Calorimetric studies on urania thoria solid solutions

Size: px
Start display at page:

Download "Calorimetric studies on urania thoria solid solutions"

Transcription

1 Journal of Alloys and Compounds 299 (2000) L locate/ jallcom Calorimetric studies on urania thoria solid solutions a b a, * S. Anthonysamy, Jose Joseph, P.R. Vasudeva Rao a Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam , India b Materials Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam , India Received 2 October 1999; accepted 14 November 1999 Abstract he enthalpy increments of (Uyh 12y)O2 solid solutions with y50.1, 0.5 and 0.9 were measured by using a drop calorimeter of isoperibol type. he experimental data cover the temperature range K relative to K. Other thermodynamic functions such as heat capacity, entropy and free energy function of these solid solutions were derived from the measured enthalpy increment values. he results indicate that the enthalpies of (Uyh 12y)O2 solid solutions in the temperature range K obey the Neumann Kopp molar additivity rule Elsevier Science S.A. All rights reserved. Keywords: Urania thoria solid solutions; Enthalpy increments; Drop calorimetry 1. Introduction thermal properties of these solid solutions which in turn will help to understand the U h O system completely. Studies on the oxides and mixed oxides of actinide elements such as thorium, uranium and plutonium are of great interest in nuclear industry since some of the oxides are used as nuclear fuels and some as blanket materials in 2. Experimental various types of reactors [1]. he thermodynamic properties such as enthalpy and heat capacity of these materials 2.1. Preparation of the sample are needed for reactor physics and safety calculations. he thermal properties of urania, thoria, plutonia and urania Urania thoria solid solutions were prepared as follows: plutonia have been studied extensively in the past and a Ammonium diuranate and thorium hydroxide were co- reasonable body of data exists [2,3]. However, there is precipitated from a mixture of uranium and thorium nitrate paucity of data on thoria urania and thoria plutonia mixed solution by the addition of aqueous ammonia. he precipi- oxides. For example, in the case of urania thoria solid tate was dried and calcined at 1073 K in air for 5 h. he solutions, enthalpies and heat capacities are available in calcined powders were then compacted at 500 MPa into the literature only for thoria-rich (#20 mole % of urania) pellets of 10 mm diameter and 2 3 mm thickness by solid solutions over a limited temperature range [4,5]. In employing an electrically operated double action hydraulic addition, it has not been clearly established whether the press. No binder or lubricant was added for the preparation molar additivity rule of Neumann Kopp is obeyed by of the compacts. he compacts thus prepared were sintered these solid solutions. Hence, in the present study, the at 1873 K for 6 h in a flowing argon 8 vol. % hydrogen enthalpy increments of (Uyh 12y)O2 solid solutions with gas mixture. he oxygen to metal ratio of the compact was y50.1, 0.5 and 0.9 were measured in the temperature fixed at by equilibrating the compact with H 2 H2O 21 range K by using a drop calorimeter developed in gas mixture having an oxygen potential of 2510 kj mol. our laboratory, with a view to generate more data on the at 1073 K till equilibrium was established between the gas phase and (U,h)O2 compact [6]. Before carrying out *Corresponding author. el.: ; fax: calorimetric studies, the samples were characterised for 365. their chemical composition (by elemental analyses for address: vasu@igcar.ernet.in (P.R. Vasudeva Rao) uranium and thorium as well as lattice parameter measure / 00/ $ see front matter 2000 Elsevier Science S.A. All rights reserved. PII: S (99)

2 S. Anthonysamy et al. / Journal of Alloys and Compounds 299 (2000) ments), phase composition (by X-ray diffraction studies) and impurity content (by inductively coupled plasma mass spectrometry and optical emission spectrometry). he total metallic impurity of the mixed oxide samples employed in this study was less than 100 ppm (by weight). (U0.1h 0.9)O Calorimeter able 1 Heat capacity and entropy values of (U,h)O2 solid solutions employed in this study for computations O Sample Cp,.15 (J mol K ) S.15 (J mol K ) (U0.5h 0.5)O (U0.9h 0.1)O he calorimeter employed in this study for enthalpy he differentiated form of this equation is the heat measurements was a drop calorimeter of the isoperibol capacity over the given temperature range type. he equipment and the validation of the measurement technique are described elsewhere [7]. Essentially, 22 Cp 5 A 1 2*B* 2 C* the calorimeter consists of a nichrome wire wound furnace, with provisions for heating and holding the sample at the he two boundary conditions used for the fitting were: experimental temperatures, and a calorimeter proper. he temperature of the furnace was controlled within 61 K. O O (i) H 2 H 5 0 he calorimeter proper is essentially a brass receiving at 5.15 and crucible maintained at K. he detector is a novel (ii) Heat capacity of the solid solutions at.15 K (Cp, ) thermopile whose design and construction are described elsewhere [7]. he temperature of the sample was mea- he heat capacity of (U,h)O2 solid solutions at.15 sured using a ype K thermocouple. In order to prevent the K are not available in the literature. Hence, they were oxidation of the oxide samples, argon 8 vol.% hydrogen obtained from the data on the heat capacity of pure urania gas mixture was continuously flown over the sample. and thoria [2] by applying the molar additivity rule. he 2.3. Method of measurement. In a typical experiment, the sample or the reference material was placed in the furnace at the desired temperature for a period of about 30 min. to ensure the temperature of equilibration. he sample size was approximately g. he reference material employed in this study was the calorimetric standard, synthetic sapphire (( g, SRM-720, a-al2o 3), obtained from NIS, USA. During a drop experiment, one sample and two standards at the experimental temperature were dropped alternatively into the working crucible maintained at K. he resultant output of the detector was amplified and monitored 2 (Standard error) continuously by using a high-impedance multimeter and the data acquired using a computer. he output from the computer gives the trace of the temperature change of the working crucible as a function of time. By using the values of the areas of the curves measured in the case of standard calculated heat capacities of (U h )O (U h )O , , and (U0.9h 0.1)O2 solid solutions at K are given in able1. he values of the constants of the fit expressions obtained for the measured enthalpy values are given in able 2. he enthalpy values of (U0.1h 0.9)O 2, (U0.5h 0.5)O2, and (U0.9h 0.1)O2 solid solutions computed from the fit expressions are given in able 3 along with the measured values. he enthalpy values computed based on the molar additivity rule of Neumann Kopp are also shown in this table. he standard error between the experimental result and the smoothed enthalpy values from the fit equation was computed using the following expression: 2 5 (S differences) /(no. of observations no. of coefficients) he computed standard error values are also shown in and sample, and the known enthalpy increment data of the able 3. he estimated error involved in the measurements O O standard, the enthalpy increment, H, of the sample is 62% taking into account the precision of the measurewas calculated. ments as well as the error involved in the measurement of the temperature of the sample. 3. Results and discussion able 2 O O Constants for the fit equations of the enthalpy increments H 2 H he measured enthalpy increments of (U0.1h 0.9)O2, A* 1 B* 1 C* 1 D (U0.5h 0.5)O2, and (U0.9h 0.1)O2 solid solutions were 4 24 Solid solution A B*10 C*10 D fitted to polynomials in temperature of the following form (U0.1h 0.9)O by the least squares method: (U0.5h 0.5)O O O 2 21 (U0.9h 0.1)O H 2 H 5 A* 1 B* 1 C* 1 D

3 114 S. Anthonysamy et al. / Journal of Alloys and Compounds 299 (2000) able 3 Enthalpies of urania thoria solid solutions O O 21 O O 21 O O 21 (K) H (J mol ) for (U0.1h 0.9)O2 H (J mol ) for (U0.5h 0.5)O2 H (J mol ) for (U0.9h 0.1)O2 Measured Calculated Calculated Measured Calculated Calculated Measured Calculated Calculated (from fit (molar (from fit (molar (from fit (molar eqn.) additivity rule) eqn.) additivity rule) eqn.) additivity rule) Standard error: he enthalpy increment values obtained from the fit et al. is not appropriate because of the large difference in equations are shown in Fig. 1 along with the experimental the temperature of the two sets of measurements. Springer values. he literature data on the enthalpy increments of et al. [5] have measured the enthalpy increments of urania and thoria are also shown in Fig. 1 for the purpose (U0.1h 0.9)O2, and (U0.2h 0.8)O2 over the temperature of comparison. Fischer et al. [4] have measured the range K.. However, the data reported by them enthalpy increments of (U h )O (U h )O for (U h )O lie below those of both urania and , , and (U h )O over the temperature range thoria, where as, the enthalpy increment data obtained in K. A comparison between our results and those of Fischer this study lie above that of thoria. Fig. 1. Enthalpy increments of (U,h)O 2 solid solutions.

4 S. Anthonysamy et al. / Journal of Alloys and Compounds 299 (2000) Fig. 2. Variation of heat capacities of (U h )O (U h )O and (U h )O solid solutions with temperature , , he enthalpy increment data of this study were used to ployed in this study for the computations are given in compute other thermodynamic functions such as heat able 1. Fig. 2 shows the variation of heat capacities of capacity, entropy and free energy function of the solid (U0.1h 0.9)O 2 (U0.5h 0.5)O2 and (U0.9h 0.1)O2 solid solusolutions at various temperatures.* he results are shown tions with temperature. he heat capacities of the solid O in able 4. he S values of the solid solutions required solutions lie between the pure components of the solid for the computation of free energy functions were again solutions. obtained from S of pure urania and thoria [2] by Figs. 3 5 compares the measured enthalpy increments applying the molar additivity rule. he S values em- with the values computed by applying the molar additivity Fig. 3. Comparison of measured enthalpy increments of (U h )O solid solution with the values computed by applying the molar additivity rule

5 116 S. Anthonysamy et al. / Journal of Alloys and Compounds 299 (2000) Fig. 4. Comparison of measured enthalpy increments of (U h )O solid solution with the values computed by applying the molar additivity rule rule of Neumann Kopp. he results indicate that the range K and Springer et al. [5] for measured enthalpy increments of (U0.1h 0.9)O 2, (U0.2h 0.8)O2 over the temperature range K (U0.5h 0.5)O2, and (U0.9h 0.1)O2 over the temperature were also found to obey the molar additivity rule. hese range K obey the Neumann Kopp molar ad- results suggest that the stoichiometric urania thoria solid ditivity rule within the experimental uncertainty. he solutions behave ideally. his is in agreement with the experimental results of Fischer et al. [4] for conclusion arrived at based on the oxygen potential (U0.15h 0.85)O2, and (U0.3h 0.7)O2 over the temperature measurements reported in the literature [8 14]. Fig. 5. Comparison of measured enthalpy increments of (U h )O solid solution with the values computed by applying the molar additivity rule

6 S. Anthonysamy et al. / Journal of Alloys and Compounds 299 (2000) able 4 Values for heat capacity, entropy and free energy functions of urania thoria solid solutions (heat capacity, entropy and free energy functions are in J mol 21 K ) (K) (U h )O (U h )O (U h )O O a O O Cp S FEF Cp S FEF Cp S FEF a FEF5free energy function. 21 References [1] C. Ganguly, Development of plutonium-based advanced LMFBR fuels and thoria-based PHWR fuels in India, IAEA-ECDOC-352, 1985, pp [2] J.K. Fink, Int. J. hermophys. 3 (2) (1982) 165. [3] K. Bakker, E.H.P. Cordfunke, R.J.M. Konings, R.P.C. Schram, J. Nucl. Mater. 250 (1997) 1. [4] D.F. Fischer, J.K. Fink, L. Leibowitz, J. Nucl. Mater. 118 (1983) 342. [5] J.R. Springer, J.F. Langedrost, Battelle Memorial Institute Report, BMI-X-10231, [6] S. Anthonysamy, K. Nagarajan, P.R. Vasudeva Rao, J. Nucl. Mater. 247 (1997) 273. [7] M.V. Krishniah, Ph.D hesis, University of Madras, 1999, to be submitted. [8]. Matsui, K. Naito, J. Nucl. Mater. 132 (1985) 212. [9] S. anaka, E. Kimura, A. Yamaguchi, J. Moriyama, J. Jpn Inst. Metals. 36 (1972) 633. [10] M. Ugajin, J. Nucl. Mater. 110 (1982) 140. [11] M. Ugajin,. Shiratori, H. Shiba, J. Nucl. Mater. 116 (1983) 172. [12] J.S Anderson, D.N. Edgington, L.E.J. Roberts, E. Wait, J. Chem. Soc. (1954) [13] L.E.J. Roberts, L.E. Russel, A.G. Adwick, A.J. Walter, M.H. Rand, P/ 26 UN Geneva Conference of Peaceful Uses of Atomic Energy, Vol. 28 (1958) p [14] R.E. Woodley, M.G. Adamson (Eds.), hermodynamics of Nuclear Materials 1979, Vol. 1, IAEA, Vienna, 1980, p. 333.

Calorimetry. Chapter 2. Differential Scanning heat flux calorimetry

Calorimetry. Chapter 2. Differential Scanning heat flux calorimetry Chapter 2 Calorimetry In this Chapter, the technique of differential scanning heat flux calorimetry is explained. We used a salt, of which the heat capacity is well-known, NaF, to test the equipment. After

More information

Analysis of calorimetric measurement bismuth and tin system

Analysis of calorimetric measurement bismuth and tin system International Journal of Research in Engineering and Innovation Vol-1, Issue-1 (May-2017), 29-33 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK

PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK THERMAL DIFFUSIVITY AND THERMAL CONDUCTIVITY OF (Th, U)O> FUELS by A. K. Sengupta, T. Jarvis, M. R. Nair, R. Ramachandran, S. Mujumdar and D. S. C. Purushotham Radiometallurgy Division 2000 32/ 05 PLEASE

More information

High temperature enthalpy and heat capacity of GaN

High temperature enthalpy and heat capacity of GaN Thermochimica Acta 401 (2003) 169 173 High temperature enthalpy and heat capacity of GaN J. Leitner a,, A. Strejc b, D. Sedmidubský b,k.růžička c a Department of Solid State Engineering, Institute of Chemical

More information

PROPULSION LAB MANUAL

PROPULSION LAB MANUAL PROPULSION LAB MANUAL Measurement of Calorific Value of a Solid Fuel Sample using a Bomb Calorimeter DEPARTMENT OF AEROSPACE ENGINEERING Indian Institute of Technology Kharagpur CONTENTS 1. Introduction

More information

Low Temperature Heat Capacity and Magnetic Properties of UF 3

Low Temperature Heat Capacity and Magnetic Properties of UF 3 pubs.acs.org/ic Low Temperature Heat Capacity and Magnetic Properties of UF 3 O. Benes,*, J.-C. Griveau, E. Colineau, D. Sedmidubsky, and R. J. M. Konings European Commission, Joint Research Centre, Institute

More information

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14

CHEM*3440. Thermal Methods. Thermogravimetry. Instrumental Components. Chemical Instrumentation. Thermal Analysis. Topic 14 Thermal Methods We will examine three thermal analytical techniques: Thermogravimetric Analysis (TGA) CHEM*3440 Chemical Instrumentation Topic 14 Thermal Analysis Differential Thermal Analysis (DTA) Differential

More information

Energetics. These processes involve energy exchanges between the reacting system and its surroundings.

Energetics. These processes involve energy exchanges between the reacting system and its surroundings. Energetics Chemical reactions involve: the breaking of bonds between atoms the making of new bonds between atoms These processes involve energy exchanges between the reacting system and its surroundings.

More information

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C?

Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? Additional Calculations: 10. How many joules are required to change the temperature of 80.0 g of water from 23.3 C to 38.8 C? q = m C T 80 g (4.18 J/gC)(38.8-23.3C) = 5183 J 11. A piece of metal weighing

More information

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture Presentation. Chapter 6. Thermochemistry. Sherril Soman Grand Valley State University Pearson Education, Inc. Lecture Presentation Chapter 6 Thermochemistry Sherril Soman Grand Valley State University Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron 4 Fe(s)

More information

PRODUCTION OF URANOUS NITRATE WITH HYDRAZINE NITRATE AS REDUCING AGENT IN PRESENCE OF ADAMS CATALYST FOR URANIUM RECONVERSION PURPOSES

PRODUCTION OF URANOUS NITRATE WITH HYDRAZINE NITRATE AS REDUCING AGENT IN PRESENCE OF ADAMS CATALYST FOR URANIUM RECONVERSION PURPOSES PRODUCTION OF URANOUS NITRATE WITH HYDRAZINE NITRATE AS REDUCING AGENT IN PRESENCE OF ADAMS CATALYST FOR URANIUM RECONVERSION PURPOSES Abstract: K.S. Rao, K Kumaraguru & P.M. Gandhi. Fuel Reprocessing

More information

Thermochimica Acta 531 (2012) Contents lists available at SciVerse ScienceDirect. Thermochimica Acta

Thermochimica Acta 531 (2012) Contents lists available at SciVerse ScienceDirect. Thermochimica Acta hermochimica Acta 531 (2012 6 11 Contents lists available at SciVerse ScienceDirect hermochimica Acta journa l h o me page: www.elsevier.com/locate/tca hermodynamic properties of potassium nitrate magnesium

More information

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm

Supplementary Figure S1 Reactor setup Calcined catalyst (0.40 g) and silicon carbide powder (0.4g) were mixed thoroughly and inserted into a 4 mm Supplementary Figure S1 Reactor setup Calcined catalyst (.4 g) and silicon carbide powder (.4g) were mixed thoroughly and inserted into a 4 mm diameter silica reactor (G). The powder mixture was sandwiched

More information

Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP)

Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP) Synthesis of uranium oxides by Complex Sol-Gel Processes (CSGP) A.Deptula, M.Brykala, W.Lada, T.Olczak, D.Wawszczak Institute of Nuclear Chemistry and Technology Sol-Gel Laboratory Warsaw, Poland G.Modolo,

More information

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry

Module 5: Combustion Technology. Lecture 32: Fundamentals of thermochemistry 1 P age Module 5: Combustion Technology Lecture 32: Fundamentals of thermochemistry 2 P age Keywords : Heat of formation, enthalpy change, stoichiometric coefficients, exothermic reaction. Thermochemistry

More information

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A (2 marks) (1 mark) (Extra space) Property

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A (2 marks) (1 mark) (Extra space) Property 2 Section A Answer all questions in the spaces provided. 1 (a) Define the term lattice enthalpy of dissociation. 1 (b) Lattice enthalpy can be calculated theoretically using a perfect ionic model. Explain

More information

Thermochemistry/Calorimetry. Determination of the enthalpy of combustion with a calorimetric bomb LEC 02. What you need:

Thermochemistry/Calorimetry. Determination of the enthalpy of combustion with a calorimetric bomb LEC 02. What you need: LEC 02 Thermochemistry/Calorimetry with a calorimetric bomb What you can learn about 1st law of thermodynamics Hess law Enthalpy of combustion Enthalpy of formation Heat capacity Principle and tasks The

More information

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System

NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System Mater. Res. Soc. Symp. Proc. Vol. 837 2005 Materials Research Society N3.6.1 NMR and X-ray Diffraction Studies of Phases in the Destabilized LiH-Si System R. C. Bowman, Jr. 1, S.-J. Hwang 2, C. C. Ahn

More information

Cl, is made by reacting methane, CH 4

Cl, is made by reacting methane, CH 4 3 3. Chloromethane, C 3 Cl, is made by reacting methane, C 4, with chlorine. C (g) + Cl Cl (g) C Cl (g) + Cl (g) (i) The total enthalpy changes of formation from gaseous atoms (calculated from bond energies)

More information

Unit 2 Foundation Physical and Inorganic Chemistry

Unit 2 Foundation Physical and Inorganic Chemistry Surname Other Names Leave blank Centre Number Candidate Number Candidate Signature General Certificate of Education June 2002 Advanced Subsidiary Examination CHEMISTRY CHM2 Unit 2 Foundation Physical and

More information

2 Answer all the questions. 1 Born Haber cycles can be used to determine lattice enthalpies of ionic compounds

2 Answer all the questions. 1 Born Haber cycles can be used to determine lattice enthalpies of ionic compounds 2 Answer all the questions. 1 Born Haber cycles can be used to determine lattice enthalpies of ionic compounds. (a) Define, in words, the term lattice enthalpy............. [2] (b) The Born Haber cycle

More information

Guided Notes and Practice- Topi 5.1: Calorimetry and Enthalpy Calculations

Guided Notes and Practice- Topi 5.1: Calorimetry and Enthalpy Calculations Name: Date: Pd: Guided Notes and Practice- Topi 5.1: Calorimetry and Enthalpy Calculations Endothermic vs. Exothermic 1. Label each ΔH value as being exothermic or endothermic. Thermochemical Equations

More information

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors:

Most hand warmers work by using the heat released from the slow oxidation of iron: The amount your hand temperature rises depends on several factors: Lecture Presentation Chapter 6 Thermochemistry Chemical Hand Warmers Most hand warmers work by using the heat released from the slow oxidation of iron: Exothermic reaction 4 Fe(s) + 3 O 2 (g) 2 Fe 2 O

More information

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A. Answer all questions in the spaces provided.

CHERRY HILL TUITION AQA CHEMISTRY A2 PAPER Section A. Answer all questions in the spaces provided. 2 Section A Answer all questions in the spaces provided. 1 This question is about bond dissociation enthalpies and their use in the calculation of enthalpy changes. 1 (a) Define bond dissociation enthalpy

More information

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics

Chapter 8 Thermochemistry: Chemical Energy. Chemical Thermodynamics Chapter 8 Thermochemistry: Chemical Energy Chapter 8 1 Chemical Thermodynamics Chemical Thermodynamics is the study of the energetics of a chemical reaction. Thermodynamics deals with the absorption or

More information

1. (a) The propane gas in the tank is used as a fuel in the factory. The equation for its combustion is:

1. (a) The propane gas in the tank is used as a fuel in the factory. The equation for its combustion is: Enthalpy 1. (a) The propane gas in the tank is used as a fuel in the factory. The equation for its combustion is: C 3 H 8 (g) + 5O 2 (g) 3CO 2 (g) + 4H 2 O(l) H = 2220 kj mol 1 Calculate the amount of

More information

Kinetics of the High Temperature Oxygen Exchange Reaction on 238 PuO 2 Powder

Kinetics of the High Temperature Oxygen Exchange Reaction on 238 PuO 2 Powder Kinetics of the High Temperature Oxygen Exchange Reaction on 238 PuO 2 Powder C. E. Whiting, M. Du, L. K. Felker, R. M. Wham, C. D. Barklay, and D. P. Kramer University of Dayton Research Institute (937)

More information

Journal of Power Sources

Journal of Power Sources Journal of Power Sources 185 (2008) 917 921 Contents lists available at ScienceDirect Journal of Power Sources journal homepage: www.elsevier.com/locate/jpowsour Short communication Oxygen ion transference

More information

A-level CHEMISTRY 7405/1. Paper 1: Inorganic and Physical Chemistry. SPECIMEN MATERIAL v1.2

A-level CHEMISTRY 7405/1. Paper 1: Inorganic and Physical Chemistry. SPECIMEN MATERIAL v1.2 SPECIMEN MATERIAL v1.2 Please write clearly in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature A-level CHEMISTRY Paper 1: Inorganic and Physical Chemistry Specimen

More information

CHEM5. (JAN13CHEM501) WMP/Jan13/CHEM5. General Certificate of Education Advanced Level Examination January 2013

CHEM5. (JAN13CHEM501) WMP/Jan13/CHEM5. General Certificate of Education Advanced Level Examination January 2013 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination January 2013 Question 1 2 Mark

More information

CHEM5 (JUN13CHEM501) General Certificate of Education Advanced Level Examination June Unit 5 Energetics, Redox and Inorganic Chemistry

CHEM5 (JUN13CHEM501) General Certificate of Education Advanced Level Examination June Unit 5 Energetics, Redox and Inorganic Chemistry Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials General Certificate of Education Advanced Level Examination June 2013 Question 1 2 Mark Chemistry

More information

TREATMENT OF URANIUM &THORIUM BEARING NITRATE EFFLUENT

TREATMENT OF URANIUM &THORIUM BEARING NITRATE EFFLUENT TREATMENT OF URANIUM &THORIUM BEARING NITRATE EFFLUENT * Baidurjya Nath a, S.A.Khot b, D. Banerjee b, C. Srinivas b, D.S.Setty a, G.Kalyanakrishnan a, N.Saibaba a ABSTRACT a Nuclear Fuel Complex, Hyderabad

More information

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium.

and mol of Cl 2 was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. Q1. When a mixture of 0.45 mol of PCl and 0.68 mol of Cl was heated in a vessel of fixed volume to a constant temperature, the following reaction reached equilibrium. PCl + Cl PCl 5 H = 9 kj mol 1 At equilibrium,

More information

High temperature heat capacity of Nd 2 Zr 2 O 7 and La 2 Zr 2 O 7 pyrochlores

High temperature heat capacity of Nd 2 Zr 2 O 7 and La 2 Zr 2 O 7 pyrochlores J. Chem. Thermodynamics 37 (2005) 1098 1103 www.elsevier.com/locate/jct High temperature heat capacity of Nd 2 Zr 2 O 7 and La 2 Zr 2 O 7 pyrochlores D. Sedmidubský a,b, *, O. Beneš a, R.J.M. Konings b

More information

Worksheet 5.2. Chapter 5: Energetics fast facts

Worksheet 5.2. Chapter 5: Energetics fast facts Worksheet 52 Chapter 5: Energetics fast facts 51 Exothermic and endothermic reactions Energetics deals with heat changes in chemical reactions Enthalpy is the amount of heat energy contained in a substance

More information

COPYRIGHT FOUNTAINHEAD PRESS

COPYRIGHT FOUNTAINHEAD PRESS Calorimetry: Heats of Solution Objective: Use calorimetric measurements to determine heats of solution of two ionic compounds. Materials: Solid ammonium nitrate (NH 4 NO 3 ) and anhydrous calcium chloride

More information

A-level CHEMISTRY (7405/1)

A-level CHEMISTRY (7405/1) SPECIMEN MATERIAL A-level CHEMISTRY (7405/1) Paper 1: Inorganic and Physical Chemistry Specimen 2015 Session Time allowed: 2 hours Materials For this paper you must have: the Data Booklet, provided as

More information

Chapter 8 Thermochemistry: Chemical Energy

Chapter 8 Thermochemistry: Chemical Energy Chapter 8 Thermochemistry: Chemical Energy 國防醫學院生化學科王明芳老師 2011-11-8 & 2011-11-15 Chapter 8/1 Energy and Its Conservation Conservation of Energy Law: Energy cannot be created or destroyed; it can only be

More information

Chapter 10. Free energy and heat capacity

Chapter 10. Free energy and heat capacity Chapter 10. Free energy and heat capacity M. Kurata 1, R. Devanathan 2 1 Central Research Institute of Electric Power Industry/Japan Atomic Energy Agency, Japan, 2 Pacific Northwest National Laboratory,

More information

Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets

Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets Journal of NUCLEAR SCIENCE and TECHNOLOGY, 31[8], pp.796~802 (August 1994). Effects of Soluble Fission Products on Thermal Conductivities of Nuclear Fuel Pellets Shinji ISHIMOTO, Mutsumi HIRAIt Kenichi

More information

Crystal Structure of Non-stoichiometric Compound Li 2-x TiO 3-y under. Hydrogen Atmosphere

Crystal Structure of Non-stoichiometric Compound Li 2-x TiO 3-y under. Hydrogen Atmosphere Crystal Structure of Non-stoichiometric Compound 2-x -y under Hydrogen Atmosphere Tsuyoshi Hoshino* (1), Masaru Yasumoto (2), Kunihiko Tsuchiya (1), Kimio Hayashi (1), Hidetoshi Nishimura(3), Akihiro Suzuki

More information

AP Chemistry Review Packet #1

AP Chemistry Review Packet #1 1 AP Chemistry Review Packet #1 A. Warmup: Question 1 5 (A) CO 2 (B) H 2 O (C) BF 3 (D) NH 3 (E) CH 4 1. Has a bond angle of 109.5. 2. This is a polar molecule that is bent. 3. This is a tetrahedral molecule.

More information

A new approach for comprehensive modelling of molten salt properties

A new approach for comprehensive modelling of molten salt properties A new approach for comprehensive modelling of molten salt properties Anna L. Smith Delft University of Technology Radiation, Science & Technology Department Mekelweg 15 2625 JB Delft The Netherlands a.l.smith@tudelft.nl

More information

Chemistry. Understanding Water V. Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02)

Chemistry. Understanding Water V. Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02) Chemistry Understanding Water V Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02) 9211 2610 info@keystoneeducation.com.au keystoneeducation.com.au Water has a higher heat capacity than many

More information

Topic 05 Energetics : Heat Change. IB Chemistry T05D01

Topic 05 Energetics : Heat Change. IB Chemistry T05D01 Topic 05 Energetics 5.1-5.2: Heat Change IB Chemistry T05D01 5.1 Exothermic and endothermic reactions - 1 hour 5.1.1 Define the terms exothermic reaction, endothermic reaction and standard enthalpy change

More information

2SO 2(g) + O 2(g) Increasing the temperature. (Total 1 mark) Enthalpy data for the reacting species are given in the table below.

2SO 2(g) + O 2(g) Increasing the temperature. (Total 1 mark) Enthalpy data for the reacting species are given in the table below. Q1.Which change would alter the value of the equilibrium constant (K p) for this reaction? 2SO 2(g) + O 2(g) 2SO 3(g) A Increasing the total pressure of the system. Increasing the concentration of sulfur

More information

Effect of Transition Metal Mixing on Reactivities of Magnesium Oxide for Chemical Heat Pump

Effect of Transition Metal Mixing on Reactivities of Magnesium Oxide for Chemical Heat Pump Journal of Chemical Engineering of Japan, Vol. 40, No. 13, pp. 1281 1286, 2007 Research Paper Effect of Transition Metal Mixing on Reactivities of Magnesium Oxide for Chemical Heat Pump Junichi RYU, Rui

More information

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum Alignment is based on the topics and subtopics addressed by each sim. Sims that directly address the topic area

More information

PS3.10b. Determine the simplest formula for gold chloride if a g sample of gold chloride reacts with AgNO3 to produce gold nitrate and 0.

PS3.10b. Determine the simplest formula for gold chloride if a g sample of gold chloride reacts with AgNO3 to produce gold nitrate and 0. PS3.9. An oxide of osmium is pale yellow in color. A 2.89 g sample of this oxide contains 2.16 g of osmium. Assuming the remainder is oxygen determine the empirical formula of the compound. PS3.10a. Combustion

More information

Class XI Chapter 6 Thermodynamics Question 6.1: Choose the correct answer. A thermodynamic state function is a quantity (i) used to determine heat changes (ii) whose value is independent of path (iii)

More information

OHIO ASSESSMENTS FOR EDUCATORS (OAE) FIELD 009: CHEMISTRY

OHIO ASSESSMENTS FOR EDUCATORS (OAE) FIELD 009: CHEMISTRY OHIO ASSESSMENTS FOR EDUCATORS (OAE) FIELD 009: CHEMISTRY June 2013 Content Domain Range of Competencies Approximate Percentage of Assessment Score I. Nature of Science 0001 0003 18% II. Matter and Atomic

More information

2. (12 pts) Write the reactions that correspond to the following enthalpy changes: a) H f o for solid aluminum oxide.

2. (12 pts) Write the reactions that correspond to the following enthalpy changes: a) H f o for solid aluminum oxide. 1. (6 pts) Given the following data at 25 o C: 2 O 3 (g) > 3 O 2 (g) H o = 427 kj O 2 (g) > 2 O (g) H o = 495 kj NO (g) + O 3 (g) > NO 2 (g) + O 2 (g) H o = 199 kj Calculate H o for the following reaction

More information

First Law of Thermodynamics: energy cannot be created or destroyed.

First Law of Thermodynamics: energy cannot be created or destroyed. 1 CHEMICAL THERMODYNAMICS ANSWERS energy = anything that has the capacity to do work work = force acting over a distance Energy (E) = Work = Force x Distance First Law of Thermodynamics: energy cannot

More information

Chem. 1B Final Practice First letter of last name

Chem. 1B Final Practice First letter of last name Chem. 1B Final Practice First letter of last name Name Student Number All work must be shown on the exam for partial credit. Points will be taken off for incorrect or no units. Calculators are allowed.

More information

MOCK FINALS APPCHEN QUESTIONS

MOCK FINALS APPCHEN QUESTIONS MOCK FINALS APPCHEN QUESTIONS For questions 1-3 Aluminum dissolves in an aqueous solution of NaOH according to the following reaction: 2 NaOH + 2 Al + 2 H2O 2 NaAlO2 + 3 H2 If 84.1 g of NaOH and 51.0 g

More information

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41

3.2.1 Energetics. Enthalpy Change. 263 minutes. 259 marks. Page 1 of 41 ..1 Energetics Enthalpy Change 6 minutes 59 marks Page 1 of 41 Q1. (a) Define the term standard molar enthalpy of formation, ΔH f. (b) State Hess s law. (c) Propanone, CO, burns in oxygen as shown by the

More information

Quiz I: Thermodynamics

Quiz I: Thermodynamics Quiz I: Thermodynamics SCH4U_2018-2019_V2 NAME: (Total Score: / 30) Multiple Choice (12) 1. What can be deduced from the following reaction profile? A. The reactants are less stable than the products and

More information

Method development for analysis of single hot particles in Safeguards swipe samples

Method development for analysis of single hot particles in Safeguards swipe samples 1 IAEA-CN-184/177 Method development for analysis of single hot particles in Safeguards swipe samples Zs. Mácsik 1, N. Vajda 2, É. Széles 1, R. Katona 1 1 Institute of Isotopes, Hungarian Academy of Sciences,

More information

AP* Chemistry THERMOCHEMISTRY

AP* Chemistry THERMOCHEMISTRY AP* Chemistry THERMOCHEMISTRY Let s begin with terms for you to master: Heat (q) Two systems with different temperatures that are in thermal contact will exchange thermal energy, the quantity of which

More information

AP* Thermodynamics Free Response Questions page 1. Essay Questions

AP* Thermodynamics Free Response Questions page 1. Essay Questions AP* Thermodynamics Free Response Questions page 1 Essay Questions 1991 The reaction represented above is a reversible reaction. BCl 3 (g) + NH 3 (g) Cl 3 BNH 3 (s) (a) Predict the sign of the entropy change,

More information

Hydrogen addition to the Andrussow process for HCN synthesis

Hydrogen addition to the Andrussow process for HCN synthesis Applied Catalysis A: General 201 (2000) 13 22 Hydrogen addition to the Andrussow process for HCN synthesis A.S. Bodke, D.A. Olschki, L.D. Schmidt Department of Chemical Engineering and Materials Science,

More information

Propanone can be formed when glucose comes into contact with bacteria in the absence of air. Deduce the role of the bacteria in this reaction.

Propanone can be formed when glucose comes into contact with bacteria in the absence of air. Deduce the role of the bacteria in this reaction. Q1.(a) Propanone can be formed when glucose comes into contact with bacteria in the absence of air. Balance the following equation for this reaction of glucose to form propanone, carbon dioxide and water....c

More information

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO

SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO SIR MICHELANGELO REFALO CENTRE FOR FURTHER STUDIES VICTORIA GOZO Page 1 of 7 Half Yearly Exam 2013 Subject: Chemistry 1 st Year Level: Advanced Time: 3 hrs Answer SEVEN (7) questions. All questions carry

More information

Supporting Information: Structural investigation of Na 3 NpO 4 and Na 3 PuO 4 using X-ray diraction and

Supporting Information: Structural investigation of Na 3 NpO 4 and Na 3 PuO 4 using X-ray diraction and Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information: Structural investigation of 3 Np 4 and 3 Pu 4 using X-ray diraction

More information

Department of Chemistry Memorial University of Newfoundland Chemistry 1050

Department of Chemistry Memorial University of Newfoundland Chemistry 1050 Department of Chemistry Memorial University of Newfoundland Chemistry 1050 Fall 2012 Final Examination Time 3 hours NAME: MUN Student Number: Circle your professor s name. Robert Davis Christopher Flinn

More information

PAPER : IIT-JAM 2008 CHEMISTRY-CY

PAPER : IIT-JAM 2008 CHEMISTRY-CY 24 CEMISTRY-CY TE: Attempt ALL the 44 questions. Questions 1-30 (bjective questions) carry three marks each and questions 31-44 (Subjective questions) carry fifteen marks each. 1. The correct statement

More information

Standard Gibbs Energies of Formation of the Ferro and Paramagnetic Phases of AlNd 2

Standard Gibbs Energies of Formation of the Ferro and Paramagnetic Phases of AlNd 2 Standard Gibbs Energies of Formation of the Ferro and Paramagnetic Phases of AlNd 2 M. Morishita*, H. Yamamoto*, M. Kodera**, N. Nishimura**, S. Miura** and Y. Yamada*** *Department of Materials Science

More information

CHEM J-11 June /01(a)

CHEM J-11 June /01(a) CHEM1001 2014-J-11 June 2014 22/01(a) Combustion of 15.0 g of coal provided sufficient heat to increase the temperature of 7.5 kg of water from 286 K to 298 K. Calculate the amount of heat (in kj) absorbed

More information

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules)

Chemical Reactions. Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions. (ionic equations and solubility rules) Chemical Reactions Writing chemical reactions Types of chemical reactions Reactions in aqueous solutions (ionic equations and solubility rules) Writing Equations REACTANTS PRODUCTS gold (III) sulfide is

More information

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv

Lecture Outline. 5.1 The Nature of Energy. Kinetic Energy and Potential Energy. 1 mv Chapter 5. Thermochemistry Common Student Misconceptions Students confuse power and energy. Students confuse heat with temperature. Students fail to note that the first law of thermodynamics is the law

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION How Does Competition between Anionic Pollutants Affect Adsorption onto Mg-Al Layered Double Hydroxide? Three Competition Schemes Ganna DARMOGRAI, Benedicte PRELOT,* Amine GENESTE,

More information

Chapter 6: Thermochemistry

Chapter 6: Thermochemistry Chem 1045 General Chemistry by Ebbing and Gammon, 8th Edition George W.J. Kenney, Jr Last Update: 24-Oct-2008 Chapter 6: Thermochemistry These Notes are to SUPPLIMENT the Text, They do NOT Replace reading

More information

(04) WMP/Jan11/CHEM2

(04) WMP/Jan11/CHEM2 Kinetics 4 2 The diagram below shows a Maxwell Boltzmann distribution for a sample of gas at a fixed temperature. E a is the activation energy for the decomposition of this gas. Number of molecules with

More information

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number.

N10/4/CHEMI/SP2/ENG/TZ0/XX CHEMISTRY STANDARD LEVEL PAPER 2. Thursday 11 November 2010 (afternoon) Candidate session number. N10/4/CHEMI/SP2/ENG/TZ0/XX 88106105 CHEMISTRY STANDARD LEVEL PAPER 2 Thursday 11 November 2010 (afternoon) 1 hour 15 minutes 0 0 Candidate session number INSTRUCTIONS TO CANDIDATES Write your session number

More information

CHEM 103 CHEMISTRY I

CHEM 103 CHEMISTRY I CHEM 103 CHEMISTRY I CHAPTER 5 THERMOCHEMISTRY Inst. Dr. Dilek IŞIK TAŞGIN Inter-Curricular Courses Department Çankaya University, Inc. Energy Energy is the ability to do work or transfer heat. Energy

More information

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system.

c) Explain the observations in terms of the DYNAMIC NATURE of the equilibrium system. Chemical Equilibrium - Part A: 1. At 25 o C and 101.3 kpa one mole of hydrogen gas and one mol of chlorine gas are reacted in a stoppered reaction vessel. After a certain time, three gases are detected

More information

... [1] Catalyst:... [1] H 30 N 6. Ni 3+, exists as two optical isomers [2]

... [1] Catalyst:... [1] H 30 N 6. Ni 3+, exists as two optical isomers [2] 1 This question looks at properties of transition elements, ions and complexes. (a) What is the oxidation number of r in the complex ion [rl 5 ] 2?... [1] (b) Write the equation for a reaction catalysed

More information

SIR MICHELANGELO REFALO SIXTH FORM

SIR MICHELANGELO REFALO SIXTH FORM SIR MIELANGELO REFALO SIXT FORM alf-yearly Exam 2016 Subject: hemistry ADV 1 ST Time: 3 hours Answer 6 questions. All questions carry equal marks. You are reminded of the importance of clear presentation

More information

School of Chemistry, UNIVERSITY OF KWAZULU-NATAL, WESTVILLE NOVEMBER 2007 EXAMINATION CHEM230: PHYSICAL CHEMISTRY Page 2

School of Chemistry, UNIVERSITY OF KWAZULU-NATAL, WESTVILLE NOVEMBER 2007 EXAMINATION CHEM230: PHYSICAL CHEMISTRY Page 2 Page 2 QUESTION 1 a) The usefulness of radiocarbon dating is limited to objects no older than 50 000 years. Given that the half-life of decay of carbon-14 is 5.73 x 10 3 years, (i) (ii) estimate the value

More information

CHEMISTRY. Chapter 5 Thermochemistry

CHEMISTRY. Chapter 5 Thermochemistry CHEMISTRY The Central Science 8 th Edition Chapter 5 Thermochemistry Dr. Kozet YAPSAKLI The Nature of Energy Kinetic and Potential Energy Potential energy can be converted into kinetic energy. E p = mgh

More information

Reacting Gas Mixtures

Reacting Gas Mixtures Reacting Gas Mixtures Reading Problems 15-1 15-7 15-21, 15-32, 15-51, 15-61, 15-74 15-83, 15-91, 15-93, 15-98 Introduction thermodynamic analysis of reactive mixtures is primarily an extension of the principles

More information

Chemistry Curriculum Map. Embedded in all standards. Chm Chm Chm Chm Writing:

Chemistry Curriculum Map. Embedded in all standards. Chm Chm Chm Chm Writing: Six weeks Unit Unit Focus Chemistry Essential Standards Literacy in Science &Technical Subjects/ 8 Mathematical Practices First Introductory Chemistry Material - Density - Significant Digits - Metric Conversion

More information

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303

Introduction to Chemical Engineering Thermodynamics. Chapter 4. KFUPM Housam Binous CHE 303 Introduction to Chemical Engineering Thermodynamics Chapter 4 1 Sensible heat effects are characterized by temperature changes Experimental measurements provide heat effects of chemical reactions, phase

More information

The change in enthalpy accompanying many reactions can be experimentally measured using calorimetry.

The change in enthalpy accompanying many reactions can be experimentally measured using calorimetry. 1. Hess s Law Students: investigate Hess s Law in quantifying the enthalpy change for a stepped reaction using standard enthalpy change data and bond energy data, for example: - carbon reacting with oxygen

More information

Workbook 5. Chem 1A Dr. White 1

Workbook 5. Chem 1A Dr. White 1 Chem 1A Dr. White 1 Workbook 5 5-1: Dalton s Law, KMT, Effusion/Diffusion/Real Gases 1. What is the total pressure and the partial pressure of each gas (in atm) in a mixture of 3.2 g of O 2, 1.6 g of CH

More information

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16

3.2.1 Energetics. Bond Enthalpy. 98 minutes. 96 marks. Page 1 of 16 3..1 Energetics Bond Enthalpy 98 minutes 96 marks Page 1 of 16 Q1. (a) State what is meant by the term mean bond enthalpy. () (b) Ethanal has the structure Gaseous ethanal burns as shown by the equation

More information

Lecture Presentation. Chapter 5. Thermochemistry Pearson Education, Inc.

Lecture Presentation. Chapter 5. Thermochemistry Pearson Education, Inc. Lecture Presentation Chapter 5 Energy Energy is the ability to do work or transfer heat. Energy used to cause an object that has mass to move is called work. Energy used to cause the temperature of an

More information

Our country, our future 525/1 S6 CHEMISTRY PAPER 1 DURATION: 2 HOUR 45 MINUTES

Our country, our future 525/1 S6 CHEMISTRY PAPER 1 DURATION: 2 HOUR 45 MINUTES 1 Our country, our future 525/1 S6 CHEMISTRY Exam 3 PAPER 1 DURATION: 2 HOUR 45 MINUTES For Marking guide contact and consultations: Dr. Bbosa Science 0776 802709. INSTRUCTIONS Attempt all questions in

More information

with high selectivity, stability, conversion, and efficiency

with high selectivity, stability, conversion, and efficiency Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2017 Solar thermochemical splitting of CO2 into separate streams of CO and O2

More information

Chapter 6 Thermochemistry

Chapter 6 Thermochemistry Chapter 6 Thermochemistry Thermochemistry Thermochemistry is a part of Thermodynamics dealing with energy changes associated with physical and chemical reactions Why do we care? - Will a reaction proceed

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Controllable integration of ultrasmall noble metal nanoparticles

More information

2 Answer all the questions. CO, in the presence of aqueous hydrochloric acid, HCl(aq).

2 Answer all the questions. CO, in the presence of aqueous hydrochloric acid, HCl(aq). 2 Answer all the questions. 1 A student investigates the reaction between iodine, I 2, and propanone, (CH 3 ) 2 CO, in the presence of aqueous hydrochloric acid, HCl(aq). The results of the investigation

More information

SPECIFIC HEAT OF SOLIDS

SPECIFIC HEAT OF SOLIDS CINDAS Data Series on Material Properties Volume 1-2 SPECIFIC HEAT OF SOLIDS Edited by С Y. Ho Director, Center for Information and Numerical Data Analysis and Synthesis Purdue University Authored by Ared

More information

Recycling of Uranium from Uranium-Aluminium alloys by Chlorination with HCl(g)

Recycling of Uranium from Uranium-Aluminium alloys by Chlorination with HCl(g) Available online at www.sciencedirect.com Procedia Chemistry 7 (2012 ) 785 790 ATALANTE 2012 International Conference on Nuclear Chemistry for Sustainable Fuel Cycles Recycling of Uranium from Uranium-Aluminium

More information

N09/4/CHEMI/HP2/ENG/TZ0/XX+ CHEMISTRY HIGHER level. Tuesday 3 November 2009 (afternoon) Candidate session number. 2 hours 15 minutes

N09/4/CHEMI/HP2/ENG/TZ0/XX+ CHEMISTRY HIGHER level. Tuesday 3 November 2009 (afternoon) Candidate session number. 2 hours 15 minutes N09/4/CHEMI/HP/ENG/TZ0/XX+ 8809610 CHEMISTRY HIGHER level Paper Tuesday 3 November 009 (afternoon) hours 15 minutes 0 0 Candidate session number INSTRUCTIONS TO CANDIDATES Write your session number in

More information

Chemistry (www.tiwariacademy.com)

Chemistry (www.tiwariacademy.com) () Question 1.1: Calculate the molecular mass of the following: (i) H2O (ii) CO2 (iii) CH4 Answer 1.1: (i) H2O: The molecular mass of water, H2O = (2 Atomic mass of hydrogen) + (1 Atomic mass of oxygen)

More information

Stoichiometry Decomposition of Baking Soda For our soul is humbled down to the dust. Psalms 43:25

Stoichiometry Decomposition of Baking Soda For our soul is humbled down to the dust. Psalms 43:25 Stoichiometry Decomposition of Baking Soda For our soul is humbled down to the dust. Psalms 43:25 Introduction A balanced chemical reaction shows products forming reactants such that the Law of Conservation

More information

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at

Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at Chapter 7 What is steady state diffusion? Steady-state diffusion is diffusion in which the concentration of the diffusing atoms at any point, x, and hence the concentration gradient at x, in the solid,

More information

CHEMISTRY (SALTERS) 2850

CHEMISTRY (SALTERS) 2850 OXFORD CAMBRIDGE AND RSA EXAMINATIONS Advanced Subsidiary GCE CHEMISTRY (SALTERS) 2850 Chemistry for Life Wednesday 8 JUNE 2005 Morning 1 hour 15 minutes Candidates answer on the question paper Additional

More information

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy

s Traditionally, we use the calorie as a unit of energy. The nutritional Calorie, Cal = 1000 cal. Kinetic Energy and Potential Energy AP Chemistry: Thermochemistry Lecture Outline 5.1 The Nature of Energy Thermodynamics is the study of energy and its transformations. Thermochemistry is the study of the relationships between chemical

More information