EFFECT OF CONCENTRATION AND SALT ADDITIVE ON TAYLOR CONE STRUCTURE. Baturalp YALCINKAYA, Fatma YENER, Funda Cengiz-Çallıoğlu, Oldrich JIRSAK

Size: px
Start display at page:

Download "EFFECT OF CONCENTRATION AND SALT ADDITIVE ON TAYLOR CONE STRUCTURE. Baturalp YALCINKAYA, Fatma YENER, Funda Cengiz-Çallıoğlu, Oldrich JIRSAK"

Transcription

1 EFFECT OF CONCENTRATION AND SALT ADDITIVE ON TAYLOR CONE STRUCTURE Baturalp YALCINKAYA, Fatma YENER, Funda Cengiz-Çallıoğlu, Oldrich JIRSAK Nonwoven Department, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 46117, Czech Republic, Abstract: One of the most important parameter is Taylor cone structure on the roller electrospinning method such as number of Taylor cone and life of jet. During electrospinning process, these parameters are affected directly spinning performance or efficiency. In this work we prepared Polyurethane / Dimethylformamide (DMF) polymer solutions and their tetraethylenamonyumbromur (TEAB) salt solutions. Then, we spun solutions via roller electrospinning. During the process we recorded roller surface and determined Taylor cone number and life of jet (in second). As a result we understood that life of Taylor cones are depended on number of Taylor cone. Whilst Taylor cone numbers were high, the life of jet had been low. Key words: Roller electrospinning, PU, TEAB, Taylor cone structure. 1. INTRODUCTION The phenomenon of electrospinning is an issue of a tug of battle solution between electrostatic and capillary forces. When a small volume of conductive liquid exposed to an electric field, the shape of liquid starts to deform from the shape caused by surface tension alone. As the voltage is increased the electrostatic force starts to over comes the surface tension and a cone shape begins to form with convex sides and a rounded tip. This approaches the shape of cone called as Taylor cone [1]. Recently, a new technology has been developed by Jirsak [2] that is based on highly productive jet creation from free liquid surfaces by self-organisation. This technology is called roller electrospinning under the brand name of Nanospider. The cylinder rotates in a polymer solution tank. The electrostatic field organised between the cylinder and a grounded collector enables the self-organisation of jets along the upper surface of the cylinder and, hence, fibers collect on the supporting material. There are lots of parameters that affect the electrospinning process. These can be divided as system and process parameters. Viscosity, concentration, net charge density (conductivity), surface tension of the polymer fluid and molecular weight can be shown as system parameters. Applied voltage, flow rate of polymer solution, distance between capillary end and collector, ambient parameters and motion of collector can be shown as process parameters. In this work firstly effect of concentration and additives on the number of cones was investigated. Then number of Taylor cone was associated with life time of a cone. Polyurethane (PU) was used as polymer. The aim to choose PU is, it has a good spinnability on roller electrospinning system and Polyurethane (PU) is thermoplastic polymer having excellent mechanical properties and water insolubility. PU is a pure polymer and has many application area such as filtration, medical application, biosensors, protective clothes, antimicrobacterial fibers, etc. [3-7]. 2. EXPERIMENTAL In this work polyurethane (PU) polymer, molecular weight is 2g/mol was used as a polymer and dimethylformamide used as a solvent. Solutions were prepared at various concentrations such as

2 wt % PU and tetraethyleneammonium bromide (TEAB) salt was added in different concentrations such as wt %. All solutions were prepared under the same conditions and measured conductivity of solutions than spun to nanofibers via roller electrospinning method. In this method, there is a roller which is connected to high voltage supplier and top of the roller there is a collector which was grounded. Taylor cones are created on the roller surface towards to collector (Fig 1). Fig. 1: Schematic diagram of roller electrospinning method Digital camera was used to observe these Taylor cones and life of jet on the roller surface in course of spinning (Fig. 2). Fig. 2: Picture of Taylor cones on the roller surface Optimum process parameters such as roller speed, roller length, distance between the electrodes, voltage etc. were applied during the spinning process (Table 1). Table 1: Process parameters of roller electrospinning Mechanical Parameters Process Parameters Environmental Parameters Roller Length (cm) Roller Speed (rpm) Supporting Material Speed (cm/min) Distance Between Electrode (cm) Voltage (kv) Humidity (%) Temperature ( C) 14,

3 Number of Cones (#) Conductivity (ms/cm) , Brno, Czech Republic, EU 3. RESULT AND DISCUSSION Polymer solution properties have an important role on resultant polymer. Adding salt increases the number of ions in the polymer solution as a result conductivity increases. The result of conductivity of PU solutions are shown in Fig ,5 1,5 %15 PU %17,5 PU %2 PU Fig. 3: Conductivity of PU polymer solutions. Conductivity has a positive effect on spinnability of fiber due to higher electrostatic field. Concentration and addition salt affected the number of cones and life time of one jet. Number of cones increased proportionally with concentration and conductivity as indicated in Fig %15 PU %17,5 PU %2 PU Fig. 4: Number of cones vs. concnetration. There is a direct relation between number of cones and fabric throughput. When the number of cone increases on the same area of roller, the amount of material which is transporting to collector increases. More material means higher throughput. However when the amount of feeding rate not change and number of cones increase, the life time of jet decreases due to finishing of polymer solution source on the surface of roller very quickly (Fig. 5).

4 Life of Jet(sec) , Brno, Czech Republic, EU %15 PU %17,5 PU % 2 PU Table 2. Spinning performance of PU solutions. Fig. 5: Life of jet vs. concentration. PU Concentration (%) TEAB concentration (%) 15,3125,468,6836 Spinning Performance (g/min/m) 17,5,9563,98 1, ,189 1,2235 1,3394 Fabric throughput (spinning performance) is tabulated in Table 2. 15% wt. PU was not able to spin on roller electrospinning system while 17.5 and 2% wt. had very low performance that was not calculated. On the other hand, adding salt increases spinning performance drastically. As we mentioned above spinning performance and number of cones are directly proportional while inverse proportional with life of jet. 4. CONCLUSIONS Roller electrospinning method depends on a wide range of independent and dependent parameters. Taylor cone number is one of the dependent parameter and in this study effect of polymer and additive concentration on life of jet and fabric performance was investigated. The Taylor cone number increase with salt and polymer concentration (conductivity) increase. A large quantity of Taylor cone is needed more polymer solutions on the roller surface. During process feed rate of polymer solution was kept constant. Consequently life of jet (in second) decrease with Taylor cone number increase. In addition fabric performance increase with Taylor cone number increases.

5 ACKNOWLEDGEMENTS This work was supported by Technical Universty of Liberec, Textile Faculty. The authors greatfully acknowledge to laboratory workers in Nonwoven Department for providing all device. LITERATURE [1] TAYLOR, S., "Disintegration of Water Droplets in an Electric Field". Proc. Roy. Soc. London. Ser. A, 1964, 28 (1382): 383. [2] JIRSAK O., SANETRNIK F., LUKAS D., KOTEK V., MARTINOVA L., CHALOUPEK J., "A Method of Nanofibres Production from a Polymer Solution Using Electrostatic Spinning and a Device for Carrying Out the Method". European Patent: 24, EP 1 ( ). [3] KIMMER, D., VINCENT, I., PETRÁŠ, D., LOVECKÁ,L., ZATLOUKAL, M., SLOBODIAN, P., OLEJNÍK, R., LANGER, J., TUNKA, M., ŠOUKAL, J., From Synthesis to Application. Polyurethane Nanofibers Developed in Spur a.s., Nanocon 29. [4] HAN, J.H., TAYLOR, J.D., KIM, D.S., KIM, Y. S., KIM, Y.T., CHA, G.S., NAM, H., Glucose Singh Biosensor with a Hydrophilic Polyurethane (HPU) Blended with Polyvinyl Alcohol/Vinyl Butyral Copolymer (PVAB) Outer Membrane, Sens. Actuators B, 27, 123, 384. [5] HAINS, N., FRISCIC, V., GORDOS, D., Testing Electrostatic Properties of Polyurethane Coated Textiles Used for Protective Clothing, Int. J. Cloth. Sci.Technol., 23, 15, 25. [6] YAO, C., LI, X., NEOH, K. G., SHI, Z., KANG, E. T., Surface Modification and Antibacterial Activity of Electrospun Polyurethane Fibrous Membranes with Quaternary Ammonium Moieties, 28, J. Membr. Sci., 32, 295. [7] GORJI, M., JEDDI, ALI. A. A., GHAREHAGHAJI, A. A., Fabrication and Characterization of Polyurethane Electrospun Nanofiber Membranes for Protective Clothing Applications, Journal of Applied Polymer Science, 212, Vol. 125,

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA TEXTILNÍ THE ROLE OF RHEOLOGICAL PROPERTIES OF POLYMER SOLUTIONS IN NEEDLELESS ELECTROSPINNING Dao Anh Tuan AUTOREFERÁT DISERTAČNÍ PRÁCE Název disertační práce: THE

More information

Research Article On the Nature of Electric Current in the Electrospinning Process

Research Article On the Nature of Electric Current in the Electrospinning Process Nanomaterials Volume 213, Article ID 538179, 1 pages http://dx.doi.org/1.1155/213/538179 Research Article On the Nature of Electric Current in the Electrospinning Process Baturalp Yalcinkaya, 1 Fatma Yener,

More information

THE STUDY OF POROUS NANOFIBRES MORFOLOGY MADE FROM PCL IN DEPENDENCE ON THE ELECTROSPINNING PARAMETRES AND SOLUTION COMPOSITION

THE STUDY OF POROUS NANOFIBRES MORFOLOGY MADE FROM PCL IN DEPENDENCE ON THE ELECTROSPINNING PARAMETRES AND SOLUTION COMPOSITION THE STUDY OF POROUS NANOFIBRES MORFOLOGY MADE FROM PCL IN DEPENDENCE ON THE ELECTROSPINNING PARAMETRES AND SOLUTION COMPOSITION Eva MACAJOVÁ, Iva DUFKOVÁ, Pavel KEJZLAR Department of Material Science,

More information

THERMAL PROPERTIES OF SILICON OXIDE NANOFIBERS

THERMAL PROPERTIES OF SILICON OXIDE NANOFIBERS THERMAL PROPERTIES OF SILICON OXIDE NANOFIBERS J. Studničková, 1 M. Maršálková, 2 P. Exnar, 3 J. Grabműllerová, 2 J. Műllerová 3 1 Technical University of Liberec, Department of Textile Chemistry; Hálkova

More information

SPUR a.s., trida Tomase Bati 299, Louky, Zlin, Czech Republic 2

SPUR a.s., trida Tomase Bati 299, Louky, Zlin, Czech Republic 2 MODELING AND PREPARATION OF NANOFIBRE AND COMPOSITE NANOSTRUCTURES Dušan Kimmer 1a, Ivo Vincent 1, Lenka Lovecká 1, Wannes Sambaer 2, Martin Zatloukal 2, Jakub Ondráček 3, Jaroslav Lev 4, Tomáš Kazda 5,

More information

The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning

The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning The Effect of PVAc Solution Viscosity on Diameter of PVAc Nanofibres Prepared by Technology of Electrospinning David Petras a,b, Petr Slobodian a, Vladimír Pavlínek a, Petr Sáha a and Dušan Kimmer b a

More information

Influence of the Shape of the Bottom Rotating Electrode on the Structure of Electrospun Mats

Influence of the Shape of the Bottom Rotating Electrode on the Structure of Electrospun Mats Erika Adomavičiūtė, Sigitas Stanys, Aušra Banuškevičiūtė, Rimvydas Milašius Kaunas University of Technology, Department of Textile Technology, Studentu 56, LT-51424 Kaunas, Lithuania E-mail: erika.adomaviciute@ktu.lt

More information

Electrospinning of PVB Solved in Methanol and Isopropanol

Electrospinning of PVB Solved in Methanol and Isopropanol Electrospinning of PVB Solved in Methanol and Isopropanol M. STENICKA 1,2, P. PEER-SVRCINOVA 3, P. FILIP 3, V. PAVLINEK 1,4, M. MACHOVSKY 1,4 1 Centre of Polymer Systems, University Institute Nad Ovcirnou

More information

INITIAL STUDY OF STRUCTURE OF NANOFIBER TEXTILES AND THE CREATIN OF ITS MODEL

INITIAL STUDY OF STRUCTURE OF NANOFIBER TEXTILES AND THE CREATIN OF ITS MODEL INITIAL STUDY OF STRUCTURE OF NANOFIBER TEXTILES AND THE CREATIN OF ITS MODEL HAVRLÍK Michal 1, SVESHNIKOV Alexey 1,2 1 CTU Czech Technical University in Prague, Prague, Czech Republic, EU 2 Institute

More information

Formation of Electrospun PVA Mats on Different Types of Support Materials Using Various Kinds of Grounded Electrodes

Formation of Electrospun PVA Mats on Different Types of Support Materials Using Various Kinds of Grounded Electrodes Erika Adomavičiūtė, Sigitas Stanys Kaunas University of Technology, Department of Textile Technology, Studentu 56, LT51424Kaunas, Lithuania Email: erika.adomaviciute@ktu.lt Formation of Electrospun PVA

More information

Needleless Electrospinning

Needleless Electrospinning Needleless Electrospinning Relaxation time of the aqueous solutions of poly (vinyl alcohol) ROXANA DELIU 1, IOAN GABRIEL SANDU 2,3, ROMEN BUTNARU 1, DAVID LUKAS 4, ION SANDU5 * 1 Gheorghe Asachi Technical

More information

ON THE ELECTROSPINNING OF PVB SOLUTIONS

ON THE ELECTROSPINNING OF PVB SOLUTIONS ON THE ELECTROSPINNING OF PVB SOLUTIONS Petra SVRCINOVA a, Petr FILIP a, Daniela LUBASOVA b a Institute of Hydrodynamics, Acad. Sci. Czech Rep., Pod Patankou 5, 166 12 Prague 6, Czech Republic, svrcinova@ih.cas.cz

More information

Contents. Foreword by Darrell H. Reneker

Contents. Foreword by Darrell H. Reneker Table of Foreword by Darrell H. Reneker Preface page xi xiii 1 Introduction 1 1.1 How big is a nanometer? 1 1.2 What is nanotechnology? 1 1.3 Historical development of nanotechnology 2 1.4 Classification

More information

SILVER PARTICLES INCORPORATION TO NANOFIBRE STRUCTURE FOR SURFACE MEMBRANE MODIFICATION

SILVER PARTICLES INCORPORATION TO NANOFIBRE STRUCTURE FOR SURFACE MEMBRANE MODIFICATION SILVER PARTICLES INCORPORATION TO NANOFIBRE STRUCTURE FOR SURFACE MEMBRANE MODIFICATION Abstract Jan DOLINA a, Tomáš LEDERER a a TECHNICAL UNIVERSITY LIBEREC, Studentská 1402/2 461 17 Liberec 1, Czech

More information

M98-D01 1. A Fundamental Investigation of the Formation and Properties of Electrospun Fibers

M98-D01 1. A Fundamental Investigation of the Formation and Properties of Electrospun Fibers M98-D01 1 A Fundamental Investigation of the Formation and Properties of Electrospun Fibers S.B. Warner, A. Buer, S.C. Ugbolue Department of Textile Sciences, University of Massachusetts Dartmouth, Dartmouth,

More information

NWRI Graduate Research Fellowship Progress Report

NWRI Graduate Research Fellowship Progress Report NWRI Graduate Research Fellowship Progress Report Natalia Hoogesteijn von Reitzenstein, Arizona State University October 2015 Background Electrospun polymer fibers with diameters in the submicron to nanometer

More information

EFFECT OF CALCIUM CHLORIDE ON ELECTROSPINNING OF SILK FIBROIN NANOFIBRES

EFFECT OF CALCIUM CHLORIDE ON ELECTROSPINNING OF SILK FIBROIN NANOFIBRES EFFECT OF CALCIUM CHLORIDE ON ELECTROSPINNING OF SILK FIBROIN NANOFIBRES Nongnut Sasithorn 1 and Lenka Martinová 2 1 Technical University of Liberec, Faculty of Textile Engineering, Department of Nonwovens

More information

A Visualization Technique for Mapping the Velocity of Raising Fibers Production in an Electrostatic Field

A Visualization Technique for Mapping the Velocity of Raising Fibers Production in an Electrostatic Field International Journal of Electrospun Nanofibers and Applications, Vol. 4, No. 1 (January-June, 2018) ISSN : 0973-628X A Visualization Technique for Mapping the Velocity of Raising Fibers Production in

More information

DEPOSITION AND FILTERING OF RADON PROGENY DRIVEN BY ELECTROSPINNING

DEPOSITION AND FILTERING OF RADON PROGENY DRIVEN BY ELECTROSPINNING DEPOSITION AND FILTERING OF RADON PROGENY DRIVEN BY ELECTROSPINNING Petr Mikeš a,b*, Pavel Pokorný a, David Lukáš a,b, Chen-Chih Tsai b a Technical University of Liberec, Faculty of Textile Engineering-NanoScience

More information

Insights into the power law relationships that describe mass deposition rates during electrospinning

Insights into the power law relationships that describe mass deposition rates during electrospinning From the SelectedWorks of Jonathan J Stanger February 1, 2012 Insights into the power law relationships that describe mass deposition rates during electrospinning Jonathan J Stanger Nick Tucker Simon Fullick

More information

MECHANISM OF NANOFIBER CRIMP

MECHANISM OF NANOFIBER CRIMP THERMAL SCIENCE, Year 013, Vol. 17, No. 5, pp. 1473-1477 1473 MECHANISM OF NANOFIBER CRIMP by Rou-Xi CHEN a, Li ZHANG b, Hai-Yan KONG a, Ji-Huan HE a*, and Yun Chen b a National Engineering Laboratory

More information

Polymer. Unconfined fluid electrospun into high quality nanofibers from a plate edge

Polymer. Unconfined fluid electrospun into high quality nanofibers from a plate edge Polymer 51 (2010) 4928e4936 Contents lists available at ScienceDirect Polymer journal homepage: www.elsevier.com/locate/polymer Unconfined fluid electrospun into high quality nanofibers from a plate edge

More information

Influence of the electrospinning parameters on the morphology of composite nanofibers

Influence of the electrospinning parameters on the morphology of composite nanofibers Volume 69 Issue 1 September 14 Pages 32-37 International Scientific Journal published monthly by the World Academy of Materials and Manufacturing Engineering Influence of the electrospinning parameters

More information

NUMERICAL SIMULATION STUDY OF A STABLE JET SHAPE VARIATION IN ELECTROSPINNING. Donghua University, Shanghai , P. R. China

NUMERICAL SIMULATION STUDY OF A STABLE JET SHAPE VARIATION IN ELECTROSPINNING. Donghua University, Shanghai , P. R. China NUMERICAL SIMULATION STUDY OF A STABLE JET SHAPE VARIATION IN ELECTROSPINNING Liang WEI 1,Xiaohong QIN 1*,Lin JIA 2 1 Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles,

More information

Effect of Charge Density on the Taylor Cone in Electrospinning

Effect of Charge Density on the Taylor Cone in Electrospinning From the SelectedWorks of Jonathan J Stanger 29 Effect of Charge Density on the Taylor Cone in Electrospinning Jonathan J Stanger Nick Tucker Kerry Kirwan Stuart Coles Daniel Jacobs, et al. Available at:

More information

A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber

A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber Int J Ind Chem (2015) 6:193 211 DOI 10.1007/s40090-015-0043-y RESEARCH A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber Iman Esmaeilzadeh 1 Vahid Mottaghitalab 1

More information

Study on the Various Types of Needle Based and Needleless Electrospinning System for Nanofiber Production

Study on the Various Types of Needle Based and Needleless Electrospinning System for Nanofiber Production International Journal of Textile Science 2017, 6(4): 110-117 DOI: 10.5923/j.textile.20170604.03 Study on the Various Types of Needle Based and Needleless Electrospinning System for Nanofiber Production

More information

Melt-electrospinning part I: processing parameters and geometric properties

Melt-electrospinning part I: processing parameters and geometric properties Polymer 45 (2004) 7597 7603 www.elsevier.com/locate/polymer Melt-electrospinning part I: processing parameters and geometric properties Jason Lyons*, Christopher Li, Frank Ko Department of Materials Science

More information

Electronic supplementary Information

Electronic supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2016 Electronic supplementary Information Superhydrophilic and underwater superoleophobic

More information

ARTICLE IN PRESS Carbohydrate Polymers xxx (2010) xxx xxx

ARTICLE IN PRESS Carbohydrate Polymers xxx (2010) xxx xxx Carbohydrate Polymers xxx (2010) xxx xxx Contents lists available at ScienceDirect Carbohydrate Polymers journal homepage: www.elsevier.com/locate/carbpol Short communication Effects of solution properties

More information

Electrospun Fibers in Catalysis

Electrospun Fibers in Catalysis Electrospun Fibers in Catalysis Polymer based Composite Nanofibers by Co-Electrospinning Martin Graeser Philipps-University, Marburg Outline Methods: - Introduction to Electrospinning - Co-Electrospinning

More information

Effect of Ethanol/water Solvent Ratios on the Morphology of Zein Nanofiber Mats and their Wettability

Effect of Ethanol/water Solvent Ratios on the Morphology of Zein Nanofiber Mats and their Wettability ISSN(Print) 1229-0033 한국염색가공학회지제23권제4호 2011년 ISSN(Online) 2234-036X Textile Coloration and Finishing http://dx.doi.org/10.5764/tcf.2011.23.4.227 Vol. 23, No. 4, 2011 Research Paper Effect of Ethanol/water

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Clemson University] On: 4 September 2009 Access details: Access Details: [subscription number 784173612] Publisher Taylor & Francis Informa Ltd Registered in England and

More information

Polystyrene. Erica Wilkes

Polystyrene. Erica Wilkes Polystyrene Erica Wilkes Polystyrene is a polymer made from the synthetic aromatic monomer styrene. Styrene in turn comes from the catalytic dehydrogenation of ethylbenzene. Although ethylbenzene is found

More information

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS

ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS ELECTROSPRAY: NOVEL FABRICATION METHOD FOR BIODEGRADABLE POLYMERIC NANOPARTICLES FOR FURTHER APPLICATIONS IN DRUG DELIVERY SYSTEMS Ali Zarrabi a, Manouchehr Vossoughi b a Institute for Nanscience & Nanotechnology,

More information

Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design

Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design Current Chemistry Letters 3 (2014) ** ** Contents lists available at Growing Science Current Chemistry Letters homepage: www.growingscience.com/ccl Optimization of electrospinning process of poly(vinyl

More information

Electrospinning of high-molecule PEO solution

Electrospinning of high-molecule PEO solution From the SelectedWorks of Ji-Huan He 2007 Electrospinning of high-molecule PEO solution Yu-Qin Wan Ji-Huan He, Donghua University Jian-Yong Yu Yue Wu Available at: https://works.bepress.com/ji_huan_he/20/

More information

School of Fashion, Zhongyuan University of Technology, Zhengzhou , China

School of Fashion, Zhongyuan University of Technology, Zhengzhou , China Journal of Nano Research Online: 14-3-4 ISSN: 1661-9897, Vol. 7, pp 111-119 doi:1.48/www.scientific.net/jnanor.7.111 14 Trans Tech Publications, Switzerland Lightning-like Charged Jet Cascade in Bubble

More information

Polímeros: Ciência e Tecnologia ISSN: Associação Brasileira de Polímeros Brasil

Polímeros: Ciência e Tecnologia ISSN: Associação Brasileira de Polímeros Brasil Polímeros: Ciência e Tecnologia ISSN: 0104-1428 abpol@abpol.org.br Associação Brasileira de Polímeros Brasil Gomes, Demetrius S.; da Silva, Ana N. R.; Morimoto, Nilton I.; Mendes, Luiz T. F.; Furlan, Rogerio;

More information

Preparation of Nanofibrous Metal-Organic Framework Filters for. Efficient Air Pollution Control. Supporting Information

Preparation of Nanofibrous Metal-Organic Framework Filters for. Efficient Air Pollution Control. Supporting Information Preparation of Nanofibrous Metal-Organic Framework Filters for Efficient Air Pollution Control Supporting Information Yuanyuan Zhang, Shuai Yuan, Xiao Feng, Haiwei Li, Junwen Zhou, Bo Wang* Contents Section

More information

THE STUDY OF ELECTROSPUN NANOFIBERS AND THE APPLICATION OF ELECTROSPINNING IN ENGINEERING EDUCATION. A Thesis CHRISTOPHER CALVIN CALL

THE STUDY OF ELECTROSPUN NANOFIBERS AND THE APPLICATION OF ELECTROSPINNING IN ENGINEERING EDUCATION. A Thesis CHRISTOPHER CALVIN CALL THE STUDY OF ELECTROSPUN NANOFIBERS AND THE APPLICATION OF ELECTROSPINNING IN ENGINEERING EDUCATION A Thesis by CHRISTOPHER CALVIN CALL Submitted to the Office of Graduate Studies of Texas A&M University

More information

Slovak Academy of Sciences Dúbravská cesta 9, Bratislava 45 Slovak Republic, EU

Slovak Academy of Sciences Dúbravská cesta 9, Bratislava 45 Slovak Republic, EU THE SENSING ELEMENT FOR ORGANIC VAPORS DETECTION ON THE BASE OF STYRENE-ISOPRENE-STYRENE (SIS) BLOCK COPOLYMER/CARBON NANOTUBES ON THE INTERDIGITATED ELECTRODE OLEJNIK Robert 1, SLOBODIAN Petr 1, SPITALSKY

More information

Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries

Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries Polymers 2015, 7, 629-643; doi:10.3390/polym7040629 Article OPEN ACCESS polymers ISSN 2073-4360 www.mdpi.com/journal/polymers Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning

More information

Supplementary information

Supplementary information Supplementary information Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors Sang Su Yoon, 1 Kang Eun Lee, 1 Hwa-Jin Cha, 1 Dong Gi Seong, 1 Moon-Kwang Um, 1 Joon Hyung Byun,

More information

This work reports the effects of solvent properties, solvent system, electrostatic field

This work reports the effects of solvent properties, solvent system, electrostatic field Iranian Polymer Journal 15 (4), 2006, 341-354 Available online at: http://journal.ippi.ac.ir Effects of Solvent Properties, Solvent System, Electrostatic Field Strength, and Inorganic Salt Addition on

More information

Electrospun nanofibers: challenges and opportunities. Saša Baumgartner University of Ljubljana Faculty of Pharmacy Slovenia.

Electrospun nanofibers: challenges and opportunities. Saša Baumgartner University of Ljubljana Faculty of Pharmacy Slovenia. Electrospun nanofibers: challenges and opportunities Saša Baumgartner University of Ljubljana Faculty of Pharmacy Slovenia November, 2014 Outline Nanofibers and their application The electrospinning process

More information

Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy

Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy Mater. Res. Soc. Symp. Proc. Vol. 1025 2008 Materials Research Society 1025-B12-10 Influence of Molecular Ordering on Surface Free Energy of Polymer Nanofibres using Scanning Probe Microscopy Shuangwu

More information

Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning

Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning Macromolecular Research, Vol. 13, No. 5, pp 385-390 (2005) Characterization of PVOH Nonwoven Mats Prepared from Surfactant-Polymer System via Electrospinning Yoon Ho Jung, Hak Yong Kim*, Douk Rae Lee,

More information

SORPTION PROCESS USING POLYAMIDE NANOFIBRES TO REMOVE DYE FROM SIMULATED WASTEWATER. Jakub WIENER, Sihle NTAKA, P. S. NGCOBO, Roman KNÍŽEK

SORPTION PROCESS USING POLYAMIDE NANOFIBRES TO REMOVE DYE FROM SIMULATED WASTEWATER. Jakub WIENER, Sihle NTAKA, P. S. NGCOBO, Roman KNÍŽEK SORPTION PROCESS USING POLYAMIDE NANOFIBRES TO REMOVE DYE FROM SIMULATED WASTEWATER Jakub WIENER, Sihle NTAKA, P. S. NGCOBO, Roman KNÍŽEK Technical University of Liberec, Studentská 2, 461 17 Liberec,

More information

Training Undergraduate Engineering Students on Biodegradable PCL Nanofibers through Electrospinning Process

Training Undergraduate Engineering Students on Biodegradable PCL Nanofibers through Electrospinning Process Abstract 2015 ASEE Zone III Conference Training Undergraduate Engineering Students on Biodegradable PCL Nanofibers through Electrospinning Process Shawn M. Hughes, Anh Pham, Kathy Huong Nguyen and Ramazan

More information

Innovative Conversion of Biomass Derivatives to High Value Chemicals by Photocatalysis

Innovative Conversion of Biomass Derivatives to High Value Chemicals by Photocatalysis Innovative Conversion of Biomass Derivatives to High Value Chemicals by Photocatalysis Surawut Chuangchote 1 Verawat Champreda 2 Navadol Laosiripojana 3 Takashi Sagawa 4 E-mail: surawut.chu@kmutt.ac.th

More information

AGRICULTURAL RESEARCH FOUNDATION INTERIM REPORT FUNDING CYCLE

AGRICULTURAL RESEARCH FOUNDATION INTERIM REPORT FUNDING CYCLE AGRICULTURAL RESEARCH FOUNDATION INTERIM REPORT FUNDING CYCLE 2016 2018 TITLE: Development of colorimetric sensor arrays based on conjugated electrospun fibers for rapid evaluation of food quality RESEARCH

More information

Effect of Inorganic/Organic Hybrid on the Wettability of Polymer Nanofibrous Membranes

Effect of Inorganic/Organic Hybrid on the Wettability of Polymer Nanofibrous Membranes Effect of Inorganic/Organic Hybrid on the Wettability of Polymer Nanofibrous Membranes Ning Wu, PhD, Ying Sun, Yanan Jiao, Li Chen Tianjin Polytechnic University, CHINA Correspondence to: Li Chen email:

More information

Shape Memory Polymers:

Shape Memory Polymers: Shape Memory Polymers: Fundamentals, Advances and Applications Jinlian Hu SMITHERS R A P R A A Smithers Group Company Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom Telephone: +44 (0)1939 250383

More information

1. Introduction The electro spinning 1)-5) (It is called Electrospray-deposition

1. Introduction The electro spinning 1)-5) (It is called Electrospray-deposition 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS ESTABLISHMENT OF NANO FIBER PREPARATION TECHNIQUE FOR NANOCOMPOSITE Yoshihiro Yamashita*, Akira Tanaka*, Hajime Miyake**, Akio Higashiyama**, Hidefumi

More information

SYNTHESIS AND CHARACTERIZATION OF SILVER AND SILVER SELENIDE NANOPARTICLES AND THEIR INCORPORATION INTO POLYMER FIBRES USING ELECTROSPINNING TECHNIQUE

SYNTHESIS AND CHARACTERIZATION OF SILVER AND SILVER SELENIDE NANOPARTICLES AND THEIR INCORPORATION INTO POLYMER FIBRES USING ELECTROSPINNING TECHNIQUE SYNTHESIS AND CHARACTERIZATION OF SILVER AND SILVER SELENIDE NANOPARTICLES AND THEIR INCORPORATION INTO POLYMER FIBRES USING ELECTROSPINNING TECHNIQUE A Dissertation by Dikeledi Selinah More 20478330 Submitted

More information

A Smart Core-sheath Nanofiber that Captures and Releases Red

A Smart Core-sheath Nanofiber that Captures and Releases Red Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2015 Supporting Information A Smart Core-sheath Nanofiber that Captures and Releases Red Blood Cells

More information

Dielectric properties of composite LaMnO 3 nanofiber by electrospinning technique

Dielectric properties of composite LaMnO 3 nanofiber by electrospinning technique American Journal of Nanoscience and Nanotechnology 2013; 1(3): 65-69 Published online August 20, 2013 (http://www.sciencepublishinggroup.com/j/nano) doi: 10.11648/j.nano.20130103.11 Dielectric properties

More information

FORMATION OF FIBERS AND SPHERES BY ELECTROSPINNING OF POLYETHYLENE OXIDE SOLUTION ATUL NARASIMHAN. Oklahoma State University. Stillwater, Oklahoma

FORMATION OF FIBERS AND SPHERES BY ELECTROSPINNING OF POLYETHYLENE OXIDE SOLUTION ATUL NARASIMHAN. Oklahoma State University. Stillwater, Oklahoma FORMATION OF FIBERS AND SPHERES BY ELECTROSPINNING OF POLYETHYLENE OXIDE SOLUTION By ATUL NARASIMHAN Bachelor of Science in Mechanical Engineering Oklahoma State University Stillwater, Oklahoma 2008 Submitted

More information

CHANGES IN SELECTED PROPERTIES OF CARBOXYMETHYL CELLULOSE MATERIALS AFTER LYOPHILIZATION

CHANGES IN SELECTED PROPERTIES OF CARBOXYMETHYL CELLULOSE MATERIALS AFTER LYOPHILIZATION CHANGES IN SELECTED PROPERTIES OF CARBOXYMETHYL CELLULOSE MATERIALS AFTER LYOPHILIZATION Karolína BORŮVKOVÁ 1, Jakub WIENER 1, Marcela KOLÍNOVÁ 2 1 Technical university of Liberec, Faculty of textile engineering,

More information

Cooperative Charging Effects of Fibers from Electrospinning of Electrically Dissimilar Polymers

Cooperative Charging Effects of Fibers from Electrospinning of Electrically Dissimilar Polymers ORIGINAL PAPER/PEER-REVIEWED Cooperative Charging Effects of Fibers from Electrospinning of Electrically Dissimilar Polymers By Heidi L. Schreuder-Gibson and Phil Gibson, U.S. Army Research, Development

More information

CATION AND ANION EXCHANGERS FROM NANOFIBROUS POLYSTYRENE FOR FAST WATER TREATMENT

CATION AND ANION EXCHANGERS FROM NANOFIBROUS POLYSTYRENE FOR FAST WATER TREATMENT CATION AND ANION EXCHANGERS FROM NANOFIBROUS POLYSTYRENE FOR FAST WATER TREATMENT Jaromír Marek 1, Milan J. Beneš 2, Luděk Jelínek 3 1 Elmarco s.r.o.,nano division,svárovská 1393/7,460 10 Liberec Růžodol,

More information

Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison

Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison eproceedings Chemistry 2 (2017) 76-82 eissn 2550-1453 http://eproceedings.chemistry.utm.my/ Preparation of poly(methyl methacrylate) fibers via electrospinning in different solvent and its morphology comparison

More information

The design and construction of 3D rose petal-shape MoS 2. hierarchical nanostructures with structure-sensitive. properties

The design and construction of 3D rose petal-shape MoS 2. hierarchical nanostructures with structure-sensitive. properties Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2014 The design and construction of 3D rose petal-shape MoS 2 hierarchical nanostructures

More information

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) ID: TG-217816142553 Original scientific paper INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS Željko PENAVA, Diana ŠIMIĆ PENAVA, Željko

More information

CHAPTER 5 SURFACE TOPOGRAPHY STUDIES ON ELECTROPHORETICALLY DEPOSITED CHITOSAN ON POLYCAPROLACTONE MICRO FIBROUS SUBSTRATES

CHAPTER 5 SURFACE TOPOGRAPHY STUDIES ON ELECTROPHORETICALLY DEPOSITED CHITOSAN ON POLYCAPROLACTONE MICRO FIBROUS SUBSTRATES 89 CHAPTER 5 SURFACE TOPOGRAPHY STUDIES ON ELECTROPHORETICALLY DEPOSITED CHITOSAN ON POLYCAPROLACTONE MICRO FIBROUS SUBSTRATES 5.1 INTRODUCTION Synthetic bio polymers such as PCL, poly (glycolic acid)

More information

Synthesis of Titanium Dioxide Shell-Core Ceramic Nano Fibers by Electrospin Method

Synthesis of Titanium Dioxide Shell-Core Ceramic Nano Fibers by Electrospin Method International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.6, No.1, pp 807-815, Jan-March 2014 Synthesis of Titanium Dioxide Shell-Core Ceramic Nano Fibers by Electrospin Method

More information

Abstract. CANNON, KRISTIN M. Electrospinning Water Dispersible Polymers. (Under the direction of Behnam Pourdeyhimi and Samuel M. Hudson.

Abstract. CANNON, KRISTIN M. Electrospinning Water Dispersible Polymers. (Under the direction of Behnam Pourdeyhimi and Samuel M. Hudson. Abstract CANNON, KRISTIN M. Electrospinning Water Dispersible Polymers. (Under the direction of Behnam Pourdeyhimi and Samuel M. Hudson.) Water-based electrospinning systems are important not only for

More information

M98-D01 A Fundamental Investigation of the Formation and Properties of Electrospun Fibers

M98-D01 A Fundamental Investigation of the Formation and Properties of Electrospun Fibers A Fundamental Investigation of the Formation and Properties of Electrospun Fibers 1 S.B. Warner, A.Buer, M. Grimler, S.C. Ugbolue Department of Textile Sciences, University of Massachusetts Dartmouth,

More information

Crimped polymer nanofibres by air-driven electrospinning

Crimped polymer nanofibres by air-driven electrospinning European Polymer Journal 43 (2007) 2792 2798 Macromolecular Nanotechnology Crimped polymer nanofibres by air-driven electrospinning A. Varesano, A. Montarsolo, C. Tonin * CNR-ISMAC, Institute for Macromolecular

More information

POST-ELECTROSPINNING CROSSLINKING OF GUAR/POLYVINYL ALCOHOL MEMBRANE

POST-ELECTROSPINNING CROSSLINKING OF GUAR/POLYVINYL ALCOHOL MEMBRANE THERMAL SCIENCE: Year 2016, Vol. 20, No. 1, pp. 1-5 1 POST-ELECTROSPINNING CROSSLINKING OF GUAR/POLYVINYL ALCOHOL MEMBRANE by Jingjing SHI and Enlong YANG College of Material and Textile Engineering, Jiaxing

More information

Lead(II) Extraction with Electrospun Spiropyran Functionalized PMMA Nanofibers. Brian K. Fuchs A PROJECT. Submitted to. Oregon State University

Lead(II) Extraction with Electrospun Spiropyran Functionalized PMMA Nanofibers. Brian K. Fuchs A PROJECT. Submitted to. Oregon State University Lead(II) Extraction with Electrospun Spiropyran Functionalized PMMA Nanofibers by Brian K. Fuchs A PROJECT Submitted to Oregon State University University Honors College in partial fulfillment of the requirements

More information

Polydopamine as a promoter layer of MOF deposition on inert polymer surfaces to fabricate hierarchically structured porous films

Polydopamine as a promoter layer of MOF deposition on inert polymer surfaces to fabricate hierarchically structured porous films Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Polydopamine as a promoter layer of MOF deposition on inert polymer surfaces to fabricate hierarchically

More information

Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing Li et al. Nanoscale Research Letters (2016) 11:426 DOI 10.1186/s11671-016-1646-8 NANO EXPRESS Fabrication of Continuous Microfibers Containing Magnetic Nanoparticles by a Facile Magneto-Mechanical Drawing

More information

ELECTROSPUN POLY (L-LACTIDE-CO-Ɛ-CAPROLACTONE) (PLCL) NANOFIBERS STRUCTURAL EVOLUSION IN SERIES OF BINARY SOLVENT SYSTEMS

ELECTROSPUN POLY (L-LACTIDE-CO-Ɛ-CAPROLACTONE) (PLCL) NANOFIBERS STRUCTURAL EVOLUSION IN SERIES OF BINARY SOLVENT SYSTEMS J. Solid St. Sci. & Technol. Letters, 2015, Vol. 16 No. 1-2, pp. 15-21 http://letters.masshp.net/ ISSN 0128-8393 ELECTROSPUN POLY (L-LACTIDE-CO-Ɛ-CAPROLACTONE) (PLCL) NANOFIBERS STRUCTURAL EVOLUSION IN

More information

Nanofibrous materials from polymeric solutions to their applications

Nanofibrous materials from polymeric solutions to their applications Nanofibrous materials from polymeric solutions to their applications Katerina Knotkova & Marek Pokorny ETPN Webinar 29th November, 4 pm Contipro a.s. CONTENTS R&D at Contipro Why nanofibers RAW materials

More information

Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning from a Fluid-Filled Bowl

Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning from a Fluid-Filled Bowl pubs.acs.org/macromolecules Effect of Solution Parameters on Spontaneous Jet Formation and Throughput in Edge Electrospinning from a Fluid-Filled Bowl Nagarajan M. Thoppey, Russell E. Gorga, Jason R. Bochinski,

More information

TITLE: Polymer Adsorption on Nano Fibrillar Cellulose and its Effects on Suspension Rheology

TITLE: Polymer Adsorption on Nano Fibrillar Cellulose and its Effects on Suspension Rheology TITLE: Polymer Adsorption on Nano Fibrillar Cellulose and its Effects on Suspension Rheology AUTHORS: Kristýna Hlisnikovská and Lars Järnström, Karlstad University, Dept. of Chemical Engineering, 651 88

More information

Role of Electrical Conductivity of Spinning Solution on Enhancement of Electrospinnability of Polyamide 6,6 Nanofibers

Role of Electrical Conductivity of Spinning Solution on Enhancement of Electrospinnability of Polyamide 6,6 Nanofibers Copyright 13 American Scientific Publishers All rights reserved Printed in the United States of America Journal of Nanoscience and Nanotechnology Vol. 13, 43 42, 13 Role of Electrical Conductivity of Spinning

More information

Accuracy Improvement of Nano-fiber Deposition by Near-Field Electrospinning

Accuracy Improvement of Nano-fiber Deposition by Near-Field Electrospinning IWMF2014, 9 th INTERNATIONAL WORKSHOP ON MICROFACTORIES OCTOBER 5-8, 2014, HONOLULU, U.S.A. / 1 Accuracy Improvement of Nano-fiber Deposition by Near-Field Electrospinning Jiachen Xu 1,#, Maxwell Abecassis

More information

Surface Enhanced Raman Scattering of Electrospun Nanofibers Embedded with Silver Nanoparticles. Prepared by: Albert Foster III

Surface Enhanced Raman Scattering of Electrospun Nanofibers Embedded with Silver Nanoparticles. Prepared by: Albert Foster III Surface Enhanced Raman Scattering of Electrospun Nanofibers Embedded with Silver Nanoparticles Prepared by: Albert Foster III Faculty Advisors: Dr. Chaoyang Jiang Department of Chemistry at USD Dr. Stanley

More information

Nanofluidic transport and formation of nano-emulsions

Nanofluidic transport and formation of nano-emulsions Nanofluidic transport and formation of nano-emulsions P.A. Chando Rensselaer Polytechnic Institute, Troy, NY 12180 S.S. Ray and A.L. Yarin University of Illinois at Chicago, Chicago, Illinois 60612 The

More information

Fabrication and Characterization of polyamide-66 Nanofibers Via Electrospinning technique: Effect of Concentration and viscosity

Fabrication and Characterization of polyamide-66 Nanofibers Via Electrospinning technique: Effect of Concentration and viscosity International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 97-9 Vol.7, No.1, pp -7, 1-15 Fabrication and Characterization of polyamide- Nanofibers Via Electrospinning technique: Effect of Concentration

More information

Introduction to Nanotechnology

Introduction to Nanotechnology Introduction to Nanotechnology Textbook: Nanophysics and Nanotechnology by: Edward L. Wolf Instructor: H. Hosseinkhani E-mail: hosseinkhani@yahoo.com Classroom: A209 Time: Thursday; 13:40-16:30 PM Office

More information

Journal of Membrane Science & Research

Journal of Membrane Science & Research Journal of Membrane Science and Research 3 (2017) 228-239 Journal of Membrane Science & Research journal homepage: www.msrjournal.com Review Paper A Review of Electrospun Nanofiber Membranes Shahram Tabe

More information

Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers

Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers Materials 2015, 8, 2718-2734; doi:10.3390/ma8052718 Article OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic

More information

THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES

THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1441-1446 1441 Introduction THERMAL PROTECTION OF ELECTRONIC DEVICES WITH THE NYLON6/66-PEG NANOFIBER MEMBRANES by Ya LI a, Xue-Wei LI a,b, Ji-Huan HE a*,

More information

Morphology of Electrospun Nylon-6 Nanofibers as a Function of Molecular Weight and Processing Parameters

Morphology of Electrospun Nylon-6 Nanofibers as a Function of Molecular Weight and Processing Parameters Morphology of Electrospun Nylon-6 Nanofibers as a Function of Molecular Weight and Processing Parameters Satyajeet S. Ojha, Mehdi Afshari, Richard Kotek, Russell E. Gorga Department of Fiber and Polymer

More information

CHAPTER 5 SIMULTANEOUS ELECTROSPINNING OF TWO POLYMER SOLUTIONS IN A SIDE-BY-SIDE APPROACH TO PRODUCE BICOMPONENT FIBERS

CHAPTER 5 SIMULTANEOUS ELECTROSPINNING OF TWO POLYMER SOLUTIONS IN A SIDE-BY-SIDE APPROACH TO PRODUCE BICOMPONENT FIBERS CHAPTER 5 SIMULTANEOUS ELECTROSPINNING OF TWO POLYMER SOLUTIONS IN A SIDE-BY-SIDE APPROACH TO PRODUCE BICOMPONENT FIBERS 5.1 Chapter Summary Bicomponent fibers, in the range of 100 nm to a few microns,

More information

Electrospinning of 100% Carboxymethyl Chitosan Nanofibers

Electrospinning of 100% Carboxymethyl Chitosan Nanofibers Electrospinning of 100% Carboxymethyl Chitosan Nanofibers Negar Sohofi, Hossein Tavanai, PhD, Mohammad Morshed, Amir Abdolmaleki Isfahan University of Technology, Isfahan IRAN Correspondence to: Hossein

More information

Electrospun TiO 2 nanofibers for gas sensing applications

Electrospun TiO 2 nanofibers for gas sensing applications Electrospun TiO 2 nanofibers for gas sensing applications Il-Doo Kim *, Avner Rothschild **, Harry L. Tuller ***, Dong Young Kim ****, and Seong Mu Jo ***** * Optoelectronic Materials Research Center,

More information

Effect of Solvent and Processing Parameters on Electrospun Polyvinylpyrrolidone Ultra-fine Fibers

Effect of Solvent and Processing Parameters on Electrospun Polyvinylpyrrolidone Ultra-fine Fibers 436 Chiang Mai J. Sci. 2015; 42(2) Chiang Mai J. Sci. 2015; 42(2) : 436-442 http://epg.science.cmu.ac.th/ejournal/ Contributed Paper Effect of Solvent and Processing Parameters on Electrospun Polyvinylpyrrolidone

More information

Formation of Fiberwebs from Staple Fibers with Controlled Fiber Orientation Using Electrostatic Forces: Theoretical Analysis

Formation of Fiberwebs from Staple Fibers with Controlled Fiber Orientation Using Electrostatic Forces: Theoretical Analysis Formation of Fiberwebs from Staple Fibers with Controlled Fiber Orientation Using Electrostatic Forces: Theoretical Analys Y iyun Cai, Ph.D. 1, Abdelfattah Mohamed Seyam, Ph.D. 1, Yong K. Kim, Ph.D. 1

More information

Chapter 6. Neutral droplets in high electric fields as a. source of ions. Introduction to field-induced droplet

Chapter 6. Neutral droplets in high electric fields as a. source of ions. Introduction to field-induced droplet Chapter 6. Neutral droplets in high electric fields as a source of ions. Introduction to field-induced droplet ionization mass spectrometry 6-1 Adapted from Grimm, R. L. and Beauchamp, J. L. J. Phys. Chem.

More information

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers Supplementary Materials Synthesis of Ultra-long Hollow Chalcogenide Nanofibers By Kun-Jae Lee, Hanbok Song, Young-In Lee, Hyunsung Jung, Miluo Zhang, Yong-Ho Choa*, and Nosang V. Myung* Experimental Polyvinylpyrrolidone

More information

Electrospun complexes - functionalised nanofibres

Electrospun complexes - functionalised nanofibres Hyperfine Interact (2016) 237:89 DOI 10.1007/s10751-016-1256-y Electrospun complexes - functionalised nanofibres T. Meyer 1 M. Wolf 1 B. Dreyer 1,2 D. Unruh 1 C. Krüger 1 M. Menze 1 R. Sindelar 2 G. Klingelhöfer

More information

Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach

Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach Polymer 44 (2003) 6353 6359 www.elsevier.com/locate/polymer Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach Pankaj Gupta, Garth L. Wilkes* Department

More information

In-Plane Liquid Distribution In Nonwoven Fabrics: Part 2 Simulation

In-Plane Liquid Distribution In Nonwoven Fabrics: Part 2 Simulation ORIGINAL PAPER/PEER-REVIEWED In-Plane Liquid Distribution In Nonwoven Fabrics: Part 2 Simulation By H. S. Kim, Department of Textile Engineering, Pusan National University, Pusan 609-735, South Korea;

More information

Modeling of straight jet dynamics in electrospinning of polymer nanofibers

Modeling of straight jet dynamics in electrospinning of polymer nanofibers Modeling of straight jet dynamics in electrospinning of polymer nanofibers Rohan Pandya 1, Kumar Akash 2, Venkataramana Runkana 1 1 Tata Research Development and Design Centre, Tata Consultancy Services,

More information

Paper ID ICLASS EXPERIMENTS ON BREAKUP OF WATER-IN-DIESEL COMPOUND JETS

Paper ID ICLASS EXPERIMENTS ON BREAKUP OF WATER-IN-DIESEL COMPOUND JETS ICLASS-2006 Aug.27-Sept.1, 2006, Kyoto, Japan Paper ID ICLASS06-047 EXPERIMENTS ON BREAKUP OF WATER-IN-DIESEL COMPOUND JETS Sheng-Lin Chiu 1, Rong-Horng Chen 2, Jen-Yung Pu 1 and Ta-Hui Lin 1,* 1 Department

More information