of a reaction. (1)

Q1. (a) State what is meant by the term activation energy of a reaction. (1) Q1. (a) State what is meant by the term activation energy of a reaction. (c) State in general terms how a catalyst increases the rate of a chemical reaction. The curve below shows the Maxwell Boltzmann

More information

C6 Quick Revision Questions

C6 Quick Revision Questions C6 Quick Revision Questions H = Higher tier only All questions apply for combined and separate science Question 1... of 50 List 3 ways the time of a reaction can be measured. Answer 1... of 50 Loss of

More information

Electrolysis (Determination of the Faraday constant and atomic weight of Cu)

Electrolysis (Determination of the Faraday constant and atomic weight of Cu) Labs taught in Introductory University Chemistry (Chem 200). Expt # Title of Experiment (brief details of experiment) 1 Buret and Scale Operation 2 3 Hydrates (Determination of the number of waters of

More information

Date Completed: Lab Partner(s):

Date Completed: Lab Partner(s): Name: Lab Partner(s): Date Completed: Lab # 23: Factors Affecting Reaction Rate Accelerated Chemistry 1 Purpose Did you ever wonder why certain chemicals when mixed do not react; yet others upon immediate

More information

Chemistry 12 Reaction Kinetics I. Name: Date: Block: 1. Calculating Rates 2. Measuring Rates 3. Factors Affecting Rates

Chemistry 12 Reaction Kinetics I. Name: Date: Block: 1. Calculating Rates 2. Measuring Rates 3. Factors Affecting Rates Chemistry 12 Reaction Kinetics I Name: Date: Block: 1. Calculating Rates 2. Measuring Rates 3. Factors Affecting Rates Monitoring and Calculating Reaction Rates Reaction Rate = Time units: Rate Units:

More information

Chemistry 141 Laboratory Lab Lecture Notes for Kinetics Lab Dr Abrash

Chemistry 141 Laboratory Lab Lecture Notes for Kinetics Lab Dr Abrash Q: What is Kinetics? Chemistr 141 Laborator Lab Lecture Notes for Kinetics Lab Dr Abrash Kinetics is the stud of rates of reaction, i.e., the stud of the factors that control how quickl a reaction occurs.

More information

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published Cambridge Assessment International Education Cambridge International Advanced Subsidiary Advanced Level CHEMISTRY 970/34 Paper 3 Advanced Practical Skills 2 207 MARK SCHEME Maximum Mark: 40 Published This

More information

CIE Chemistry A-Level Practicals for Papers 3 and 5

CIE Chemistry A-Level Practicals for Papers 3 and 5 CIE Chemistry A-Level Practicals for Papers 3 and 5 Rate of Reaction Disappearing cross: Change in rate of the reaction of sodium thiosulphate with hydrochloric acid as temperature is changed: Na 2 S 2

More information

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA

TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA TECHNICAL SCIENCE DAS12703 ROZAINITA BT. ROSLEY PUSAT PENGAJIAN DIPLOMA UNVERSITI TUN HUSSEIN ONN MALAYSIA ii TABLE OF CONTENTS TABLE OF CONTENTS... i LIST OF FIGURES... iii Chapter 1... 4 SOLUTIONS...

More information

The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1

The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1 16. Kinetics II The rate of reaction is defined as the change in concentration of a substance in unit time Its usual unit is mol dm -3 s -1 When a graph of concentration of reactant is plotted vs time,

More information

CHEM 254 EXP 10 Chemical Equilibrium - Homogeneous and Heterogeneous Equilibrium

CHEM 254 EXP 10 Chemical Equilibrium - Homogeneous and Heterogeneous Equilibrium Gibbs energy, G CHEM 254 EXP 10 Chemical Equilibrium Homogeneous and Heterogeneous Equilibrium A reaction at constant temperature and pressure can be expressed in terms of the reaction Gibbs energy. The

More information

Three experiments were carried out using different initial concentrations of the three reactants x 10 5

Three experiments were carried out using different initial concentrations of the three reactants x 10 5 1 Bromate(V) ions, BrO 3, oxidize bromide ions, Br, in the presence of dilute acid, H +, as shown in the equation below. BrO 3 (aq) + 5Br (aq) + 6H + (aq) 3Br 2 (aq) + 3H 2 O(l) Three experiments were

More information

EXPERIMENT - 2 DETERMINE THE PRODUCT OF A REDOX REACTION REACTION OF BROMATE AND HYDROXYLAMMONIUM IONS CHM110H5F

EXPERIMENT - 2 DETERMINE THE PRODUCT OF A REDOX REACTION REACTION OF BROMATE AND HYDROXYLAMMONIUM IONS CHM110H5F EXPERIMENT - 2 DETERMINE THE PRODUCT OF A REDOX REACTION REACTION OF BROMATE AND HYDROXYLAMMONIUM IONS CHM110H5F EXPERIMENT PERFORMED ON: 03 OCTOBER, 2012 REPORT SUBMITTED ON: 10 OCTOBER, 2012 SUBMITTED

More information

Chemistry 6A F2007. Dr. J.A. Mack 11/19/07. Chemical Kinetics measure the rate of appearance of products or the rate of disappearance of reactants.

Chemistry 6A F2007. Dr. J.A. Mack 11/19/07. Chemical Kinetics measure the rate of appearance of products or the rate of disappearance of reactants. Chemistry 6A F2007 Dr. J.A. Mack Chemical Kinetics measure the rate of appearance of products or the rate of disappearance of reactants. Reactants Products Reactants go away with time. Products appear

More information

EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE

EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE 1 THEORY EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE The field of chemical kinetics is concerned with the rate or speed at which a chemical reaction occurs. Knowledge of a chemical reaction

More information

Use this dramatic iodine clock reaction to demonstrate the effect of concentration, temperature, and a catalyst on the rate of a chemical reaction.

Use this dramatic iodine clock reaction to demonstrate the effect of concentration, temperature, and a catalyst on the rate of a chemical reaction. Clock Reaction Race Reaction Pathways SCIENTIFIC Introduction Use this dramatic iodine clock reaction to demonstrate the effect of concentration temperature and a catalyst on the rate of a chemical reaction.

More information

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level *9763634822* CHEMISTRY 9701/36 Paper 3 Advanced Practical Skills 2 October/November 2014 2 hours Candidates

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred: Temperature change Different coloured materials

More information

Q1.A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1.

Q1.A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1. Q1.A student investigated the rate of reaction between sodium thiosulfate solution and dilute hydrochloric acid, as shown in Figure 1. The reaction produced a precipitate, which made the mixture turn cloudy.

More information

Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty

Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12. Nam e: Period: Description Reaction Types Activty Unit 6: React ions & St oichiom et ry, Chapt er s 11 & 12 Nam e: Period: Unit Goals- As you work through this unit, you should be able to: 1. Write formula equations from word equations using appropriate

More information

CHEMISTRY. Chapter 14 Chemical Kinetics

CHEMISTRY. Chapter 14 Chemical Kinetics CHEMISTRY The Central Science 8 th Edition Chapter 14 Kozet YAPSAKLI kinetics is the study of how rapidly chemical reactions occur. rate at which a chemical process occurs. Reaction rates depends on The

More information

C H E M I C N E S C I

C H E M I C N E S C I C H E M I C A L K I N E T S C I 4. Chemical Kinetics Introduction Average and instantaneous Rate of a reaction Express the rate of a reaction in terms of change in concentration Elementary and Complex

More information

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics.

The first aspects forms the subject matter of chemical equilibrium. The second aspects forms the subject matter of chemical kinetics. Chemical Kinetics Introduction In a chemical reaction two important aspects are: (a) How far the reaction will go? and (b) How fast the reaction will occur? The first aspects forms the subject matter of

More information

N Goalby chemrevise.org

N Goalby chemrevise.org 4.6 Rate and Extent of Chemical Change Rates of Reaction The rate of a chemical reaction can be found by measuring the amount of a reactant used or the amount of product formed over time: Rate of reaction

More information

Name Period Date. Lab 9: Analysis of Commercial Bleach

Name Period Date. Lab 9: Analysis of Commercial Bleach Name Period Date Lab 9: Analysis of Commercial Bleach Introduction Many common products are effective because they contain oxidizing agents. Some products, which contain oxidizing agents, are bleaches,

More information

Partner: Judy 6 October An Activity Series

Partner: Judy 6 October An Activity Series Partner: Judy 6 October 2011 An Activity Series Purpose: The purpose of this lab is to verify the activity series of five metals and three halogens. This can be done by reacting the metal with various

More information

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Chemistry 11 Notes on Chemical Reactions Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals. Evidence to indicate that a chemical reaction has occurred:

More information

1 Vitamin C (L-ascorbic acid) is present in fresh fruit and vegetables although prolonged cooking destroys it. The structure of ascorbic acid, C 6 H 8

1 Vitamin C (L-ascorbic acid) is present in fresh fruit and vegetables although prolonged cooking destroys it. The structure of ascorbic acid, C 6 H 8 1 Vitamin C (L-ascorbic acid) is present in fresh fruit and vegetables although prolonged cooking destroys it. The structure of ascorbic acid, C 6 H 8 6, is shown below. H (a) The amount of ascorbic acid

More information

Goal: During this lab students will gain a quantitative understanding of limiting reagents.

Goal: During this lab students will gain a quantitative understanding of limiting reagents. LIMITING REAGENT LAB: THE REACTION BETWEEN VINEGAR AND BAKING SODA Goal: During this lab students will gain a quantitative understanding of limiting reagents. Safety: Safety goggles should be worn at all

More information

1. KINETICS. Kinetics answers

1. KINETICS. Kinetics answers 1. KINETICS 1.1. Rate determining step 1.2. Calculating reaction rate 1.3. Measuring reaction rate in the lab 1.4. Determining the rate equation 1.5. Arrhenius and rate Kinetics answers 1.1. Rate determining

More information

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction 1 EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT Learning Outcomes Upon completion of this lab, the student will be able to: 1) Demonstrate the formation of a precipitate in a chemical

More information

Chapter 13. This ratio is the concentration of the solution.

Chapter 13. This ratio is the concentration of the solution. Concentration Calculation Concentration In a solution, the solute is distributed evenly throughout the solvent. This means that any part of a solution has the same ratio of solute to solvent as any other

More information