Method development for analysis of single hot particles in Safeguards swipe samples

Size: px
Start display at page:

Download "Method development for analysis of single hot particles in Safeguards swipe samples"

Transcription

1 1 IAEA-CN-184/177 Method development for analysis of single hot particles in Safeguards swipe samples Zs. Mácsik 1, N. Vajda 2, É. Széles 1, R. Katona 1 1 Institute of Isotopes, Hungarian Academy of Sciences, Budapest, Hungary 2 RadAnal Ltd., Budapest, Hungary macsikzsu@gmail.com Abstract. A method consists of several, individual procedures has been developed for the particle analysis of Safeguards swipe samples. The paper introduces the present state of the on-going development. For the identification and localization of hot particles, solid state nuclear detectors (CR-39) were used. The location of particles containing alpha emitting materials was determined with an accuracy of better than 20 μm in case of particles with μm size. The described method offers the opportunity of micro-manipulation and the examination of individual particles by scanning electron microscopy (SEM). The U isotopic composition of the particles of interest was determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). 1. Introduction Swipe sampling has been routinely used as an effective inspection tool by the International Atomic Energy Agency (IAEA) since 1996 to verify the absence of undeclared nuclear materials and activities [1]. Bulk and particle analysis can be applied for the determination of actinides in swipe samples as well. Bulk analysis provides information only about the average composition of the samples however, the artificial fissile material in the environment mostly occurs in the form of solid, radioactive particles surrounded by a large number of particles containing fissile material of natural origin. Fissile and fertile materials (U, Pu, Th) and their transmutation products (Np, Am, Cm) in localized and micro-manipulated hot particles originating from swipe samples can be examined with high sensitivity excluding the effect of the sample as matrix. Therefore the use of particle analysis for Safeguards swipe samples is essential to achieve as accurate results as possible. The information about single hot particles (such as isotope ratios of actinides) given by particle analysis offers a great challenge. According to the results obtained by the analysis of different single particles, various origin scenarios of particles can be distinguished in the same swipe sample. Moreover, the more precise information can improve the verification process of IAEA Safeguards. A novel analytical method has been developed for the determination of actinides (Th, U, Np, Pu and Am) in hot particles. In the present paper, procedures developed and adapted for the identification of hot particles using solid state nuclear track detectors, localization and micro-manipulation of the identified particles, examination of particles by SEM and analysis of the U content using LA-ICP-MS are to be discussed. 2. Experimental 2.1. Samples Test particles containing U and Pu were made of anion exchange resin (BioRad Ltd., USA) beads to simulate hot particles for testing the adapted and developed procedures. Uranyl chloride (Reanal Ltd., Budapest) and plutonium nitrate ( 239 Pu standard reference material produced by CERCA LEA, Framatome Ant, France) were loaded onto anion exchange resins to produce U and Pu test particles, respectively. Each anion exchange bead with an average diameter of 140 μm contained approximately 13 mbq 238 U (1 μg U) or approximately 43 mbq (19 pg) 239 Pu.

2 Particles originating from confiscated nuclear fuel pellets and monazite sand particles containing Th originating from Sri Lanka were also analyzed. Environmental as well as nuclear samples were investigated since these types of materials can occur in Safeguards swipe samples. Real Safeguards samples in the phase of development have not been analyzed yet. The size of the investigated particles varied between μm, μm and μm in case of test, monazite and pellet particles, respectively Applied procedures Identification of particles containing alpha emitting material using solid state nuclear track detectors The procedure for the identification of particles containing alpha emitting material is based on alpha track analysis (Fig. 1) using CR-39 type solid state nuclear track detector (RadoSys Ltd., Hungary). Nuclear track detectors were placed on the sample holders containing particles. The detectors were exposed to the samples for several days depending on the type of the sample. After unpacking the samples, the detectors were rinsed with ethyl alcohol, etched in 6.25 M NaOH at 90 ± 3 ºC for 4 h, rinsed with distilled water and dried in air. Alpha tracks were observed with optical microscopes (the optical microscope of New Wave Research UP-213 laser ablation system and Zeiss Axio Imager.M1m optical research microscope (Zeiss, Germany) equipped with AxioCam MRc 5 video camera). Figure 1: A typical particle originating from nuclear fuel pellet and the image of the alpha track formed by it (in the red cross-hairs) Localization and re-localization of the identified particles The exact location of single particles containing alpha emitting materials is needed for further examination. The so-called 6-point algorithm calculation method was used for the determination of the particle coordinates in the coordinates system of the given microscope [2]. Three reference marks were placed on the sample holder and three reference marks were defined on the nuclear track detectors, as well. According to the coordinates of the reference marks and the coordinates of the nuclear tracks, the coordinates of the particles can be calculated. In case of using different equipment, the re-location of the given particle is necessary. The so-called 3-point algorithm calculation method [2] was used to determine the coordinates of the particle in the coordinates system of the new equipment Micro-manipulation of the localized particles and examination by SEM-EDX (scanning electron microscopy combined with energy dispersive X-ray spectrometry) Some of the localized particles had to be removed from the original sample holder because either the particle density was too high or the original sample holder was not appropriate for the examination by SEM-EDX (JEOL JSM-5600LV SEM equipped with energy dispersive X-spectrometer (EDS 2000, IXRF Systems Inc., USA)). The micro-manipulation was carried out using the Zeiss Axio Imager.M1m optical microscope (Zeiss, Germany) equipped with a micro-manipulator operating system (Mitutoyo, Japan). Steel needles were used as micro-manipulator. Either the phenomenon of static electricity or liquid glue (Loctite Super Attack Power Gel) was used to remove the particles depending on their size. Morphological examination and the determination of the main components of the particles were executed with SEM-EDX. These examinations were used in the optimization of the laser ablation parameters.

3 Intensity [cps] Determination of the U content of the localized particles by LA-ICP-MS The localized particles were analyzed by LA-ICP-MS. The mass spectrometric analysis was carried out using an Element 2 ICP-MS (Thermo Electron Corp., Germany) with magnetic sector field and single electron multiplier. The laser ablation was carried out using an UP-213 laser ablation system (New Wave Research, USA) equipped with a Nd:YAG laser at a wavelength of 213 nm. A NIST 612 glass reference material (NIST, USA) was used for the optimization of the LA-ICP-MS system. The achieved sensitivity was approximately cps for 37.1 mg/kg 238 U. The mass bias factor was determined by the measurement of the 235 U/ 238 U ratio of the NIST 612 glass reference material and a highly enriched U-oxide pellet (from an interlaboratory exercise of Nuclear Smuggling International Technical Working Group (ITWG), 2001). Low (R=300) and medium (R=4000) mass resolutions were applied. The used laser ablation technique was based on the method described by Z. Varga [3]. Spot ablation (spot size (laser beam diameter): 40 or 60 μm, laser energy flux: 0.04 mj/cm 2, repetition time: 10 Hz) was used for the laser ablation. The intensities of the U isotopes were recorded in the chromatographic mode of the ICP-MS during the laser ablation of the particles (Fig. 2). Three measurements were applied on each sample. The background level was measured in measuring points by starting the record of the chromatograms before starting the laser ablation. The U isotope ratios ( 235 U/ 238 U, 234 U/ 238 U, 236 U/ 238 U) were calculated from the average of a given time interval of the U isotope signals after the background correction. The U isotopic composition (the mass ratio of one isotope relative to the sum of all isotopes of the element) of the particles was evaluated, as well. The results for particles originating from the U oxide pellets were compared to the results of an analysis done in our laboratory by LA-ICP-MS measurement of the whole pellets (The whole pellet was placed in the chamber of the laser ablation system and line scan ablation was applied during the ICP-MS measurements of the samples.) Time [s] U234 (LR) Low Intensity [cps] U235 (LR) Low Intensity [cps] U238 (LR) Low Intensity [cps] U236 (LR) Low Intensity [cps] U233 (LR) Low Intensity [cps] Figure 2: The chromatogram of a LA-ICP-MS measurement of the particle in Fig Results and discussion 3.1. Identification and localization of hot particles The parameters of alpha track analysis (exposure time, etching time, etching temperature) were optimized to achieve as precise localization as possible. In case of single particles the nuclear tracks form clusters. The exposure time is needed to allow for each cluster to have enough single tracks to be able to define the centre of the cluster. The optimal exposure time depends on the size of the particle and the alpha emitting material content. For example 5 days and 1 day were the optimal exposure times in case of U and Pu test samples, respectively. The alpha energies of actinides (U, Pu and Th) vary between 3.9 and 6.0 MeV. Nanometer size alpha tracks

4 produced by them can be enlarged to a diameter of approximately 30 μm applying the above mentioned etching parameters. The calculation methods for localization and re-localization of the identified particles were also tested. Test particles were fixed onto sample holders and alpha track analysis was executed. Six-point algorithm was used to calculate the coordinates of the particles, and then the centre of the particle was determined. The difference between the calculated and the exact coordinates was defined as the precision of the calculation method. In case of re-location the same sample holders were examined in different positions or instruments. The achieved precision of the 6- and the 3-point algorithm was 10±7 μm and 7±6 μm, respectively in case of μm particle size Examination of the localized particles by SEM-EDX Besides the morphological examinations, the main components of the monazite sand and test particles were determined by SEM-EDX. Thorium could be unambiguously determined only in monazite sand particles that produced nuclear track clusters with more than 1000 single tracks. In the monazite sand particles that produced nuclear track clusters with less single tracks, Th was a trace component. Uranium and Pu test particles were also analyzed. Plutonium could not be determined since each particle had less than % of Pu content. Uranium could be identified in the X-ray spectrum. According to the results the U content of the test particles was approximately 17%...23% Measurement of U content by LA-ICP-MS The described method was applied to U test and nuclear fuel pellet particles. Natural isotopic U composition was predicted in case of U test particles since natural composition of the uranyl chloride was assumed. Low and medium mass resolutions were also applied during the LA-ICP-MS measurements. Typical results are shown in Table 1 and compared with the values of the isotopic composition of natural U recommended by IUPAC (International Union of Pure and Applied Chemistry) [4]. The results obtained by using medium mass resolution agreed well with the values of IUPAC. In case of low mass resolution, the isotope ratio of 235 U/ 238 U ( ± ) was significantly higher than that of natural U. This caused major bias in the isotopic compositions of results obtained by the measurements using low mass resolution. Spectral interferences at the mass range of 235 U could cause the significantly higher 235 U/ 238 U ratio. Table 1: The calculated isotopic composition of the U test particles Test Sample A Test Sample A IUPAC Low Resolution Medium Resolution [%] [%] [%] 234 U ± ± ± U ± ± ± U ± ± ± The calculated U isotopic composition of the nuclear fuel pellet particles are shown in Table 2 and compared with the results originating from the LA-ICP-MS measurement of the whole pellets (marked us ). Good agreement can be observed between them. The lateral dimensions of the analyzed particles are also listed in the table. According to the measured 235 U/ 238 U isotope ratios (Sample A: ± , Sample B: ± , Sample C: ± ), depleted (DU), natural (NU) and low enriched (LEU) U could be distinguished.

5 Table 2: The calculated isotopic composition of the nuclear fuel pellet particles Sample A Sample A (DU) Sample B Sample B (NU) Sample C Sample C (LEU) [%] [%] [%] [%] [%] [%] 234 U ± ± ± ± ± ± U ± ± ± ± ± ± U n.m ± n.m. 1 (1.7±0.004) ± ± U ± ± ± ± ± ±0.354 (43 55 μm) ( μm) (30 30 μm) 1 : not measured The results are calculated at 95% confidence level. 4. Conclusions The method developed for the analysis of single hot particles in Safeguards swipe samples consist of several, individual procedures. Particles containing alpha emitting materials can be identified using solid state nuclear detectors. The location of the identified particles can be determined with an accuracy of better than 20 μm in case of particles with μm size. The method offers the opportunity of micromanipulation and simultaneous examination of the particles by SEM. The main components of the particles obtained by examination with SEM-EDX can help optimize the parameters of the LA-ICP-MS system. E.g. in case of detection of nuclides which can form species (e.g. molecule ions) responsible for spectral interferences at m/z=234, 235, 236 and 238, the use of medium mass resolution mode of ICP-MS can be recommended (instead of low mass resolution). Thus the U isotope ratios and isotopic composition of the particles of interest can be determined by LA-ICP-MS with high accuracy. The procedure has to be further developed for the effective removal of particles from swipe samples and the LA-ICP-MS method has to be extended for the determination of Pu isotope ratios and isotopic composition. Further developments are also needed to extend the method for particles under 10 μm size. Acknowledgements This study was financially supported by the Hungarian Atomic Energy Authority. Tamas Biro (Institute of Isotopes of the Hungarian Academy of Sciences) and Zsolt Stefanka (Hungaian Atomic Energy Authority) are thanked for helpful discussions. The authors are grateful to Erik Hulber (RadoSys Ltd, Hungary) for the nuclear track detectors and Peter Hargittai for the examination by SEM-EDX. References [1] Donohue, D. L. Strengthening IAEA safeguards through environmental sampling and analysis, Journal of Alloys and Compounds, , 11-18, 1998 [2] Admon U., Single particles handling and analyses; Chapter of Radioactive Particles in the Environment book, Springer Publisher, 2007, ISBN (e-book) [3] Varga Zs., Application of laser ablation inductively coupled plasma mass spectrometry for the isotopic analysis of single uranium particles, Analytica Chimica Acta, Vol. 625, pp. 1-7, 2008 [4] IUPAC, Isotopic compositions of the elements, 1989, Pure &Appl. Chem., Vol. 63, No. 7, pp ,1991.

The analysis of particles of nuclear material finding the proverbial needle in a hay stack

The analysis of particles of nuclear material finding the proverbial needle in a hay stack San Diego, 18-22 February 2010 AAAS Annual Meeting 1 The analysis of particles of nuclear material finding the proverbial needle in a hay stack AAAS Annual Meeting San Diego, February 19, 2010 Klaus Luetzenkirchen

More information

Environmental Sample Analysis Advances and Future Trends

Environmental Sample Analysis Advances and Future Trends Environmental Sample Analysis Advances and Future Trends D.Donohue Office of Safeguards Analytical Services Environmental Sample Laboratory International Atomic Energy Agency Contents Introduction Bulk

More information

Particle Analysis of Environmental Swipe Samples

Particle Analysis of Environmental Swipe Samples IAEA-SM-367/10/07 Particle Analysis of Environmental Swipe Samples D. DONOHUE, S. VOGT, A. CIURAPINSKI, F. RUEDENAUER, M. HEDBERG Safeguards Analytical Laboratory International Atomic Energy Agency Vienna,

More information

Micrometrie particle's isotopics: An ultra-sensitive tool to detect nuclear plant discharge in the environment

Micrometrie particle's isotopics: An ultra-sensitive tool to detect nuclear plant discharge in the environment Radioprotection - Colloques, volume 37, Cl (2002) Cl-197 Micrometrie particle's isotopics: An ultra-sensitive tool to detect nuclear plant discharge in the environment S. Baude, M.C. Lanière, O. Marie

More information

Using LIBS method in Safeguards

Using LIBS method in Safeguards Éva Kovács-Széles, István Almási, Gábor Galbács INTRODUCTION Laser-Induced Breakdown Spectroscopy (LIBS) is a type of atomic emission spectroscopic technique which is capable to detect almost all the elements

More information

DETERMINATION OF DIFFICULT TO MEASURE RADIONUCLIDES IN NUCLEAR POWER PLANT WASTES PhD thesis. Author: Szabolcs Osváth. Supervisor: Nóra Vajda

DETERMINATION OF DIFFICULT TO MEASURE RADIONUCLIDES IN NUCLEAR POWER PLANT WASTES PhD thesis. Author: Szabolcs Osváth. Supervisor: Nóra Vajda DETERMINATION OF DIFFICULT TO MEASURE RADIONUCLIDES IN NUCLEAR POWER PLANT WASTES PhD thesis Author: Szabolcs Osváth Supervisor: Nóra Vajda BUTE INT 2012 Context of research The majority of long-lived

More information

Defining quality standards for the analysis of solid samples

Defining quality standards for the analysis of solid samples Defining quality standards for the analysis of solid samples Thermo Scientific Element GD Plus Glow Discharge Mass Spectrometer Redefine your quality standards for the elemental analysis of solid samples

More information

IAEA-SM-367/10/04/P SCREENING AND RADIOMETRIC MEASUREMENT OF ENVIRONMENTAL SWIPE SAMPLES

IAEA-SM-367/10/04/P SCREENING AND RADIOMETRIC MEASUREMENT OF ENVIRONMENTAL SWIPE SAMPLES IAEA-SM-367/10/04/P SCREENING AND RADIOMETRIC MEASUREMENT OF ENVIRONMENTAL SWIPE SAMPLES V. MAIOROV, A. CIURAPINSKI, W. RAAB and V. JANSTA Safeguards Analytical Laboratory, International Atomic Energy

More information

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS)

TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS) NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON SECONDARY ION MASS SPECTROMETRY (SIMS) EXECUTIVE SUMMARY Secondary Ion Mass Spectrometry (SIMS) is used for elemental

More information

enable measurement. This method separates these isotopes effectively.

enable measurement. This method separates these isotopes effectively. Analytical Procedure URANIUM IN WATER 1. SCOPE 1.1. This is a method for the separation and measurement of uranium in water. After completing this method, source preparation for measurement of uranium

More information

General Overview of Radiation Detection and Equipment

General Overview of Radiation Detection and Equipment www.inl.gov INL/MIS-11-22727 General Overview of Radiation Detection and Equipment International Nuclear Safeguards Policy and Information Analysis Course Monterey Institute of International Studies June

More information

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples

Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer. Defining quality standards for the analysis of solid samples Thermo Scientific ELEMENT GD PLUS Glow Discharge Mass Spectrometer Defining quality standards for the analysis of solid samples Redefine your quality standards for the elemental analysis of solid samples

More information

Following documents shall be used for reference on quantities, units, prefixes and other technical vocabulary in this document:

Following documents shall be used for reference on quantities, units, prefixes and other technical vocabulary in this document: SPECIFICATION SPECIFICATION Inductively Coupled Plasma Mass Spectrometry System 1. Scope This specification describes the requirements for an Inductively Coupled Plasma Mass Spectrometry System ( System

More information

IAEA-CN-184/159. Environmental Sample Analysis Advances and Future Trends. D. Donohue

IAEA-CN-184/159. Environmental Sample Analysis Advances and Future Trends. D. Donohue Environmental Sample Analysis Advances and Future Trends D. Donohue Department of Safeguards International Atomic Energy Agency Vienna, Austria Email D.Donohue@iaea.org IAEA-CN-184/159 Abstract. The environmental

More information

Av. Professor Lineu Prestes 2242, São Paulo, SP Tel: +55 (11) Fax: + 55 (11)

Av. Professor Lineu Prestes 2242, São Paulo, SP Tel: +55 (11) Fax: + 55 (11) 2013 International Nuclear Atlantic Conference - INAC 2013 Recife, PE, Brazil, November 24-29, 2013 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-05-2 The use of Laser Ablation Sector

More information

AGE DETERMINATION OF HIGHLY ENRICHED URANIUM

AGE DETERMINATION OF HIGHLY ENRICHED URANIUM IAEA-SM-367/5/07 AGE DETERMINATION OF HIGHLY ENRICHED URANIUM M. WALLENIUS, A. MORGENSTERN, A. NICHOLL, R.FIEDLER, C. APOSTOLIDIS, K. MAYER European Commission Joint Research Centre, Institute for Transuranium

More information

Improvement of bulk analysis of environmental samples by using a multiple collector ICP-MS

Improvement of bulk analysis of environmental samples by using a multiple collector ICP-MS Improvement of bulk analysis of environmental samples by using a multiple collector ICP-MS IAEA Safeguards Symposium - Vienna Amélie Hubert, Anne-Claire Pottin and Fabien Pointurier 20-24 OCTOBER 2014

More information

Keywords: Safeguards, Destructive Analysis, Environmental Sampling

Keywords: Safeguards, Destructive Analysis, Environmental Sampling Activities at Forschungszentrum Jülich in Safeguards Analytical Techniques and Measurements M. Dürr a*, A. Knott b, R. Middendorp a, I. Niemeyer a, S. Küppers a, M. Zoriy a, M. Froning a, D. Bosbach a

More information

MASS SPECTROMETRIC TECHNIQUES FOR THE RAPID CHARACTERIZATION AND FINGERPRINTING OF NUCLEAR FUEL MATERIALS

MASS SPECTROMETRIC TECHNIQUES FOR THE RAPID CHARACTERIZATION AND FINGERPRINTING OF NUCLEAR FUEL MATERIALS http://wateriso.utah.edu/waterisotopes/media/isomaps/jpegs/o_global/oma_global.jpg S13: State of the Art Environmental Sample Analysis NOVEL MASS SPECTROMETRIC TECHNIQUES FOR THE RAPID CHARACTERIZATION

More information

NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE THERMAL IONISATION MASS SPECTROMETRY (TIMS)

NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE THERMAL IONISATION MASS SPECTROMETRY (TIMS) NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE THERMAL IONISATION MASS SPECTROMETRY (TIMS) EXECUTIVE SUMMARY Thermal Ionisation Mass Spectrometry (TIMS) is used for isotopic

More information

URANIUM IN SOIL. Analytical Procedure (2 GRAM SAMPLE) 1. SCOPE

URANIUM IN SOIL. Analytical Procedure (2 GRAM SAMPLE) 1. SCOPE Analytical Procedure URANIUM IN SOIL (2 GRAM SAMPLE) 1. SCOPE 1.1. This is a procedure for the separation of uranium from 2 gram soil samples. After separation of uranium with this method, source preparation

More information

Autenticity control, provenance testing and fraud detection using mass spectrometry

Autenticity control, provenance testing and fraud detection using mass spectrometry Autenticity control, provenance testing and fraud detection using mass spectrometry Abdal-Azim Al-Terkawi Ersan Özelci Melissa-Jane Monks Narendra Lagumaddepalli Venkatareddy Seyed Mohsen Jebreiil Khadem,

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Particle Analysis Finding the Needle in the Haystack

Particle Analysis Finding the Needle in the Haystack JRC-ITU Karlsruhe - 19 March 2009 Nuclear Security 1 Particle Analysis Finding the Needle in the Haystack Nicole Erdmann,, Magnus Hedberg Nuclear Safeguards and Security Unit - ITU Available from: www.cartoonstock.com

More information

Nuclear Forensics-A Review

Nuclear Forensics-A Review International Journal of Interdisciplinary and Multidisciplinary Studies (IJIMS), 2014, Vol 1, No.8, 152-156. 152 Available online at http://www.ijims.com ISSN: 2348 0343 Nuclear Forensics-A Review Krunal

More information

Use of ICP-MS in analysing radioisotopes. Per Roos Risø National Laboratory for Sustainable Energy, Technicial University of Denmark

Use of ICP-MS in analysing radioisotopes. Per Roos Risø National Laboratory for Sustainable Energy, Technicial University of Denmark Use of ICP-MS in analysing radioisotopes Per Roos Risø National Laboratory for Sustainable Energy, Technicial University of Denmark Inductively Coupled Plasma Mass Spectrometry (ICP-MS) History ICP-AES

More information

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second

Acronyms, Abbreviations, and Symbols Foreword to the First Edition Foreword to the Second Edition Preface to the First Edition Preface to the Second Contributors p. xxix Acronyms, Abbreviations, and Symbols p. xxxi Foreword to the First Edition p. xliii Foreword to the Second Edition p. xlv Preface to the First Edition p. xlvii Preface to the Second

More information

arxiv:nucl-ex/ v2 21 Jul 2005

arxiv:nucl-ex/ v2 21 Jul 2005 Gamma-spectrometric uranium age-dating using intrinsic efficiency calibration arxiv:nucl-ex/0506029v2 21 Jul 2005 Cong Tam Nguyen and József Zsigrai Institute of Isotopes of the Hungarian Academy of Sciences

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

NUCLEAR CERTIFIED REFERENCE MATERIALS 2018

NUCLEAR CERTIFIED REFERENCE MATERIALS 2018 EUROPEAN COMMISSION Directorate General Joint Research Centre Directorate G Nuclear Safety and Security NUCLEAR CERTIFIED REFERENCE MATERIALS 2018 Standards for Nuclear Safety, Security and Safeguards

More information

TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY

TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY NUCLE A R FORENSIC S INTERN ATION A L TECHNICAL WORKING GROUP ITWG GUIDELINE ON LABORATORY APPLICATIONS OF HIGH-RESOLUTION GAMMA SPECTROMETRY This document was designed and printed at Lawrence Livermore

More information

Joint Research Centre (JRC)

Joint Research Centre (JRC) 12 Nov 2007 JAEA TOKAI 1 Joint Research Centre (JRC) Advances in Nuclear and Environmental Analysis for Safeguards Purposes. Magnus Hedberg, Herbert Ottmar, Piet van Belle, Said Abousahl, Sten Littman,

More information

NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON ELEMENTAL ASSAY U TITRATION

NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON ELEMENTAL ASSAY U TITRATION NUCLE A R FORENSIC S INTERN ATION A L TECHNIC A L WORK ING GROUP ITWG GUIDELINE ON ELEMENTAL ASSAY U TITRATION EXECUTIVE SUMMARY In this guide, the assay of uranium through titration refers to a methodology

More information

EUROPEAN COMMISSION Directorate General Joint Research Centre IRMM NUCLEAR CERTIFIED REFERENCE MATERIALS 2015

EUROPEAN COMMISSION Directorate General Joint Research Centre IRMM NUCLEAR CERTIFIED REFERENCE MATERIALS 2015 EUROPEAN COMMISSION Directorate General Joint Research Centre IRMM NUCLEAR CERTIFIED REFERENCE MATERIALS 2015 Institute for Reference Materials and Measurements (IRMM) Standards for Nuclear Safety, Security

More information

Bulk Analysis of Environmental Swipe Samples

Bulk Analysis of Environmental Swipe Samples Bulk Analysis of Environmental Swipe Samples IAEA-SM-367/10/06 S. Vogt, P. Zahradnik, D. Klose, and H. Swietly Safeguards Analytical Laboratory International Atomic Energy Agency A2444 Seibersdorf, Austria

More information

Contact Person(s) : Anna Berne APPLICATION

Contact Person(s) : Anna Berne APPLICATION Se-03 AMERICIUM, PLUTONIUM AND URANIUM IN WATER Contact Person(s) : Anna Berne APPLICATION This procedure describes a method for the separation and measurement of americium, plutonium and uranium in water

More information

Highly efficient SERS test strips

Highly efficient SERS test strips Electronic Supplementary Information (ESI) for Highly efficient SERS test strips 5 Ran Zhang, a Bin-Bin Xu, a Xue-Qing Liu, a Yong-Lai Zhang, a Ying Xu, a Qi-Dai Chen, * a and Hong-Bo Sun* a,b 5 10 Experimental

More information

Microparticle Reference Materials for Particle Analysis in Nuclear Safeguards Production & Characterisation

Microparticle Reference Materials for Particle Analysis in Nuclear Safeguards Production & Characterisation Microparticle Reference Materials for Particle Analysis in Nuclear Safeguards Production & Characterisation 01 May 2018 I Stefan Neumeier, Philip Kegler, Martina Klinkenberg, Irmgard Niemeyer, Dirk Bosbach

More information

TECHNETIUM-99 IN SOIL

TECHNETIUM-99 IN SOIL Analytical Procedure TECHNETIUM-99 IN SOIL 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in soil. 1.2. This method does not address all aspects of safety, quality

More information

ITWG CMX-4 Exercise - LLNL s Experience RMCC XI Workshop

ITWG CMX-4 Exercise - LLNL s Experience RMCC XI Workshop ITWG CMX-4 Exercise - LLNL s Experience RMCC XI Workshop Michael Kristo Group Leader, Chemical & Isotopic Signatures Group December 12, 2016 This work was performed under the auspices of the U.S. Department

More information

Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas

Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas Investigation of fundamental mechanisms related to ambient gas heating and hydrodynamics of laser-induced plasmas P. J. Skrodzki Acknowledgements This work is supported by the DOE/NNSA Office of Nonproliferation

More information

ITWG - A Platform for International Cooperation in Nuclear Forensics

ITWG - A Platform for International Cooperation in Nuclear Forensics ITWG - A Platform for International Cooperation in Nuclear Forensics David K. Smith, Klaus Mayer, Tamas Biro, Bernard Chartier, Bruno Jouniaux, Paul Thompson, Carey Larsson, Michael Kristo, and Richard

More information

Introduction to Fourier Transform Infrared Spectroscopy

Introduction to Fourier Transform Infrared Spectroscopy Introduction to Fourier Transform Infrared Spectroscopy Introduction What is FTIR? FTIR stands for Fourier transform infrared, the preferred method of infrared spectroscopy. In infrared spectroscopy, IR

More information

LIBSlab ANALYZERS ANALYZERS

LIBSlab ANALYZERS ANALYZERS ANALYZERS ANALYZERS Chemical multi-elemental analysis with LIBS in modular benchtop design LIBSlab LIBSpector compact sample chamber for the LIBS analysis of solid, liquid and gaseous samples. Sample chamber

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

Looking Forward through the Past: Status of the United States Nuclear Safeguards Reference Material Program at New Brunswick Laboratory

Looking Forward through the Past: Status of the United States Nuclear Safeguards Reference Material Program at New Brunswick Laboratory September General Staff Meeting Looking Forward through the Past: Status of the United States Nuclear Safeguards Reference Material Program at New Brunswick Laboratory Jon W. Neuhoff, Director New Brunswick

More information

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER

NUCLEAR TRANSMUTATION IN DEUTERED PD FILMS IRRADIATED BY AN UV LASER Castellano, et al. Nuclear Transmutation in Deutered Pd Films Irradiated by an UV Laser. in 8th International Conference on Cold Fusion. 2000. Lerici (La Spezia), Italy: Italian Physical Society, Bologna,

More information

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Damage to Molecular Solids Irradiated by X-ray Laser Beam WDS'11 Proceedings of Contributed Papers, Part II, 247 251, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Damage to Molecular Solids Irradiated by X-ray Laser Beam T. Burian, V. Hájková, J. Chalupský, L. Juha,

More information

THORIUM, PLUTONIUM, AND URANIUM IN WATER

THORIUM, PLUTONIUM, AND URANIUM IN WATER Analytical Procedure THORIUM, PLUTONIUM, AND URANIUM IN WATER 1. SCOPE 1.1. This is a method for the separation of thorium, plutonium and uranium in water. After completing this method, source preparation

More information

ICP-MS based methods for the quantitative analysis of nanoparticles in biological samples

ICP-MS based methods for the quantitative analysis of nanoparticles in biological samples ICP-MS based methods for the quantitative analysis of nanoparticles in biological samples Norbert Jakubowski Heike Traub Janina Kneipp, HU Daniela Drescher, HU norbert.jakubowski@bam.de BAM Federal Institute

More information

Lecture 1: RDCH 710 Introduction

Lecture 1: RDCH 710 Introduction Lecture 1: RDCH 710 Introduction Class organization Outcomes Grading Natural actinide species Th U Transuranic synthesis Lecture notes based on LANL radiochemistry course 1-1 Course overview The unique

More information

CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 250 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES

CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 250 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES CHARACTERISTICS OF LIGHT CHARGED PARTICLE EMISSION IN THE TERNARY FISSION OF 25 CF AND 252 CF AT DIFFERENT EXCITATION ENERGIES S. VERMOTE AND C. WAGEMANS Department of Physics and Astronomy, University

More information

TECHNETIUM-99 IN WATER

TECHNETIUM-99 IN WATER Analytical Procedure TECHNETIUM-99 IN WATER (TEVA DISC METHOD) 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in water. 1.2. This method does not address all aspects

More information

Chapter 2 MATERIALS, INSTRUMENTS AND TECHNIQUES

Chapter 2 MATERIALS, INSTRUMENTS AND TECHNIQUES Chapter 2 MATERIALS, INSTRUMENTS AND TECHNIQUES 2.1 Introduction In the previous chapter environmental radioactivity has been discussed in atmospheric environment, water, and soil. The origin and role

More information

Detectors for the measurement of ionizing radiation

Detectors for the measurement of ionizing radiation For the measurement of radiation, the following reactions during the irradiation of matter are predominantly utilized: Ionization in gases (Ionization chamber, proportional flow counter, release counter)

More information

CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE

CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE Copyright(c)JCPDS-International Centre for Diffraction Data 2000,Advances in X-ray Analysis,Vol.43 534 CHARACTERIZATION OF Pu-CONTAINING PARTICLES BY X-RAY MICROFLUORESCENCE Marco Mattiuzzi, Andrzej Markowicz,

More information

MM800 (a) Ion Exchange and ICP/MS of Uranium in Water. 1.0 Scope and Application

MM800 (a) Ion Exchange and ICP/MS of Uranium in Water. 1.0 Scope and Application Analytical/Inorganic MM800 (a) Ion Exchange and ICP/MS of Uranium in Water 1.0 Scope and Application This procedure can be used to determine U concentration or isotopic-ratio composition in groundwater

More information

Implementation of the NPT Safeguards Agreement in the Republic of Korea

Implementation of the NPT Safeguards Agreement in the Republic of Korea International Atomic Energy Agency Board of Governors GOV/2004/84 Date: 11 November 2004 Restricted Distribution Original: English For official use only Item 4(c) of the provisional agenda (GOV/2004/82)

More information

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS

Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Supporting Information Gold nanothorns macroporous silicon hybrid structure: a simple and ultrasensitive platform for SERS Kamran Khajehpour,* a Tim Williams, b,c Laure Bourgeois b,d and Sam Adeloju a

More information

Partial Neutron Capture Cross Section Determination of 237 Np, 242

Partial Neutron Capture Cross Section Determination of 237 Np, 242 Partial Neutron Capture Cross Section Determination of 237 Np, 242 Pu and 241 Am using Cold Neutron Beams Christoph Genreith 1, Matthias Rossbach 1 1 Institute of Energy and Climate Research, IEK-6, Forschungszentrum

More information

Uranium from water sample

Uranium from water sample Uranium from water sample Analysis of uranium from water sample Determination of uranium is based on radiochemical separation and alpha spectrometric measurements. Detailed description is presented below.

More information

Search for Nuclear Reaction Products in Gas Phase Experiments - Deuterium Permeation and Absorption -

Search for Nuclear Reaction Products in Gas Phase Experiments - Deuterium Permeation and Absorption - Session 3 O_2 Nuclear Measurements (I) Search for Nuclear Reaction Products in Gas Phase Experiments - Deuterium Permeation and Absorption - A. Kitamura 1, Y. Sasaki 1, Y. Miyoshi 1, Y. Yamaguchi 1, A.

More information

Electron-Induced X-Ray Intensity Ratios of Pb Lα/Lβ and As Kα/Kβ by kev Applied Voltages

Electron-Induced X-Ray Intensity Ratios of Pb Lα/Lβ and As Kα/Kβ by kev Applied Voltages Electron-Induced X-Ray Intensity Ratios of Pb Lα/Lβ and As Kα/Kβ by 18-30 kev Applied Voltages Bolortuya DAMDINSUREN and Jun KAWAI Department of Materials Science and Engineering, Kyoto University Sakyo-ku,

More information

Hot and active particles in alluvial soils and sediments of the Yenisei river: Radioisotope composition

Hot and active particles in alluvial soils and sediments of the Yenisei river: Radioisotope composition Radioprotection, vol.44, n 5 (2009) 227 231 C EDP Sciences, 2009 DOI: 10.1051/radiopro/20095045 Hot and active particles in alluvial soils and sediments of the Yenisei river: Radioisotope composition F.V.

More information

PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN)

PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN) PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN) C. Miandrinandrasana* LIAC; Faculty of Sciences University of Antananarivo

More information

Surface analysis techniques

Surface analysis techniques Experimental methods in physics Surface analysis techniques 3. Ion probes Elemental and molecular analysis Jean-Marc Bonard Academic year 10-11 3. Elemental and molecular analysis 3.1.!Secondary ion mass

More information

Hiden SIMS Secondary Ion Mass Spectrometers. Analysers for surface, elemental and molecular analysis

Hiden SIMS Secondary Ion Mass Spectrometers. Analysers for surface, elemental and molecular analysis Hiden SIMS Secondary Ion Mass Spectrometers Analysers for surface, elemental and molecular analysis vacuum analysis surface science plasma diagnostics gas analysis SIMS Versatility SIMS is a high sensitivity

More information

Energy. on this world and elsewhere. Visiting today: Prof. Paschke

Energy. on this world and elsewhere. Visiting today: Prof. Paschke Energy on this world and elsewhere Visiting today: Prof. Paschke Instructor: Gordon D. Cates Office: Physics 106a, Phone: (434) 924-4792 email: cates@virginia.edu Course web site available at www.phys.virginia.edu,

More information

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy

Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Analysis of Cadmium (Cd) in Plastic Using X-ray Fluorescence Spectroscopy Hiroshi Onodera Application & Research Center, JEOL Ltd. Introduction um, PBB and PBDE) are subject to usage restrictions in Europe.

More information

Application of Phosphorus-Containing Ion Exchangers for the Recovery and Separation of Uranium and Transuranic Elements

Application of Phosphorus-Containing Ion Exchangers for the Recovery and Separation of Uranium and Transuranic Elements Application of Phosphorus-Containing Ion Exchangers for the Recovery and Separation of Uranium and Transuranic Elements - 11490 Vladimir M.Gelis, Vitaly V.Milyutin, Evgeny A.Kozlitin, Natalya A.Nekrasova,

More information

EA-IRMS: Fast and Precise Isotope Analysis of Liquids on a Delta V Isotope Ratio MS with a High Temperature Conversion Elemental Analyzer

EA-IRMS: Fast and Precise Isotope Analysis of Liquids on a Delta V Isotope Ratio MS with a High Temperature Conversion Elemental Analyzer APPLICATION NOTE EA-IRMS: Fast and Precise Isotope Analysis of Liquids on a Delta V Isotope Ratio MS with a High Temperature Conversion Elemental Analyzer AN30180 Oliver Kracht, Andreas Hilkert, Thermo

More information

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA

WM2014 Conference, March 2 6, 2014, Phoenix, Arizona, USA Determination of Components of Fuel Matrix in Water and in Bottom Slimes in the MR Reactor Ponds in NRC Kurchatov Institute 14038 Alexey Stepanov *, Iurii Simirskii *, Ilya Semin *, Anatoly Volkovich *

More information

Thermo Scientific K-Alpha + XPS Spectrometer. Fast, powerful and accessible chemical analysis for surface and thin film characterization

Thermo Scientific K-Alpha + XPS Spectrometer. Fast, powerful and accessible chemical analysis for surface and thin film characterization Thermo Scientific K-Alpha + XPS Spectrometer Fast, powerful and accessible chemical analysis for surface and thin film characterization X-ray Photoelectron Spectroscopy Quantitative, chemical identification

More information

Development of advanced optical techniques for verification measurements Igor Jovanovic University of Michigan

Development of advanced optical techniques for verification measurements Igor Jovanovic University of Michigan Development of advanced optical techniques for verification measurements Igor Jovanovic University of Michigan Outline 1. Impetus and technical approach 2. Isotopic measurements from atomic and molecular

More information

TECHNETIUM-99 IN WATER

TECHNETIUM-99 IN WATER Analytical Procedure TECHNETIUM-99 IN WATER (WITH VACUUM BOX SYSTEM) 1. SCOPE 1.1. This procedure describes a method to separate and measure technetium-99 in water. 1.2. This method does not address all

More information

ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL

ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM METAL Copyright JCPDS - International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Volume 46. 369 ACCURATE QUANTIFICATION OF RADIOACTIVE MATERIALS BY X-RAY FLUORESCENCE: GALLIUM IN PLUTONIUM

More information

Behind the scenes: Scientific analysis of samples from nuclear inspections in Iraq

Behind the scenes: Scientific analysis of samples from nuclear inspections in Iraq Behind the scenes: Scientific analysis of samples from nuclear inspections in Iraq Scientists at the IAEA's Seibersdorf Laboratories have co-ordinated analytical efforts to document important findings

More information

Determination of plutonium isotopes in spent nuclear fuel using thermal ionization mass spectrometry (TI-MS) and alpha spectrometry

Determination of plutonium isotopes in spent nuclear fuel using thermal ionization mass spectrometry (TI-MS) and alpha spectrometry Determination of plutonium isotopes in spent nuclear fuel using thermal ionization mass spectrometry (TI-MS) and alpha spectrometry Petre M.G., Mincu M., Lazăr C., Androne G., Benga A. HOTLAB 2016, October

More information

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM

NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM NUCLEAR EMISSIONS FROM TITANIUM HYDRIDE/DEUTERIDE INDUCED BY POWERFUL PICOSECOND LASER BEAM A. S. ROUSSETSKI P.N. Lebedev Physical Institute Russian Academy of Sciences, 3 Leninsky prospect, 119991 Moscow,

More information

MODULE 4.3 Atmospheric analysis of particulates

MODULE 4.3 Atmospheric analysis of particulates MODULE 4.3 Atmospheric analysis of particulates Measurement And Characterisation Of The Particulate Content 1 Total particulate concentration 1 Composition of the particulate 1 Determination of particle

More information

Novel Technologies for IAEA Safeguards

Novel Technologies for IAEA Safeguards Novel Technologies for IAEA Safeguards C. Annese, A. Monteith and J.Whichello International Atomic Energy Agency, Vienna, Austria Abstract This paper will introduce the International Atomic Energy Agency

More information

Isotope Dilution Mass Spectrometry

Isotope Dilution Mass Spectrometry Isotope Dilution Mass Spectrometry J. Ignacio Garcia Alonso and Pablo Rodriguez-Gonzalez Faculty of Chemistry, University of Oviedo, Oviedo, Spain E-mail: jiga@uniovi.es, rodriguezpablo@uniovi.es RSC Publishing

More information

Hot particle measuring techniques and applications. Mats Eriksson IAEA-MEL

Hot particle measuring techniques and applications. Mats Eriksson IAEA-MEL Hot particle measuring techniques and applications IAEA-MEL Log-normal Particle size distribution Material dispersed after an explosion Mineral resources in the earth crust Pollutants in the air Log normal

More information

The PSI Hotlab Who we are and what we do NES Event

The PSI Hotlab Who we are and what we do NES Event WIR SCHAFFEN WISSEN HEUTE FÜR MORGEN Marco Streit :: NES / AHL The PSI Hotlab Who we are and what we do Highlights @ NES Event 24.10.2017 Facts & Figures of PSI Hotlab Built 1961 1963 (11 Mio CHF) Continuously

More information

CR-39 TRACK DETECTORS IN COLD FUSION EXPERIMENTS: REVIEW AND PERSPECTIVES. A. S. Roussetski

CR-39 TRACK DETECTORS IN COLD FUSION EXPERIMENTS: REVIEW AND PERSPECTIVES. A. S. Roussetski Introduction CR-39 TRACK DETECTORS IN COLD FUSION EXPERIMENTS: REVIEW AND PERSPECTIVES A. S. Roussetski P. N. Lebedev Physical Institute, Russian Academy of Sciences e-mail rusets@x4u.lebedev.ru Earlier

More information

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS)

SUPPORTING INFORMATION. A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) SUPPORTING INFORMATION A New Approach for the Surface Enhanced Resonance Raman Scattering (SERRS) Detection of Dopamine at Picomolar (pm) Levels in the Presence of Ascorbic Acid Murat Kaya, Mürvet Volkan

More information

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities Kavli Workshop for Journalists June 13th, 2007 CNF Cleanroom Activities Seeing nm-sized Objects with an SEM Lab experience: Scanning Electron Microscopy Equipment: Zeiss Supra 55VP Scanning electron microscopes

More information

Thermal and nonlinear optical studies of newly synthesized EDOT based bent-core and hockey-stick like liquid crystals

Thermal and nonlinear optical studies of newly synthesized EDOT based bent-core and hockey-stick like liquid crystals Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic supplementary information:

More information

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012

Laser Ablation for Chemical Analysis: 50 Years. Rick Russo Laser Damage Boulder, CA September 25, 2012 Laser Ablation for Chemical Analysis: 50 Years Rick Russo Lawrence Berkeley National Laboratory Applied Spectra, Inc 2012 Laser Damage Boulder, CA September 25, 2012 Laser Ablation for Chemical Analysis:

More information

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

Fabrication of micro-optical components in polymer using proton beam micro-machining and modification Nuclear Instruments and Methods in Physics Research B 210 (2003) 250 255 www.elsevier.com/locate/nimb Fabrication of micro-optical components in polymer using proton beam micro-machining and modification

More information

Core Physics Second Part How We Calculate LWRs

Core Physics Second Part How We Calculate LWRs Core Physics Second Part How We Calculate LWRs Dr. E. E. Pilat MIT NSED CANES Center for Advanced Nuclear Energy Systems Method of Attack Important nuclides Course of calc Point calc(pd + N) ϕ dn/dt N

More information

Supporting Information

Supporting Information Supporting Information Determination of 135 Cs and 135 Cs/ 137 Cs atom ratio in environmental samples by combining AMP selective Cs adsorption and ion-exchange chromatographic separation to triple quadrupole

More information

Stable isotope. Relative atomic mass

Stable isotope. Relative atomic mass Stable isotope Relative atomic mass Mole fraction 106 Cd 105.906 460 0.012 45 108 Cd 107.904 183 0.008 88 110 Cd 109.903 007 0.124 70 111 Cd 110.904 183 0.127 95 112 Cd 111.902 763 0.241 09 113 Cd 112.904

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Rapid Analytical Methods for Determination of Actinides

Rapid Analytical Methods for Determination of Actinides Rapid Analytical Methods for Determination of Actinides Xiongxin Dai Chalk River Laboratories Dosimetry Services Branch Atomic Energy of Canada Limited November 17, 2009 NKS-B RadWorkshop Risø-DTU, Roskidle,

More information

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec.

B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2: Fission and Other Neutron Reactions B. Rouben McMaster University Course EP 4D03/6D03 Nuclear Reactor Analysis (Reactor Physics) 2015 Sept.-Dec. 2015 September 1 Contents Concepts: Fission and other

More information

2. Which of the following statements help(s) to explain why gas can fill the vessel containing it completely while liquid cannot?

2. Which of the following statements help(s) to explain why gas can fill the vessel containing it completely while liquid cannot? Name: Class: ( ) There are 30 questions. Time Allowed: 45 min 1. Kinetic theory explains the behaviour of a substance in terms of the behaviour of the molecules in it. Which of the following is/are the

More information

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond.

Imaging Carbon materials with correlative Raman-SEM microscopy. Introduction. Raman, SEM and FIB within one chamber. Diamond. Imaging Carbon materials with correlative Raman-SEM microscopy Application Example Carbon materials are widely used in many industries for their exceptional properties. Electric conductance, light weight,

More information

International Atomic Energy Agency. Department of Nuclear Sciences and Applications. IAEA Environment Laboratories

International Atomic Energy Agency. Department of Nuclear Sciences and Applications. IAEA Environment Laboratories International Atomic Energy Agency Department of Nuclear Sciences and Applications IAEA Environment Laboratories Vienna International Centre, P.O. Box 100, 1400 Vienna, Austria REFERENCE SHEET CERTIFIED

More information

Hou, Xiaolin; Roos, Per. Published in: Analytica Chimica Acta. Link to article, DOI: /j.aca Publication date: 2008

Hou, Xiaolin; Roos, Per. Published in: Analytica Chimica Acta. Link to article, DOI: /j.aca Publication date: 2008 Downloaded from orbit.dtu.dk on: Jul 04, 2018 Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples

More information