ON THE ELECTROSPINNING OF PVB SOLUTIONS

Size: px
Start display at page:

Download "ON THE ELECTROSPINNING OF PVB SOLUTIONS"

Transcription

1 ON THE ELECTROSPINNING OF PVB SOLUTIONS Petra SVRCINOVA a, Petr FILIP a, Daniela LUBASOVA b a Institute of Hydrodynamics, Acad. Sci. Czech Rep., Pod Patankou 5, Prague 6, Czech Republic, svrcinova@ih.cas.cz b Technical University of Liberec, Fac. of Textile Engng, Dept. of Nonwovens, Studentska 2, Liberec, Czech Republic Abstract Extension rheological characteristics belong to the principal description of polymer jet formation during a process of electrospinning. However, in spite of nearly absence of shear deformation of polymer solutions during the process of their spinnability, it seems that shear electrorheological characteristics can serve as an indicator of good or bad quality of electrospun templates. The experiments were carried out with four polyvinylbutyral (PVB) solutions where as the solvents were consecutively used methanol, ethanol, isopropanol, and butanol in concentration of 10 wt% at 25 C. Shear viscosities in absence (η 0 ) and presence (η) of electric field were measured using an Anton Paar rotational rheometer MCR 501 equipped with an electrorheological cell C-PTD200/E (bob and cup arrangement). The electrospun fibres were obtained from the solutions at 30kV with a tip-to-collector distance of 10 cm (=300 V/mm). The surface characteristics of the prepared nanofibre sheets were observed with a scanning electron microscope Vega TS It was shown that the good solvents of PVB (butanol, isopropanol) exhibit an almost constant curve of η/η 0 vs. electric field strength, whereas the viscosity curves for the poor solvents (methanol, ethanol) exhibit enhancement. This enhancement corresponds to better quality of electrospun templates (obtained for polymer solutions of PVB with poor solvents). Keywords: electrospinning; elongational viscosity; polyvinylbutyral (PVB) 1. INTRODUCTION The process of electrospinning is based on electrical charge the application of which enables drawing microor nano-fibres from a polymer solution or melt. The electric field is generated between a tip and grounded collector by a high-voltage power supply. The drop of polymer solution is stored on a tip, from where there is created a Taylor cone in presence of electric field, and then a single fluid jet is ejected from the apex. As the charged jet travels in air, its diameter decreases due to high extension rates and simultaneous effect of stretching of the jet and evaporation of the solvent. A typical electrospinning process (Fig.1) is described extensively in the literature [1-4]. With respect to their small diameters, the electrospun fibres have a large specific surface and the potential application of fibres is in various areas such as tissue scaffolds, filtration, nanocomposite material and protective clothing [3,5,6]. Viscosity, conductivity, concentration, surface tension of polymer solution, molecular weight, intensity of electric field strength, tip-to-collector distance, temperature, humidity range among the principal parameters affecting fibre formation. The viscosity of polymer solution has an impact on diameter of fibres, morphology and path of jet, this parameter can be varied by molecular weight of polymer, concentration of solution, type of solvent, temperature and additives. The effect of viscosity, conductivity and surface tension has been investigated by Fong et al. [7]. They demonstrated that a usage of the polymer solution with low viscosity results in the formation of beads caused by the capillary breakup of the jet during the electrospinning due to dominating surface tension. Higher viscosity favours the formation of fibres without beads, however if viscosity of solution is too high, electrospinning is no longer possible. Wang et al. [8] performed elongation rheology

2 measurements with polymer solutions and they found that a slower rate of capillary thinning is expected to correlate with better spinnability of the polymer solution. Chuangchote et al. [9] applied several different solvents to electrospinning of poly(vinyl pyrrolidone) fibres and studied an influence of concentration and viscosity of solutions on a fibre diameter. Drew et al. [10] demonstrated that the effect of viscosity on fibre morphology is independent of polymer concentration (for the values exceeding a minimum concentration). They showed that electrospun fibres of polyethylene oxide can be successfully fabricated consisting only of 25 wt% polymer, the remainder of the fibre weight consisted of titanium dioxide. Fig. 1. Sketch of an electrospinning apparatus. Winslow [11,12] was the first who started research of rheological behaviour of liquids under a presence of electric field. Especially viscosity η as a main characteristic of so-called electrorheological (ER) fluids is studied. Generally, ER fluids are suspensions for which viscosity in presence of electric field increases intensively. Using quasielastic light scattering (QELS) Price et al. [13] analyzed the effect of external electric field on the dynamics of polymer chains. They found that in presence of an electric field there is a polarisation effect which is dependent on a difference in permittivity between the polymer segments and solvent. Wang and Huang [14] applied dynamic light scattering (DLS) for a qualitative comparison when a non-polar polymer (polystyrene) is solved either in polar or non-polar solvent. They revealed that in the latter case the effects from the externally applied electric field were negligible. This motivated Chen et al. [15] who carried out molecular dynamics simulation to predict the effects of external electric field on the diffusion dynamics of a polar or non-polar chain in polar or non-polar solvents. This contribution describes the suitability (characterised by structure and dynamics of polymer chains in a solution) of various polyvinylbutyral (PVB) solutions for the process of electrospinning. As a criterion shear rheological behaviour of these materials is taken into account, viz. a course of a curve viscosity ratio η/η 0 vs. electric field strength E. The symbols η and η 0 represent shear viscosities of a solution in the presence and absence of an electric field, respectively. In spite of high elongation rates that are imposed on jets during electrospinning, the present work focuses on a correlation between shear rheology of a polymer solution and its electrostatic spinnability. 2. EXPERIMENTAL The polyvinylbutyral (PVB) was chosen for this experiment, the commonly used polymer as the mesopore template, which is non-toxic, odourless and environment friendly. PVB (M w =60,000 g/mol; Mowital, Kuraray Specialities Europe (KSE)) was consecutively dissolved in methanol, ethanol, isopropanol, and butanol as

3 10wt % solution (basic characteristics in Table 1) at 25 C. For viscosity measurements there was used an Anton Paar rotational rheometer MCR 501 equipped with an electrorheological cell C-PTD200/E (bob and cup arrangement, diameter of 17 mm). The electrospun fibres were obtained from the solution at 30kV with a tip-to-collector distance of 10 cm (=300 V/mm). The surface characteristics of the prepared nanofibre sheets were observed with a scanning electron microscope Vega TS Table 1. Basic characteristics of the solvents used and PVB. Relative permittivity [-] Specific conductivity [S/m] Surface tension [mn/m] Density [g/cm 3 ] Methanol * Ethanol * Isopropanol * Butanol * PVB * The shear viscosities of all solutions were measured in the ramp mode using bob and cup arrangement, diameter 27mm. Fig.2 depicts shear viscosity of PVB dissolved in alcohols as 10 wt% solutions. PVB dissolved in good solvents (butanol, isopropanol) show shear thinning behaviour at high shear rates >100s -1 and their zero shear viscosities are higher. On the contrary, for poor solvents (methanol, ethanol) the viscosities are constant, zero shear viscosities are lower. For each solution there were carried out the experiments relating the viscosity ratio η/η 0 to the electric field strength E (Fig.3). The good solvents of PVB exhibit an almost constant curve of η/η 0 vs. E, whereas the viscosity curves for the poor solvents exhibit enhancement. Shear viscosity η [Pa.s] wt % PVB solutions, T=25 C Isopropanol Butanol Ethanol Methanol Shear rate γ [s -1 ] Fig. 2. Shear viscosity of PVB solutions (absence of electric field strength).

4 2 Viscosity ratio η/η wt% PVB solutions, T=25 C. Shear rate γ= 6.58 s -1 Methanol Ethanol Isopropanol Butanol Electric field strength E [V/mm] Fig. 3. Dependence of viscosity ratio η/η 0 on electric field strength for PVB solutions. Consequently, the quality of electrostatic spinnability of these materials was evaluated using SEM analysis. For 10 wt% PVB solutions the fibres were exhibited for ethanol and methanol only (Fig.3). It was shown that with increasing curve η/η 0 vs. E the spinnability of the respective solution improves. Based on the above findings it was shown that, unlike butanol and isopropanol, ethanol and methanol as the solvents of PVB are suitable for electrospinning. a) b) c) d) Fig. 4. SEM micrographs of PVB electrospun from 10 wt% solution: a) PVB in butanol, b) PVB in isopropanol, c) PVB in ethanol, d) PVB in methanol. 3. RESULTS AND DISCUSSION Impact of the solvents on electrostatic spinnability is validated through the SEM images. There were obtained no fibres for PVB dissolved in butanol and isopropanol (good solvents), whereas for PVB dissolved in ethanol and methanol (poor solvents) there were developed fibre sheets, see Fig.4. The shape of the polymer chain depends on solubility of polymer in a solvent. If the individual polymer chains in good solvent are free to uncoil and stretch, they exhibit relatively extended conformations, viscosity of solution is high. On the contrary when polymer chains stay coiled and grouped together into microscopic clusters then this topology reflects in lower viscosity. If the external electric field is applied, the polymer chains uncoil and stretch, therefore the viscosity of solution increases and the process of electrospinning is much easier. If the polymer chain in good solvent is uncoiled and stretched then in presence of electric field polymer chain will not react.

5 For electrorheological fluids a rapid and reversible change in viscosity is observed after application of an electric field. In this case there was observed a moderate increase of viscosity of a polymer solution, it is dependent on the time and intensity of treatment of an electric field. Accordingly it is possible that a polymer chain changes its shape uncoils and stretches. Presumably, this movement is very important for the process of electrospinning. 4. CONCLUSION The electrospinning process is affected by a number of the parameters. This contribution focused on the impact of an electric field on shear viscosity of the polymer solutions. It was shown that PVB dissolved in a poor solvent exhibited viscosity enhancement in the presence of an electric field. From this effect it can be deduced that these solvents are suitable for electrospinning. The electrorheological properties of the individual solvents play a substantial role in the process of electrospinning. It was found the correlation between shear viscosity and electrostatic spinnability. Structure of nanofibres was documented by the SEM images. ACKNOWLEDGEMENT The authors wish to acknowledge GA AS CR for the financial support of Grant No. A REFERENCES [1] Ramakrishna,S., Fujihara,K., Teo,W.E., Lim,T.C., Ma,Z. An Introduction to Electrospinning and Nanofibres. World Scientific Publishing Co., Singapore, [2] Andrady,A.L. Science and Technology of Polymer Nanofibers. John Wiley & Sons, New Jersey, [3] Huang,Z.-M., Zhang,Y.-Z., Kotaki,M., Ramakrishna,S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Comp.Sci.Tech. 63 (2003), [4] Reneker,D.H., Yarin,A.L. Electrospinning jets and polymer nanofibers. Polymer 49 (2008), [5] Doshi,J., Reneker,D.H. Electrospinning process and applications of electrospun fibers. J.Electrostat. 35 (1995), [6] Gibson,P., Schreuder-Gibson,H., Rivin,D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2001), [7] Fong,H., Chun,I., Reneker,D.H. Beaded nanofibres formed during electrospinning. Polymer 40 (1999), [8] Wang,M., Hsieh,A.J., Rutledge,G.C. Electrospinning of poly(mma-co-maa) copolymers and their layered silicate nanocomposites for improved thermal properties. Polymer 46 (2005), [9] Chuangchote,S., Sagawa,T., Yoshikawa,S. Electrospinning of poly(vinyl pyrrolidone): Effects of solvents on electrospinnability for the fabrication of poly(p-phenylene vinylene) and TiO 2 nanofibers. J.Appl.Polym.Sci. 114 (2009), [10] Drew,C., Wang,X., Samuelson,L.A., Kumar,J. The Effect of Viscosity and Filler on Electrospun Fiber Morphology. J.Macromol.Sci., Part A - Pure Appl.Chem. A40 (2003), [11] Winslow,W.M. Method and means for translating electrical impulses into mechanical force. 1947, U.S. Patent 2,417,850. [12] Winslow,W.M. - Induced fibrillation of suspensions. J.Appl.Phys. 20 (1949), [13] Price,C., Deng,N., Llyond,F.R., LI,H., Booth,C. Studies of polystyrene solution in an electric field: viscosity and dynamic light scattering. J.Chem.Soc., Faraday Trans. 91 (1995), [14] Wang,C.H., Huang,Q.R. Effects of external electric field on semidilute polymer solutions probed by dynamic light scattering. J.Chem.Phys. 106 (1997), [15] Chen,C.-L., Hua,C.-Y., Wu,C.-R. Computer simulation of polymer diffusion under external electric field. Macromol.Theory Simul. 10 (2001),

Electrospinning of PVB Solved in Methanol and Isopropanol

Electrospinning of PVB Solved in Methanol and Isopropanol Electrospinning of PVB Solved in Methanol and Isopropanol M. STENICKA 1,2, P. PEER-SVRCINOVA 3, P. FILIP 3, V. PAVLINEK 1,4, M. MACHOVSKY 1,4 1 Centre of Polymer Systems, University Institute Nad Ovcirnou

More information

THE STUDY OF POROUS NANOFIBRES MORFOLOGY MADE FROM PCL IN DEPENDENCE ON THE ELECTROSPINNING PARAMETRES AND SOLUTION COMPOSITION

THE STUDY OF POROUS NANOFIBRES MORFOLOGY MADE FROM PCL IN DEPENDENCE ON THE ELECTROSPINNING PARAMETRES AND SOLUTION COMPOSITION THE STUDY OF POROUS NANOFIBRES MORFOLOGY MADE FROM PCL IN DEPENDENCE ON THE ELECTROSPINNING PARAMETRES AND SOLUTION COMPOSITION Eva MACAJOVÁ, Iva DUFKOVÁ, Pavel KEJZLAR Department of Material Science,

More information

EFFECT OF CONCENTRATION AND SALT ADDITIVE ON TAYLOR CONE STRUCTURE. Baturalp YALCINKAYA, Fatma YENER, Funda Cengiz-Çallıoğlu, Oldrich JIRSAK

EFFECT OF CONCENTRATION AND SALT ADDITIVE ON TAYLOR CONE STRUCTURE. Baturalp YALCINKAYA, Fatma YENER, Funda Cengiz-Çallıoğlu, Oldrich JIRSAK EFFECT OF CONCENTRATION AND SALT ADDITIVE ON TAYLOR CONE STRUCTURE Baturalp YALCINKAYA, Fatma YENER, Funda Cengiz-Çallıoğlu, Oldrich JIRSAK Nonwoven Department, Faculty of Textile Engineering, Technical

More information

The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning

The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning David Petras a,b, Petr Slobodian a, Vladimír Pavlínek a, Petr Sáha a and Dušan Kimmer b a

More information

INITIAL STUDY OF STRUCTURE OF NANOFIBER TEXTILES AND THE CREATIN OF ITS MODEL

INITIAL STUDY OF STRUCTURE OF NANOFIBER TEXTILES AND THE CREATIN OF ITS MODEL INITIAL STUDY OF STRUCTURE OF NANOFIBER TEXTILES AND THE CREATIN OF ITS MODEL HAVRLÍK Michal 1, SVESHNIKOV Alexey 1,2 1 CTU Czech Technical University in Prague, Prague, Czech Republic, EU 2 Institute

More information

EFFECT OF CALCIUM CHLORIDE ON ELECTROSPINNING OF SILK FIBROIN NANOFIBRES

EFFECT OF CALCIUM CHLORIDE ON ELECTROSPINNING OF SILK FIBROIN NANOFIBRES EFFECT OF CALCIUM CHLORIDE ON ELECTROSPINNING OF SILK FIBROIN NANOFIBRES Nongnut Sasithorn 1 and Lenka Martinová 2 1 Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens

More information

M98-D01 1. A Fundamental Investigation of the Formation and Properties of Electrospun Fibers

M98-D01 1. A Fundamental Investigation of the Formation and Properties of Electrospun Fibers M98-D01 1 A Fundamental Investigation of the Formation and Properties of Electrospun Fibers S.B. Warner, A. Buer, S.C. Ugbolue Department of Textile Sciences, University of Massachusetts Dartmouth, Dartmouth,

More information

Synthesis of Titanium Dioxide Shell-Core Ceramic Nano Fibers by Electrospin Method

Synthesis of Titanium Dioxide Shell-Core Ceramic Nano Fibers by Electrospin Method International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.6, No.1, pp 807-815, Jan-March 2014 Synthesis of Titanium Dioxide Shell-Core Ceramic Nano Fibers by Electrospin Method

More information

Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy

Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy Mater. Res. Soc. Symp. Proc. Vol. 1025 2008 Materials Research Society 1025-B12-10 Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy Shuangwu

More information

Contents. Foreword by Darrell H. Reneker

Contents. Foreword by Darrell H. Reneker Table of Foreword by Darrell H. Reneker Preface page xi xiii 1 Introduction 1 1.1 How big is a nanometer? 1 1.2 What is nanotechnology? 1 1.3 Historical development of nanotechnology 2 1.4 Classification

More information

NWRI Graduate Research Fellowship Progress Report

NWRI Graduate Research Fellowship Progress Report NWRI Graduate Research Fellowship Progress Report Natalia Hoogesteijn von Reitzenstein, Arizona State University October 2015 Background Electrospun polymer fibers with diameters in the submicron to nanometer

More information

A Visualization Technique for Mapping the Velocity of Raising Fibers Production in an Electrostatic Field

A Visualization Technique for Mapping the Velocity of Raising Fibers Production in an Electrostatic Field International Journal of Electrospun Nanofibers and Applications, Vol. 4, No. 1 (January-June, 2018) ISSN : 0973-628X A Visualization Technique for Mapping the Velocity of Raising Fibers Production in

More information

NUMERICAL SIMULATION STUDY OF A STABLE JET SHAPE VARIATION IN ELECTROSPINNING. Donghua University, Shanghai , P. R. China

NUMERICAL SIMULATION STUDY OF A STABLE JET SHAPE VARIATION IN ELECTROSPINNING. Donghua University, Shanghai , P. R. China NUMERICAL SIMULATION STUDY OF A STABLE JET SHAPE VARIATION IN ELECTROSPINNING Liang WEI 1,Xiaohong QIN 1*,Lin JIA 2 1 Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles,

More information

Formation of Electrospun PVA Mats on Different Types of Support Materials Using Various Kinds of Grounded Electrodes

Formation of Electrospun PVA Mats on Different Types of Support Materials Using Various Kinds of Grounded Electrodes Erika Adomavičiūtė, Sigitas Stanys Kaunas University of Technology, Department of Textile Technology, Studentu 56, LT51424Kaunas, Lithuania Email: erika.adomaviciute@ktu.lt Formation of Electrospun PVA

More information

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ THE ROLE OF RHEOLOGICAL PROPERTIES OF POLYMER SOLUTIONS IN NEEDLELESS ELECTROSPINNING Dao Anh Tuan AUTOREFERÁT DISERTAČNÍ PRÁCE Název disertační práce: THE

More information

Influence of the Shape of the Bottom Rotating Electrode on the Structure of Electrospun Mats

Influence of the Shape of the Bottom Rotating Electrode on the Structure of Electrospun Mats Erika Adomavičiūtė, Sigitas Stanys, Aušra Banuškevičiūtė, Rimvydas Milašius Kaunas University of Technology, Department of Textile Technology, Studentu 56, LT-51424 Kaunas, Lithuania E-mail: erika.adomaviciute@ktu.lt

More information

Influence of inorganic additives on morphology of electrospun fibres

Influence of inorganic additives on morphology of electrospun fibres International Scientific Journal published monthly by the of Achievements in Materials and Manufacturing Engineering World Academy of Materials and Manufacturing Engineering Influence of inorganic additives

More information

Insights into the power law relationships that describe mass deposition rates during electrospinning

Insights into the power law relationships that describe mass deposition rates during electrospinning From the SelectedWorks of Jonathan J Stanger February 1, 2012 Insights into the power law relationships that describe mass deposition rates during electrospinning Jonathan J Stanger Nick Tucker Simon Fullick

More information

Electrospinning of high-molecule PEO solution

Electrospinning of high-molecule PEO solution From the SelectedWorks of Ji-Huan He 2007 Electrospinning of high-molecule PEO solution Yu-Qin Wan Ji-Huan He, Donghua University Jian-Yong Yu Yue Wu Available at: https://works.bepress.com/ji_huan_he/20/

More information

Electrospun nanofibers: challenges and opportunities. Saša Baumgartner University of Ljubljana Faculty of Pharmacy Slovenia.

Electrospun nanofibers: challenges and opportunities. Saša Baumgartner University of Ljubljana Faculty of Pharmacy Slovenia. Electrospun nanofibers: challenges and opportunities Saša Baumgartner University of Ljubljana Faculty of Pharmacy Slovenia November, 2014 Outline Nanofibers and their application The electrospinning process

More information

THERMAL PROPERTIES OF SILICON OXIDE NANOFIBERS

THERMAL PROPERTIES OF SILICON OXIDE NANOFIBERS THERMAL PROPERTIES OF SILICON OXIDE NANOFIBERS J. Studničková, 1 M. Maršálková, 2 P. Exnar, 3 J. Grabműllerová, 2 J. Műllerová 3 1 Technical University of Liberec, Department of Textile Chemistry; Hálkova

More information

SORPTION PROCESS USING POLYAMIDE NANOFIBRES TO REMOVE DYE FROM SIMULATED WASTEWATER. Jakub WIENER, Sihle NTAKA, P. S. NGCOBO, Roman KNÍŽEK

SORPTION PROCESS USING POLYAMIDE NANOFIBRES TO REMOVE DYE FROM SIMULATED WASTEWATER. Jakub WIENER, Sihle NTAKA, P. S. NGCOBO, Roman KNÍŽEK SORPTION PROCESS USING POLYAMIDE NANOFIBRES TO REMOVE DYE FROM SIMULATED WASTEWATER Jakub WIENER, Sihle NTAKA, P. S. NGCOBO, Roman KNÍŽEK Technical University of Liberec, Studentská 2, 461 17 Liberec,

More information

ARTICLE IN PRESS Carbohydrate Polymers xxx (2010) xxx xxx

ARTICLE IN PRESS Carbohydrate Polymers xxx (2010) xxx xxx Carbohydrate Polymers xxx (2010) xxx xxx Contents lists available at ScienceDirect Carbohydrate Polymers journal homepage: www.elsevier.com/locate/carbpol Short communication Effects of solution properties

More information

Influence of the electrospinning parameters on the morphology of composite nanofibers

Influence of the electrospinning parameters on the morphology of composite nanofibers Volume 69 Issue 1 September 14 Pages 32-37 International Scientific Journal published monthly by the World Academy of Materials and Manufacturing Engineering Influence of the electrospinning parameters

More information

THE STUDY OF ELECTROSPUN NANOFIBERS AND THE APPLICATION OF ELECTROSPINNING IN ENGINEERING EDUCATION. A Thesis CHRISTOPHER CALVIN CALL

THE STUDY OF ELECTROSPUN NANOFIBERS AND THE APPLICATION OF ELECTROSPINNING IN ENGINEERING EDUCATION. A Thesis CHRISTOPHER CALVIN CALL THE STUDY OF ELECTROSPUN NANOFIBERS AND THE APPLICATION OF ELECTROSPINNING IN ENGINEERING EDUCATION A Thesis by CHRISTOPHER CALVIN CALL Submitted to the Office of Graduate Studies of Texas A&M University

More information

Polystyrene. Erica Wilkes

Polystyrene. Erica Wilkes Polystyrene Erica Wilkes Polystyrene is a polymer made from the synthetic aromatic monomer styrene. Styrene in turn comes from the catalytic dehydrogenation of ethylbenzene. Although ethylbenzene is found

More information

Effect of Charge Density on the Taylor Cone in Electrospinning

Effect of Charge Density on the Taylor Cone in Electrospinning From the SelectedWorks of Jonathan J Stanger 29 Effect of Charge Density on the Taylor Cone in Electrospinning Jonathan J Stanger Nick Tucker Kerry Kirwan Stuart Coles Daniel Jacobs, et al. Available at:

More information

Electrospinning of 100% Carboxymethyl Chitosan Nanofibers

Electrospinning of 100% Carboxymethyl Chitosan Nanofibers Electrospinning of 100% Carboxymethyl Chitosan Nanofibers Negar Sohofi, Hossein Tavanai, PhD, Mohammad Morshed, Amir Abdolmaleki Isfahan University of Technology, Isfahan IRAN Correspondence to: Hossein

More information

TITLE: Polymer Adsorption on Nano Fibrillar Cellulose and its Effects on Suspension Rheology

TITLE: Polymer Adsorption on Nano Fibrillar Cellulose and its Effects on Suspension Rheology TITLE: Polymer Adsorption on Nano Fibrillar Cellulose and its Effects on Suspension Rheology AUTHORS: Kristýna Hlisnikovská and Lars Järnström, Karlstad University, Dept. of Chemical Engineering, 651 88

More information

Polímeros: Ciência e Tecnologia ISSN: Associação Brasileira de Polímeros Brasil

Polímeros: Ciência e Tecnologia ISSN: Associação Brasileira de Polímeros Brasil Polímeros: Ciência e Tecnologia ISSN: 0104-1428 abpol@abpol.org.br Associação Brasileira de Polímeros Brasil Gomes, Demetrius S.; da Silva, Ana N. R.; Morimoto, Nilton I.; Mendes, Luiz T. F.; Furlan, Rogerio;

More information

SPUR a.s., trida Tomase Bati 299, Louky, Zlin, Czech Republic 2

SPUR a.s., trida Tomase Bati 299, Louky, Zlin, Czech Republic 2 MODELING AND PREPARATION OF NANOFIBRE AND COMPOSITE NANOSTRUCTURES Dušan Kimmer 1a, Ivo Vincent 1, Lenka Lovecká 1, Wannes Sambaer 2, Martin Zatloukal 2, Jakub Ondráček 3, Jaroslav Lev 4, Tomáš Kazda 5,

More information

Crimped polymer nanofibres by air-driven electrospinning

Crimped polymer nanofibres by air-driven electrospinning European Polymer Journal 43 (2007) 2792 2798 Macromolecular Nanotechnology Crimped polymer nanofibres by air-driven electrospinning A. Varesano, A. Montarsolo, C. Tonin * CNR-ISMAC, Institute for Macromolecular

More information

DEPOSITION AND FILTERING OF RADON PROGENY DRIVEN BY ELECTROSPINNING

DEPOSITION AND FILTERING OF RADON PROGENY DRIVEN BY ELECTROSPINNING DEPOSITION AND FILTERING OF RADON PROGENY DRIVEN BY ELECTROSPINNING Petr Mikeš a,b*, Pavel Pokorný a, David Lukáš a,b, Chen-Chih Tsai b a Technical University of Liberec, Faculty of Textile Engineering-NanoScience

More information

This work reports the effects of solvent properties, solvent system, electrostatic field

This work reports the effects of solvent properties, solvent system, electrostatic field Iranian Polymer Journal 15 (4), 2006, 341-354 Available online at: http://journal.ippi.ac.ir Effects of Solvent Properties, Solvent System, Electrostatic Field Strength, and Inorganic Salt Addition on

More information

Needleless Electrospinning

Needleless Electrospinning Needleless Electrospinning Relaxation time of the aqueous solutions of poly (vinyl alcohol) ROXANA DELIU 1, IOAN GABRIEL SANDU 2,3, ROMEN BUTNARU 1, DAVID LUKAS 4, ION SANDU5 * 1 Gheorghe Asachi Technical

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction This thesis is concerned with the behaviour of polymers in flow. Both polymers in solutions and polymer melts will be discussed. The field of research that studies the flow behaviour

More information

Research Article Electrospun Polyvinylpyrrolidone-Based Nanocomposite Fibers Containing (Ni 0.6 Zn 0.4 )Fe 2 O 4

Research Article Electrospun Polyvinylpyrrolidone-Based Nanocomposite Fibers Containing (Ni 0.6 Zn 0.4 )Fe 2 O 4 Hindawi Publishing Corporation Journal of Nanotechnology Volume, Article ID 38438, 5 pages doi:.55//38438 Research Article Electrospun Polyvinylpyrrolidone-Based Nanocomposite Fibers Containing (Ni.6 Zn.4

More information

Rheological and Electrical Properties of PS/Multi-Walled Carbon Nanotube Nanocomposites Prepared by Latex Technology

Rheological and Electrical Properties of PS/Multi-Walled Carbon Nanotube Nanocomposites Prepared by Latex Technology ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 19, 2011 Rheological and Electrical Properties of PS/Multi-Walled Carbon Nanotube Nanocomposites Prepared by Latex Technology Myung-Hwan Kang, Won

More information

RHEOLOGY AS A POWERFULL TOOL FOR SCIENTIFIC AS WELL INDUSTRIAL CHARACTERISATION OF NEW MATERIALS BASED ON POLYMER-CLAY NANOCOMPOSITES.

RHEOLOGY AS A POWERFULL TOOL FOR SCIENTIFIC AS WELL INDUSTRIAL CHARACTERISATION OF NEW MATERIALS BASED ON POLYMER-CLAY NANOCOMPOSITES. RHEOLOGY AS A POWERFULL TOOL FOR SCIENTIFIC AS WELL INDUSTRIAL CHARACTERISATION OF NEW MATERIALS BASED ON POLYMER-CLAY NANOCOMPOSITES Milan Kracalik Johannes Kepler University Linz, Institute of Polymer

More information

Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach

Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach Polymer 44 (2003) 6353 6359 www.elsevier.com/locate/polymer Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach Pankaj Gupta, Garth L. Wilkes* Department

More information

THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES

THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1441-1446 1441 Introduction THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES by Ya LI a, Xue-Wei LI a,b, Ji-Huan HE a*,

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

Fabrication and Characterization of PMMA/Carbon Electro Spun Nanofibers in Two Different Solvents

Fabrication and Characterization of PMMA/Carbon Electro Spun Nanofibers in Two Different Solvents International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=journalofbasicandapplied --------------------------------------------------------------------------------------------------------------------------------------

More information

Xin Zhang, Weiwei Chen, Jianjun Wang, Yang Shen*, Yuanhua Lin, and Ce-Wen

Xin Zhang, Weiwei Chen, Jianjun Wang, Yang Shen*, Yuanhua Lin, and Ce-Wen Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information to Hierarchical Interfaces Induce High-Dielectric Permittivity in Nanocomposites

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

On Relationship between PVT and Rheological Measurements of Polymer Melts

On Relationship between PVT and Rheological Measurements of Polymer Melts ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 3, 2005 On Relationship between PVT and Rheological Measurements of Polymer Melts Tomas Sedlacek, Peter Filip 2, Peter Saha Polymer Centre, Faculty

More information

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS Ali Zarrabi a, Manouchehr Vossoughi b a Institute for Nanscience & Nanotechnology,

More information

Melt-electrospinning part I: processing parameters and geometric properties

Melt-electrospinning part I: processing parameters and geometric properties Polymer 45 (2004) 7597 7603 www.elsevier.com/locate/polymer Melt-electrospinning part I: processing parameters and geometric properties Jason Lyons*, Christopher Li, Frank Ko Department of Materials Science

More information

Abstract. CANNON, KRISTIN M. Electrospinning Water Dispersible Polymers. (Under the direction of Behnam Pourdeyhimi and Samuel M. Hudson.

Abstract. CANNON, KRISTIN M. Electrospinning Water Dispersible Polymers. (Under the direction of Behnam Pourdeyhimi and Samuel M. Hudson. Abstract CANNON, KRISTIN M. Electrospinning Water Dispersible Polymers. (Under the direction of Behnam Pourdeyhimi and Samuel M. Hudson.) Water-based electrospinning systems are important not only for

More information

Viscoelastic Flows in Abrupt Contraction-Expansions

Viscoelastic Flows in Abrupt Contraction-Expansions Viscoelastic Flows in Abrupt Contraction-Expansions I. Fluid Rheology extension. In this note (I of IV) we summarize the rheological properties of the test fluid in shear and The viscoelastic fluid consists

More information

SILVER PARTICLES INCORPORATION TO NANOFIBRE STRUCTURE FOR SURFACE MEMBRANE MODIFICATION

SILVER PARTICLES INCORPORATION TO NANOFIBRE STRUCTURE FOR SURFACE MEMBRANE MODIFICATION SILVER PARTICLES INCORPORATION TO NANOFIBRE STRUCTURE FOR SURFACE MEMBRANE MODIFICATION Abstract Jan DOLINA a, Tomáš LEDERER a a TECHNICAL UNIVERSITY LIBEREC, Studentská 1402/2 461 17 Liberec 1, Czech

More information

Introduction to Nanotechnology

Introduction to Nanotechnology Introduction to Nanotechnology Textbook: Nanophysics and Nanotechnology by: Edward L. Wolf Instructor: H. Hosseinkhani E-mail: hosseinkhani@yahoo.com Classroom: A209 Time: Thursday; 13:40-16:30 PM Office

More information

Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison

Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison eproceedings Chemistry 2 (2017) 76-82 eissn 2550-1453 http://eproceedings.chemistry.utm.my/ Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison

More information

Surface Characterization of Argon Plasma treated Electrospun P(HOLA-e-CL) Clay Nanocomposite

Surface Characterization of Argon Plasma treated Electrospun P(HOLA-e-CL) Clay Nanocomposite International Journal of Agricultural Technology 2014 Vol. 10(1):29-37 Available online http://www.ijat-aatsea.com Fungal Diversity ISSN 2630-0192 (Online) Surface Characterization of Argon Plasma treated

More information

ELECTROSPUN POLY (L-LACTIDE-CO-Ɛ-CAPROLACTONE) (PLCL) NANOFIBERS STRUCTURAL EVOLUSION IN SERIES OF BINARY SOLVENT SYSTEMS

ELECTROSPUN POLY (L-LACTIDE-CO-Ɛ-CAPROLACTONE) (PLCL) NANOFIBERS STRUCTURAL EVOLUSION IN SERIES OF BINARY SOLVENT SYSTEMS J. Solid St. Sci. & Technol. Letters, 2015, Vol. 16 No. 1-2, pp. 15-21 http://letters.masshp.net/ ISSN 0128-8393 ELECTROSPUN POLY (L-LACTIDE-CO-Ɛ-CAPROLACTONE) (PLCL) NANOFIBERS STRUCTURAL EVOLUSION IN

More information

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution.

Polymer dynamics. Course M6 Lecture 5 26/1/2004 (JAE) 5.1 Introduction. Diffusion of polymers in melts and dilute solution. Course M6 Lecture 5 6//004 Polymer dynamics Diffusion of polymers in melts and dilute solution Dr James Elliott 5. Introduction So far, we have considered the static configurations and morphologies of

More information

Cooperative Charging Effects of Fibers from Electrospinning of Electrically Dissimilar Polymers

Cooperative Charging Effects of Fibers from Electrospinning of Electrically Dissimilar Polymers ORIGINAL PAPER/PEER-REVIEWED Cooperative Charging Effects of Fibers from Electrospinning of Electrically Dissimilar Polymers By Heidi L. Schreuder-Gibson and Phil Gibson, U.S. Army Research, Development

More information

FORMATION OF FIBERS AND SPHERES BY ELECTROSPINNING OF POLYETHYLENE OXIDE SOLUTION ATUL NARASIMHAN. Oklahoma State University. Stillwater, Oklahoma

FORMATION OF FIBERS AND SPHERES BY ELECTROSPINNING OF POLYETHYLENE OXIDE SOLUTION ATUL NARASIMHAN. Oklahoma State University. Stillwater, Oklahoma FORMATION OF FIBERS AND SPHERES BY ELECTROSPINNING OF POLYETHYLENE OXIDE SOLUTION By ATUL NARASIMHAN Bachelor of Science in Mechanical Engineering Oklahoma State University Stillwater, Oklahoma 2008 Submitted

More information

Effect of Ethanol/water Solvent Ratios on the Morphology of Zein Nanofiber Mats and their Wettability

Effect of Ethanol/water Solvent Ratios on the Morphology of Zein Nanofiber Mats and their Wettability ISSN(Print) 1229-0033 한국염색가공학회지제23권제4호 2011년 ISSN(Online) 2234-036X Textile Coloration and Finishing http://dx.doi.org/10.5764/tcf.2011.23.4.227 Vol. 23, No. 4, 2011 Research Paper Effect of Ethanol/water

More information

Effect of Solvent and Processing Parameters on Electrospun Polyvinylpyrrolidone Ultra-fine Fibers

Effect of Solvent and Processing Parameters on Electrospun Polyvinylpyrrolidone Ultra-fine Fibers 436 Chiang Mai J. Sci. 2015; 42(2) Chiang Mai J. Sci. 2015; 42(2) : 436-442 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Effect of Solvent and Processing Parameters on Electrospun Polyvinylpyrrolidone

More information

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology

Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Aging in laponite water suspensions. P. K. Bhattacharyya Institute for Soldier Nanotechnologies Massachusetts Institute of Technology Outline Laponite Basic background. Laponite in suspension Bonn et al.,

More information

Effect of Inorganic/Organic Hybrid on the Wettability of Polymer Nanofibrous Membranes

Effect of Inorganic/Organic Hybrid on the Wettability of Polymer Nanofibrous Membranes Effect of Inorganic/Organic Hybrid on the Wettability of Polymer Nanofibrous Membranes Ning Wu, PhD, Ying Sun, Yanan Jiao, Li Chen Tianjin Polytechnic University, CHINA Correspondence to: Li Chen email:

More information

Understanding the Role of Poly(ethylene oxide) in the Electrospinning of Whey Protein Isolate Fibers

Understanding the Role of Poly(ethylene oxide) in the Electrospinning of Whey Protein Isolate Fibers Understanding the Role of Poly(ethylene oxide) in the Electrospinning of Whey Protein Isolate Fibers by Ana Cristina Vega Lugo A Thesis presented to the University of Guelph In partial fulfilment of requirements

More information

Characterization of cellulose nanofibrils (CNF)

Characterization of cellulose nanofibrils (CNF) Characterization of cellulose nanofibrils (CNF) Ali Naderi Email: ali.naderi@innventia.com Tel: +46-(0)768767321 Cellulose nanofibril (CNF) Length several micrometers Width 100 nanometers www.innventia.com

More information

Physical Chemistry of Polymers (4)

Physical Chemistry of Polymers (4) Physical Chemistry of Polymers (4) Dr. Z. Maghsoud CONCENTRATED SOLUTIONS, PHASE SEPARATION BEHAVIOR, AND DIFFUSION A wide range of modern research as well as a variety of engineering applications exist

More information

GPC / SEC Theory and Understanding

GPC / SEC Theory and Understanding Dr. Jason S. Davies, Smithers Rapra, UK Gel permeation chromatography (GPC), also known as size exclusion chromatography (SEC) is a branch of liquid chromatography specifically concerned with characterisation

More information

Interfacial Shear Rheology of Films Formed by Coffee

Interfacial Shear Rheology of Films Formed by Coffee ANNUAL TRANSACTIONS OF THE NORDIC RHEOLOGY SOCIETY, VOL. 16, 2008 Interfacial Shear Rheology of Films Formed by Coffee Patrick Heyer, Jörg Läuger Anton Paar Germany GmbH, Helmuth-Hirth-Strasse 6, 73760

More information

Extended Material Characterization MCR

Extended Material Characterization MCR Extended Material Characterization MCR Use your rheometer for Extended Material Characterization MCR rheometers offer you an open range of possibilities and this range does not stop at shear rheology.

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Organic-inorganic hybrid of polyaniline-vanadium oxide nanocomposites and their electrorheological behaviour Sumita Goswami, Tiago Brehm, Sergej Filonovich, *Maria Teresa Cidade Departamento de Ciência

More information

CHAPTER 5 SIMULTANEOUS ELECTROSPINNING OF TWO POLYMER SOLUTIONS IN A SIDE-BY-SIDE APPROACH TO PRODUCE BICOMPONENT FIBERS

CHAPTER 5 SIMULTANEOUS ELECTROSPINNING OF TWO POLYMER SOLUTIONS IN A SIDE-BY-SIDE APPROACH TO PRODUCE BICOMPONENT FIBERS CHAPTER 5 SIMULTANEOUS ELECTROSPINNING OF TWO POLYMER SOLUTIONS IN A SIDE-BY-SIDE APPROACH TO PRODUCE BICOMPONENT FIBERS 5.1 Chapter Summary Bicomponent fibers, in the range of 100 nm to a few microns,

More information

Training Undergraduate Engineering Students on Biodegradable PCL Nanofibers through Electrospinning Process

Training Undergraduate Engineering Students on Biodegradable PCL Nanofibers through Electrospinning Process Abstract 2015 ASEE Zone III Conference Training Undergraduate Engineering Students on Biodegradable PCL Nanofibers through Electrospinning Process Shawn M. Hughes, Anh Pham, Kathy Huong Nguyen and Ramazan

More information

Electrospinning PVDF/EC fibre from a binary solvent system. Tingping Lei, Zhan Zhan, Wenjia Zuo, Wei Cheng, Bulei Xu, Yuanzhe Su and Daoheng Sun*

Electrospinning PVDF/EC fibre from a binary solvent system. Tingping Lei, Zhan Zhan, Wenjia Zuo, Wei Cheng, Bulei Xu, Yuanzhe Su and Daoheng Sun* 294 Int. J. Nanomanufacturing, Vol. 8, No. 4, 2012 Electrospinning PVDF/EC fibre from a binary solvent system Tingping Lei, Zhan Zhan, Wenjia Zuo, Wei Cheng, Bulei Xu, Yuanzhe Su and Daoheng Sun* Department

More information

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India

Polymer Rheology. P Sunthar. Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai , India Polymer Rheology P Sunthar Department of Chemical Engineering Indian Institute of Technology, Bombay Mumbai 400076, India P.Sunthar@iitb.ac.in 05 Jan 2010 Introduction Phenomenology Modelling Outline of

More information

Nanofluidic transport and formation of nano-emulsions

Nanofluidic transport and formation of nano-emulsions Nanofluidic transport and formation of nano-emulsions P.A. Chando Rensselaer Polytechnic Institute, Troy, NY 12180 S.S. Ray and A.L. Yarin University of Illinois at Chicago, Chicago, Illinois 60612 The

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Non contact measurement of viscoelastic properties of biopolymers

Non contact measurement of viscoelastic properties of biopolymers Non contact measurement of viscoelastic properties of biopolymers Christelle Tisserand, Anton Kotzev, Mathias Fleury, Laurent Brunel, Pascal Bru, Gérard Meunier Formulaction, 10 impasse Borde Basse, 31240

More information

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali University of Sulaimani School of Pharmacy Dept. of Pharmaceutics Pharmaceutical Compounding Pharmaceutical compounding I Colloidal and Surface-Chemical Aspects of Dosage Forms Dr. rer. nat. Rebaz H. Ali

More information

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers Supplementary Materials Synthesis of Ultra-long Hollow Chalcogenide Nanofibers By Kun-Jae Lee, Hanbok Song, Young-In Lee, Hyunsung Jung, Miluo Zhang, Yong-Ho Choa*, and Nosang V. Myung* Experimental Polyvinylpyrrolidone

More information

MCR. Applicationspecific. Accessories for Additional Parameter Setting

MCR. Applicationspecific. Accessories for Additional Parameter Setting MCR Applicationspecific Accessories for Additional Parameter Setting Additional Parameter Setting Anton Paar s range of MCR accessories for additional parameter setting enables you to perform temperature-controlled

More information

Ionic Liquid/Styrene-Acrylonitrile Copolymer Nanofibers as Chemiresistor for Alcohol Vapours

Ionic Liquid/Styrene-Acrylonitrile Copolymer Nanofibers as Chemiresistor for Alcohol Vapours Ionic Liquid/SAN Nanofibers as Chemiresistor Bull. Korean Chem. Soc. 2012, Vol. 33, No. 9 2867 http://dx.doi.org/10.5012/bkcs.2012.33.9.2867 Ionic Liquid/Styrene-Acrylonitrile Copolymer Nanofibers as Chemiresistor

More information

Fabrication and Characterization of polyamide-66 Nanofibers Via Electrospinning technique: Effect of Concentration and viscosity

Fabrication and Characterization of polyamide-66 Nanofibers Via Electrospinning technique: Effect of Concentration and viscosity International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 97-9 Vol.7, No.1, pp -7, 1-15 Fabrication and Characterization of polyamide- Nanofibers Via Electrospinning technique: Effect of Concentration

More information

Manipulated Electrospun PVA Nanofibers with Inexpensive Salts

Manipulated Electrospun PVA Nanofibers with Inexpensive Salts Full Paper Manipulated Electrospun PVA Nanofibers with Inexpensive Salts Wei Ding, Suying Wei,* Jiahua Zhu, Xuelong Chen, Dan Rutman, Zhanhu Guo* PVA nanofibers have been successfully prepared via an electrospinning

More information

Change in physico-mechanical and thermal properties of polyamide / silica nanocomposite film

Change in physico-mechanical and thermal properties of polyamide / silica nanocomposite film International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 6 (June 2013), PP. 01-05 Change in physico-mechanical and thermal properties

More information

Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow

Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow Supplementary Information for Visualization of polymer relaxation in viscoelastic turbulent micro-channel flow Authors: J. Tai, C. P. Lim, Y. C. Lam Correspondence to: MYClam@ntu.edu.sg This document includes:

More information

The rheological properties of poly(vinylidene fluoride-co-hexafluoropropylene) solutions in dimethyl acetamide

The rheological properties of poly(vinylidene fluoride-co-hexafluoropropylene) solutions in dimethyl acetamide Korea-Australia Rheology Journal Vol. 20, No. 4, December 2008 pp. 213-220 The rheological properties of poly(vinylidene fluoride-co-hexafluoropropylene) solutions in dimethyl acetamide Ki Hyun Lee, In

More information

Chromatography. What is Chromatography?

Chromatography. What is Chromatography? Chromatography What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify the mixture or components. Mixture

More information

Modelling the 3D printing of nanocellulose hydrogels

Modelling the 3D printing of nanocellulose hydrogels Modelling the 3D printing of nanocellulose hydrogels Tatu Pinomaa VTT Technical Research Centre of Finland Ltd Contents Motivation Nanocellulose-based hydrogels Material characterisation CFD models Printer

More information

University of Puerto Rico at Humacao Department of Physics and Electronics

University of Puerto Rico at Humacao Department of Physics and Electronics University of Puerto Rico at Humacao Department of Physics an Electronics Experiment # 6: Electrospinning I Neliza León Brito Prof. Nicholas Pinto FISI 4192-001 February 27, 2007 I. Purpose: The purposes

More information

SYNTHESIS AND CHARACTERIZATION OF SILVER AND SILVER SELENIDE NANOPARTICLES AND THEIR INCORPORATION INTO POLYMER FIBRES USING ELECTROSPINNING TECHNIQUE

SYNTHESIS AND CHARACTERIZATION OF SILVER AND SILVER SELENIDE NANOPARTICLES AND THEIR INCORPORATION INTO POLYMER FIBRES USING ELECTROSPINNING TECHNIQUE SYNTHESIS AND CHARACTERIZATION OF SILVER AND SILVER SELENIDE NANOPARTICLES AND THEIR INCORPORATION INTO POLYMER FIBRES USING ELECTROSPINNING TECHNIQUE A Dissertation by Dikeledi Selinah More 20478330 Submitted

More information

In Situ Cross-Linking of Electrospun Poly(vinyl alcohol) Nanofibers

In Situ Cross-Linking of Electrospun Poly(vinyl alcohol) Nanofibers 630 Macromolecules 2010, 43, 630 637 DOI: 10.1021/ma902269p In Situ Cross-Linking of Electrospun Poly(vinyl alcohol) Nanofibers Christina Tang, Carl D. Saquing, Jonathon R. Harding, and Saad A. Khan* Department

More information

A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber

A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber Int J Ind Chem (2015) 6:193 211 DOI 10.1007/s40090-015-0043-y RESEARCH A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber Iman Esmaeilzadeh 1 Vahid Mottaghitalab 1

More information

Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design

Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design Current Chemistry Letters 3 (2014) ** ** Contents lists available at Growing Science Current Chemistry Letters homepage: www.growingscience.com/ccl Optimization of electrospinning process of poly(vinyl

More information

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko RHEOLOGY Principles, Measurements, and Applications I -56081-5'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1

More information

Generation of PVP fibers by electrospinning in one-step process under high-pressure CO 2

Generation of PVP fibers by electrospinning in one-step process under high-pressure CO 2 Wahyudiono et al. International Journal of Industrial Chemistry 2013, 4:27 RESEARCH Open Access Generation of PVP fibers by electrospinning in one-step process under high-pressure CO 2 Wahyudiono 1, Siti

More information

Research Article On the Nature of Electric Current in the Electrospinning Process

Research Article On the Nature of Electric Current in the Electrospinning Process Nanomaterials Volume 213, Article ID 538179, 1 pages http://dx.doi.org/1.1155/213/538179 Research Article On the Nature of Electric Current in the Electrospinning Process Baturalp Yalcinkaya, 1 Fatma Yener,

More information

Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning

Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning Macromolecular Research, Vol. 13, No. 5, pp 385-390 (2005) Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning Yoon Ho Jung, Hak Yong Kim*, Douk Rae Lee,

More information

Electrospinning of high concentration gelatin solutions

Electrospinning of high concentration gelatin solutions JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS Vol. 9, No. 11, November 2007, p. 3633-3638 Electrospinning of high concentration gelatin solutions T. BALAU MINDRU, I. BALAU MINDRU, T. MALUTAN a, V.

More information

DEVELOPMENT AND STUDY OF GSH CAPPED CdTe QUANTUM DOTS EMBEDDED POLYMER ELECTROSPUN NANOFIBERS

DEVELOPMENT AND STUDY OF GSH CAPPED CdTe QUANTUM DOTS EMBEDDED POLYMER ELECTROSPUN NANOFIBERS ISSN: 0974-1496 e-issn: 0976-0083 CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in DEVELOPMENT AND STUDY OF GSH CAPPED CdTe QUANTUM DOTS EMBEDDED POLYMER ELECTROSPUN NANOFIBERS

More information

Petroleum Thermodynamic Research Group

Petroleum Thermodynamic Research Group Petroleum Thermodynamic Research Group Labs 6-128 & 6-133 Chemical and Materials Engineering (CME) Bldg. The Petroleum Thermodynamic Research Group investigates the properties of hydrocarbon resources

More information

Aqueous Colloidal Processing and green sheet properties of. Lead Zirconate Titanate (PZT) ceramics made by Tape. Casting.

Aqueous Colloidal Processing and green sheet properties of. Lead Zirconate Titanate (PZT) ceramics made by Tape. Casting. Aqueous Colloidal Processing and green sheet properties of Lead Zirconate Titanate (PZT) ceramics made by Tape Casting. A. Navarro, J.R.Alcock and R.W.Whatmore Nanotechnology Dept, SIMS, Cranfield University,

More information