SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 SUPPLEMENTARY INFORMATION Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction Danielle A. Hansgen, Dionisios G. Vlachos, Jingguang G. Chen SUPPLEMENTARY INFORMATION. ADSORBATE CONFIGURATIONS a b c d e Supplementary Figure S. DFT adsorbate configurations. The configurations are at /9 (a), 2/9 (b), /3 (c), 2/3 (d), and (e) monolayer coverages. 2. HEATS OF CHEMISORPTION AS A FUNCTION OF COVERAGE Average binding energies were used in this study, although differential binding energies could also have been used for adsorption and desorption processes. The difference between the average and differential binding energies is small and only significant at high adsorbate coverages, accessed on the strong binding side of the volcano curve. Thus, the difference between the two binding energy definitions should not affect the volcano curve maximum. The nitrogen and hydrogen average binding energies were calculated as a fuction of coverage (Equation 3 of the main text), from /9 to monolayer. The binding energies at each coverage, with respect to the zero coverage binding energy, are shown in Figures S2 and S3, respectively. A nearly linear correlation was found for both nitrogen and hydrogen adsorbates. Although not completely linear, approximating the data with a linear function is adequate for trends and screening studies as performed here. The slopes of the lines and the binding energy extrapolated back to the zero coverage limit are shown in Table of the main article. The nearly linear correlation has also been observed for other surfaces, such as Au(), Pd(), and Pt() and other adsorbates including carbon, nitrogen and oxygen., 2 For these systems, Miller and Kitchin studied the electronic effects of the adsorbates and found that there is a broadening of the metal surface d-band causing the d-band center to shift and the binding energy to decrease. Due to the weak H-H interactions (Figure S3), the binary N-H interactions are also failry weak 3 and affect overall microkinetic model predictions only slightly (not shown). nature chemistry

2 0 BE N - BE No (kcal/mol) Co Ni Pd Pt Re Mo Nitrogen Coverage Supplementary Figure S2. Change in nitrogen binding energy as a function of coverage. The nitrogen binding energies were calculated at coverages ranging from /9 to ML and are compared to the binding energy extrapolated to zero coverage. The binding energies show a nearly linear dependence on coverage. 0.5 BE H - BE Ho (kcal/mol) Co Ni Pd Pt Hydrogen Coverage Supplementary Figure S3. Change in hydrogen binding energy as a function of coverage. The hydrogen binding energies were calculated at coverages ranging from /9 to ML and are compared to the binding energy extrapolated to zero coverage. The binding energies show a nearly linear dependence on coverage. 2 nature chemistry

3 supplementary information 3. MICROKINETIC MODEL SURFACE COVERAGES FOR EACH METAL AND SENSITIVITY ANALYSIS Pt Pd Ni Co Re Mo 0.8 Coverage (ML) N* H* QN / (kcal/mol) - Supplementary Figure S4. Surface coverages for each metal. Simulated surface coverages at the outlet of the reactor at 850 K obtained from the microkinetic models. Conversions in the reactor were the same as those from Figure from the main article. The coverages of NHx surface intermediates are less than ML for all surfaces. Note that the nitrogen coverage under (working) laboratory conditions increases with increasing conversion above the values indicated here (e.g., longer residence times) due to higher partial pressures of the products. Comment on sensitivity analysis As expected intuitively, it is straightforward to show that the Campbell degree of rate control, 4 defined as the normalized sensitivity coefficient of the reaction rate with respect to the rate constant, d ln r / d ln k, is mathematically equivalent to our definition of the normalized sensitivity coefficient based on perturbation of the rate with respect to the pre-exponential A, i.e., dlnr/dlnk = dlnr/dlna. An overall material balance indicates that the conversion in a tubular reactor is proportional to the reaction rate under differential conditions and to the average reaction rate under high conversions. Sensitivity analysis for different conversions (reactor lengths) indicate that the dominant chemistry does not significantly change with conversion for realistic reactor lengths. Thus, one can extend the conventional sensitivity analysis criterion from the reaction rate to the conversion. nature chemistry 3 3

4 4. OTHER VOLCANO CURVE DESCRIPTORS Other descriptors were also explored for this reaction. The experimental turn over frequencies and mincrokinetic model conversions were plotted against the NHx intermediate binding energies. Figures S5 show that alternative descriptors could be used for a reaction. This is an expected result because for ammonia, the binding energies of the intermediates are related to the nitrogen binding energy (they are dependent rather than independent variables). This relation can be rationalized through the bond-order conservation method 5 or linear correlations developed recently via DFT 6 where the nitrogen binding energy is used to calculate the binding energies for the NHx species. 00 Pt Pd Ni Co Re Mo 00 Pt Pd Ni Co Re Mo 00 Pt Pd Ni Co Re Mo Conversion (%) TOF (S - ) QNH3 (kcal/mol) QNH2 (kcal/mol) QNH (kcal/mol) Supplementary Figure S5. Additional descriptors for the ammonia decomposition reaction. The binding energies of NH 3, NH 2, and NH were also explored as descriptors for this reaction. 5. TPD RESULTS OF AMMONIA DESORPTION Ammonia was dosed at low temperatures to determine the binding energy of the ammonia molecule and to examine how the binding energy is modified by the different bimetallic surfaces. Figures S6(a) and (b) show the TPD spectra after dosing 0.3 L ammonia on each surface at 5 K. The m/z=6 amu was used for molecular ammonia desorption to reduce the overlap with the contribution from residual background water desorption, which has a strong signal in m/z=7 amu. The low temperature peak at 97 K on each surface is due to the desorption of multilayer NH 3. The Pt() surface has the highest desorption peak temperature at 32 K, followed by Ni-Pt-Pt at 305 K, and the thick Ni() film at 270 K. The Pt-Ni-Pt surface has the lowest desorption peak temperature, 4 nature chemistry

5 although the actual peak temperature is difficult to discern since there is significant overlap with the multilayer peak. To separate the first and multilayer peaks, a curve fitting program was used to fit the two peaks, resulting in an estimated desorption peak of 260 K. The Redhead equation was used to calculate the binding energies from the peak desoption temperatures, assuming unactivated adsorption and a desorption pre-exponential of 8.x0 s -, which was the literature value 3 used in the microkinetic models. The calculated binding energies were 7.7 kcal/mol for Pt(), 7.3 kcal/mol for Ni-Pt-Pt, 5.3 kcal/mol for thick Ni() and 4.8 kcal/mol for Pt-Ni-Pt. The binding energies of ammonia for the four surfaces were also calculated through DFT at /9 ML and compare well to the TPD results. The binding energies were calculated to be 2. kcal/mol for Pt(), 25.4 kcal/mol for Ni-Pt-Pt, 6.7 kcal/mol for Ni(), and 5.2 kcal/mol for Pt-Ni-Pt. Both the DFT binding energies and TPD peak desorption values are consistent with Pt() > Ni() > Pt-Ni- Pt. Based on DFT, the Ni-Pt-Pt surface configuration is expected to have the highest desorption peak temperature (highest binding energy), although this is not seen in Figure S6(a) due to the decomposition of strongly-adsorbed NH 3 to produce atomic nitrogen as shown in Figure S6(b). 97K 270K NH3 (6 amu) N2 (4 amu) 305K Ni() Film Ni() Film Intensity (arb. units) 32K Ni-Pt-Pt Pt-Ni-Pt Intensity (arb. units) Ni-Pt-Pt Pt-Ni-Pt 629K Pt() Pt() Temperature (K) Temperature (K) Supplementary Figure S6. Ammonia desorption spectra for Pt(), Pt-Ni-Pt, Ni-Pt-Pt, and a thick Ni() film. Spectra (a) shows 6 amu, representing molecular ammonia desorption and spectra (b) shows the desorption of molecular nitrogen which is evidence of ammonia decomposition. nature chemistry 5

6 6. VIBRATIONAL STUDIES OF AMMONIA DECOMPOSITION HREELS experiments were performed to further characterize the decomposition of ammonia on the Ni-Pt-Pt surface. As shown in Figure S7(a), an HREEL spectrum was recorded after dosing 3L of NH 3 at 68 K and then heating to 236 K to remove multilayer ammonia. This surface was further heated to 350 K, Figure S7(b). Additionally, 3L of ammonia was dosed on Ni-Pt-Pt at 350 K, Figure S7(c), which was a temperature where significant decomposition was observed in the TPD experiments. Due to the very reactive nature of the Ni-Pt-Pt surface, the vibrational spectra are complicated by the adsorption of CO from the UHV background (v(ni-c) at 440 cm - and v(co) at 759, 975 and 2029 cm - ), as well as the surface hydroxyl group from the reaction with the background H 2 O (v(oh) at 3450 and 3585 cm - ). 7 The adsorbed CO and OH species both have a strong dynamic dipole moment, resulting in intense vibrational features as compared to those of NH 3. Nevertheless, the HREELS results in Figure S7 provide useful complementary information regarding the decomposition of NH 3 on the Ni-Pt-Pt surface. At 236 K, vibrational features characteristic of ammonia are seen, including the symmetric (δ s (NH 3 )) and asymmetric (δ a (NH 3 )) umbrella deformation modes at 238 cm - and 576 cm -, respectively, as well as the symmetric stretching mode (υ s (NH 3 )) at 3233 cm - and the asymmetric stretching mode (υ a (NH 3 )) at 3342 cm -. The peak at 629 cm - was assigned to the ammonia rocking mode (ρ(nh 3 )) and the peak at 440 cm - is likely a combination of the M-C and M-N vibrations from CO and NH 3, respectively. The peaks at 2922 cm - and 434 cm - have been attributed to the stretching and deformation mode of background CHx species from the UHV background, based on previous studies on Ni-Pt-Pt. 7 Table S summarizes the assignments of NH 3 and additional possible intermediates. Upon heating, most of the ammonia has desorbed by 350 K (from TPD, Figure S6(a)) and this is evident in the HREEL spectrum, Figure S7(b), with a significant decrease in the ammonia umbrella deformation and stretching modes (238 cm -, 576 cm -, 3233 cm -, 3342 cm - ). The NH 3 rocking mode at 629 cm - decreases and becomes a shoulder on a peak at 704 cm -. The lack of the characteristic NH rocking mode at ~350 cm - indicates an absence of the NH intermediate at this temperature. The 704 cm - peak is therefore assigned to the r (NH 2 ) mode. The presence of NH 2 intermediate is consistent with NH 2 dehydrogenation being a kinetically significant step. When dosing 3L NH 3 on a clean Ni-Pt-Pt surface at 350 K, the resulting vibrational features are very similar to those obtained by dosing at low temperatures followed by heating to 350 K, indicating that the same intermediates are formed. Based on the TPD experiments where the dosing temperature is changed (Figure 4), it would be expected that the amount of atomic nitrogen or the NHx intermediate would increase, although this is difficult to conclude from the HREEL spectra due to the less quantitative nature of the HREELS measurements. The most important observation from Figure S7 is 6 nature chemistry

7 supplementary information that, in addition to adsorbed NH 3, partially decomposed intermediates including NH 2 and atomic nitrogen, are produced on Ni-Pt-Pt at 350 K. The presence of the latter is suggested based on the detection of the υ(m-n) mode of atomic nitrogen at 494 cm -, as summarized in Table S. These results provide complementary information supporting the TPD detection of the N 2 gas-phase product from the decomposition of ammonia on the Ni-Pt-Pt surface. ( ) Intensity (arb. units) x80 x (c) (b) x80 (a) Energy Loss (cm - ) Supplementary Figure S7. HREELS spectra of ammonia decomposition. Obtained after of 3L ammonia was dosed at 68 K on the Ni-Pt-Pt surface and heated to (a) 236 K and then (b) 350 K and (c) 3L dosed at 350 K. nature chemistry 7

8 Supplementary Table S. Vibrational assignments for adsorbed NH x species on various surfaces. Ammonia HREELS assignments, frequency (cm - ) Mode Ni-Pt-Pt (000) (-2) 8 Pt() 9 NH 3 υ(m-nh 3 ) ρ (M-NH 3 ) δs(nh 3 ) δa(nh 3 ) υs(n-h) υa(n-h) ΝΗ 2 υ(m-nh 2 ) ρ r (NH 2 ) δw(nh 2 ) 392 δsc(nh 2 ) υs(n-h) ^ υa(n-h) ^ 3379 NH υ(m-nh) 570 / , 78 ρ (N-H) 360 / υ (N-H) 3360 / N υ(m-n) , 468, 492, 556, 605 backgound CO 2029 (bridge) 759 (linear) (M-C) OH ^ unresolved symmetric and asymmetric modes nature chemistry

9 supplementary information REFERENCES. Miller, S.D. & Kitchin, J.R. Relating the coverage dependence of oxygen adsorption on Au and Pt fcc() surfaces through adsorbate-induced surface electronic structure effects. Surf. Sci. 603, (2009). 2. Kitchin, J.R. Correlations in coverage-dependent atomic adsorption energies on Pd(). Phys. Rev. B 79 (2009). 3. Mhadeshwar, A.B., Kitchin, J.R., Barteau, M.A. & Vlachos, D.G. The role of adsorbateadsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on. Catal. Lett. 96, 3-22 (2004). 4. Campbell, C.T. Finding the rate-determining step in a mechanism - Comparing DeDonder relations with the "degree of rate control". J. Catal. 204, (200). 5. Shustorovich, E. & Sellers, H. The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces. Surf. Sci. Rep. 3, 5-9 (998). 6. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99 (2007). 7. Skoplyak, O., Menning, C.A., Barteau, M.A. & Chen, J.G. Experimental and theoretical study of reactivity trends for methanol on Co/Pt() and Ni/Pt() bimetallic surfaces. J. Chem. Phys. 27, 4707 (2007). 8. Dietrich, H., Jacobi, K. & Ertl, G. Decomposition of NH3 on ((2)over-bar). Surf. Sci. 352, 38-4 (996). 9. Sun, Y.M., Sloan, D., Ihm, H. & White, J.M. Electron-induced surface chemistry: Production and characterization of NH2 and NH species on Pt(). J. Vac. Sci. Technol. A-Vac. Surf. Films 4, (996). 0. Parmeter, J.E., Wang, Y., Mullins, C.B. & Weinberg, W.H. Electron-Energy Loss Spectroscopy of Ammonia on (00). J. Chem. Phys. 88, (988).. Rauscher, H., Kostov, K.L. & Menzel, D. Adsorption and Decomposition of Hydrazine on (00). Chem. Phys. 77, (993). 2. Shi, H., Jacobi, K. & Ertl, G. Interaction of Hydrogen with Nitrogen-Atoms Chemisorbed on a (000) Surface. J. Chem. Phys. 02, (995). 3. Shi, H., Jacobi, K. & Ertl, G. Dissociative Chemisorption of Nitrogen on (000). J. Chem. Phys. 99, (993). 4. Hagedorn, C.J., Weiss, M.J. & Weinberg, W.H. Ammonia decomposition on (00) using gasphase atomic hydrogen. J. Vac. Sci. Technol. A-Vac. Surf. Films 6, (998). nature chemistry 9

TPD and FT-IRAS Investigation of Ethylene Oxide (EtO) Adsorption on a Au(211) Stepped Surface

TPD and FT-IRAS Investigation of Ethylene Oxide (EtO) Adsorption on a Au(211) Stepped Surface 3886 Langmuir 2005, 21, 3886-3891 TPD and FT-IRAS Investigation of Ethylene Oxide (EtO) Adsorption on a Au(211) Stepped Surface Jooho Kim and Bruce E. Koel* Department of Chemistry, University of Southern

More information

* Corresponding authors:

* Corresponding authors: Mechanism of Olefin Hydrogenation Catalysis Driven by Palladium-Dissolved Hydrogen Satoshi Ohno,*, Markus Wilde,*, Kozo Mukai, Jun Yoshinobu, and Katsuyuki Fukutani Institute of Industrial Science, The

More information

Evidence for structure sensitivity in the high pressure CO NO reaction over Pd(111) and Pd(100)

Evidence for structure sensitivity in the high pressure CO NO reaction over Pd(111) and Pd(100) Evidence for structure sensitivity in the high pressure CO NO reaction over Pd(111) and Pd(100) Scott M. Vesecky, Peijun Chen, Xueping Xu, and D. Wayne Goodman a) Department of Chemistry, Texas A&M University,

More information

Acidic Water Monolayer on Ruthenium(0001)

Acidic Water Monolayer on Ruthenium(0001) Acidic Water Monolayer on Ruthenium(0001) Youngsoon Kim, Eui-seong Moon, Sunghwan Shin, and Heon Kang Department of Chemistry, Seoul National University, 1 Gwanak-ro, Seoul 151-747, Republic of Korea.

More information

Decomposition of NH 3 on Ir(100): A Temperature Programmed Desorption Study

Decomposition of NH 3 on Ir(100): A Temperature Programmed Desorption Study 340 J. Phys. Chem. B 2002, 106, 340-344 Decomposition of NH 3 on Ir(100): A Temperature Programmed Desorption Study A. K. Santra, B. K. Min, C. W. Yi, Kai Luo, T. V. Choudhary, and D. W. Goodman* Department

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 218 Rel. intensity Rel. intensity Electronic Supplementary Information Under-cover stabilization

More information

Recent activities in TP C6:

Recent activities in TP C6: Recent activities in TP C6: Adsorption, diffusion, and reaction at MoO 3 and V 2 O 5 substrate K. Hermann, M. Gruber, and X. Shi Theory Department, Fritz-Haber-Institut, Berlin Sfb 546 Workshop, Schmöckwitz,

More information

Effects of methanol on crystallization of water in the deeply super cooled region

Effects of methanol on crystallization of water in the deeply super cooled region Effects of methanol on crystallization of water in the deeply super cooled region Ryutaro Souda Nanoscale Materials Center National Institute for Materials Science Japan PHYSICAL REVIEW B 75, 184116, 2007

More information

Supporting Information

Supporting Information Temperature Effect on Transport, Charging and Binding of Low-Energy Electrons Interacting with Amorphous Solid Water Films Roey Sagi, Michelle Akerman, Sujith Ramakrishnan and Micha Asscher * Institute

More information

Heterogeneous catalysis: the fundamentals Kinetics

Heterogeneous catalysis: the fundamentals Kinetics www.catalysiscourse.com Heterogeneous catalysis: the fundamentals Kinetics Prof dr J W (Hans) Niemantsverdriet Schuit Institute of Catalysis Catalysis is a cycle A B separation P catalyst P bonding catalyst

More information

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules

Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules SUPPORTING INFORMATION Functional Group Adsorption on Calcite: I. Oxygen Containing and Nonpolar Organic Molecules E. Ataman*, M. P. Andersson, M. Ceccato, N. Bovet, S. L. S. Stipp Nano-Science Center,

More information

(Preeti Aghalayam, Sep 2011)

(Preeti Aghalayam, Sep 2011) (Preeti Aghalayam, Sep 2011) Adsorbed States As A approaches the catalyst surface, the PE of the system goes through a minimum. Potential Energy (system) ΔH c ΔH p Physisorption vs. Chemisorption A + Catalyst

More information

Adsorption and reaction of 1,3-butadiene on Pt(1 1 1) and Sn/Pt(1 1 1) surface alloys

Adsorption and reaction of 1,3-butadiene on Pt(1 1 1) and Sn/Pt(1 1 1) surface alloys Surface Science 572 (2004) 261 268 www.elsevier.com/locate/susc Adsorption and reaction of 1,3-butadiene on Pt(1 1 1) and Sn/Pt(1 1 1) surface alloys Haibo Zhao, Bruce E. Koel * Department of Chemistry,

More information

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003 Supporting Information for Angew. Chem. Int. Ed. Z52074 Wiley-VCH 2003 69451 Weinheim, Germany Kinetic and Thermodynamic Control via Chemical Bond Rearrangement on Si(001) Surface Chiho Hamai, Akihiko

More information

A high-pressure-induced dense CO overlayer on Pt(111) surface: A chemical analysis using in-situ near ambient pressure XPS

A high-pressure-induced dense CO overlayer on Pt(111) surface: A chemical analysis using in-situ near ambient pressure XPS Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Electronic Supplementary Information for A high-pressure-induced dense CO overlayer

More information

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts

Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Supporting information for Activity descriptors for CO 2 electroreduction to methane on transition-metal catalysts Andrew A. Peterson 1,3, Jens K. Nørskov 1,2 SUNCAT Center for Interface Science and Catalysis,

More information

Surface reactivity and heterogeneous catalysis a theoretical perspective

Surface reactivity and heterogeneous catalysis a theoretical perspective Surface reactivity and heterogeneous catalysis a theoretical perspective J. K. Nørskov Center for Atomic-scale Materials Design Technical University of Denmark norskov@fysik.dtu.dk Heterogeneous Catalysis

More information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement

More information

Chemical Reactions Induced by Ionizing and Electron-beam Irradiation in Freon/Water (Ice) Films

Chemical Reactions Induced by Ionizing and Electron-beam Irradiation in Freon/Water (Ice) Films Chemical Reactions Induced by Ionizing and Electron-beam Irradiation in Freon/Water (Ice) Films Johns Hopkins University (founded in 1876) Dr. C.C. Perry Prof. D.H. Fairborther School of Arts & Sciences

More information

Investigation of the promotion effect of WO 3 on the decomposition and reactivity of NH 4 HSO 4 with NO on V 2 O 5 -WO 3 /TiO 2 SCR catalysts

Investigation of the promotion effect of WO 3 on the decomposition and reactivity of NH 4 HSO 4 with NO on V 2 O 5 -WO 3 /TiO 2 SCR catalysts Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Supporting information Investigation of the promotion effect of WO 3 on the decomposition and

More information

Mechanistic Insights into Metal-Lewis Acid Mediated Catalytic Transfer. Hydrogenation of Furfural to 2-Methylfuran

Mechanistic Insights into Metal-Lewis Acid Mediated Catalytic Transfer. Hydrogenation of Furfural to 2-Methylfuran Supporting information for Mechanistic Insights into Metal-Lewis Acid Mediated Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran Matthew J. Gilkey, Paraskevi Panagiotopoulou, Alexander V. Mironenko,

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL The fhi-aims code [1] was employed for the DFT calculations. The repeated slab method was used to model all the systems with the size of the vacuum gap chosen between 16 and 25 Å.

More information

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes e -? 2 nd FEBIP Workshop Thun, Switzerland 2008 Howard Fairbrother Johns Hopkins University Baltimore, MD, USA Outline

More information

PCCP. Vibrational spectroscopic studies on CO adsorption, NO adsorption CO þ NO reaction on Pd model catalysts. 1. Introduction.

PCCP. Vibrational spectroscopic studies on CO adsorption, NO adsorption CO þ NO reaction on Pd model catalysts. 1. Introduction. INVITED ARTICLE Vibrational spectroscopic studies on CO adsorption, NO adsorption CO þ NO reaction on Pd model catalysts Emrah Ozensoy and D. Wayne Goodman* PCCP www.rsc.org/pccp Department of Chemistry,

More information

TPD-MS. Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) APPLICATION NOTE NOTE

TPD-MS. Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) APPLICATION NOTE NOTE TPD-MS APPLICATION NOTE NOTE Photocatalytic Studies Using Temperature Programmed Desorption Mass Spectrometry (TPD-MS) Thermal analysis consists of many techniques for the exploration of the physical properties

More information

Methanol on Co(0001): XPS, TDS, WF and LEED results

Methanol on Co(0001): XPS, TDS, WF and LEED results Surface Science 598 (2005) 128 135 www.elsevier.com/locate/susc Methanol on Co(0001): XPS, TDS, WF and LEED results K. Habermehl-Ćwirzeń a,b, *, J. Lahtinen a, P. Hautojärvi a a Laboratory of Physics,

More information

Supporting Information

Supporting Information Supporting Information Yao et al. 10.1073/pnas.1416368111 Fig. S1. In situ LEEM imaging of graphene growth via chemical vapor deposition (CVD) on Pt(111). The growth of graphene on Pt(111) via a CVD process

More information

The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond

The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond The Low Temperature Conversion of Methane to Methanol on CeO x /Cu 2 O catalysts: Water Controlled Activation of the C H Bond Zhijun Zuo, a Pedro J. Ramírez, b Sanjaya Senanayake, a Ping Liu c,* and José

More information

Identification of Adsorbed Phenyl (C 6 H 5 ) Groups on Metal Surfaces: Electron-Induced Dissociation of Benzene on Au(111)

Identification of Adsorbed Phenyl (C 6 H 5 ) Groups on Metal Surfaces: Electron-Induced Dissociation of Benzene on Au(111) J. Phys. Chem. B 2001, 105, 8387-8394 8387 Identification of Adsorbed Phenyl (C 6 H 5 ) Groups on Metal Surfaces: Electron-Induced Dissociation of Benzene on Au(111) Denis Syomin, Jooho Kim, and Bruce

More information

The adsorption of acetic acid on Au/Pd(111) alloy surfaces

The adsorption of acetic acid on Au/Pd(111) alloy surfaces Surface Science 601 (2007) 1351 1357 www.elsevier.com/locate/susc The adsorption of acetic acid on Au/Pd(111) alloy surfaces Z. Li, F. Calaza, F. Gao, W.T. Tysoe * Department of Chemistry and Laboratory

More information

Study of the adsorption structure of NO on Pt(111) by scanning tunneling microscopy and high-resolution electron energy-loss spectroscopy

Study of the adsorption structure of NO on Pt(111) by scanning tunneling microscopy and high-resolution electron energy-loss spectroscopy Surface Science 454 456 (2000) 101 105 www.elsevier.nl/locate/susc Study of the adsorption structure of on Pt(111) by scanning tunneling microscopy and high-resolution electron energy-loss spectroscopy

More information

Ted Madey s Scientific Career at NBS/NIST: Aspects of Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), and Vacuum Science

Ted Madey s Scientific Career at NBS/NIST: Aspects of Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), and Vacuum Science Ted Madey s Scientific Career at NBS/NIST: Aspects of Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), and Vacuum Science Cedric J. Powell 1. Ted s 25-year career at NBS/NIST:

More information

Propene Adsorption on Clean and Oxygen-Covered Au(111) and Au(100) Surfaces

Propene Adsorption on Clean and Oxygen-Covered Au(111) and Au(100) Surfaces J. Phys. Chem. B 2000, 104, 8557-8562 8557 Propene Adsorption on Clean and Oxygen-Covered Au(111) and Au(100) Surfaces Kent A. Davis and D. Wayne Goodman* Department of Chemistry, Texas A&M UniVersity,

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2015 Supplementary Information Insights into the Synergistic Role of Metal-Lattice

More information

Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis

Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41929-018-0045-1 In the format provided by the authors and unedited. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis

More information

Efficient Synthesis of Ethanol from CH 4 and Syngas on

Efficient Synthesis of Ethanol from CH 4 and Syngas on Efficient Synthesis of Ethanol from CH 4 and Syngas on a Cu-Co/TiO 2 Catalyst Using a Stepwise Reactor Zhi-Jun Zuo 1, Fen Peng 1,2, Wei Huang 1,* 1 Key Laboratory of Coal Science and Technology of Ministry

More information

Trends in the exchange current for hydrogen evolution

Trends in the exchange current for hydrogen evolution Downloaded from orbit.dtu.dk on: Mar 12, 2018 Trends in the exchange current for hydrogen evolution Nørskov, Jens Kehlet; Bligaard, Thomas ; Logadottir, Ashildur; Kitchin, J.R.; Chen, J.G.; Pandelov, S.;

More information

Insights into Different Products of Nitrosobenzene and Nitrobenzene. Hydrogenation on Pd(111) under the Realistic Reaction Condition

Insights into Different Products of Nitrosobenzene and Nitrobenzene. Hydrogenation on Pd(111) under the Realistic Reaction Condition Insights into Different Products of Nitrosobenzene and Nitrobenzene Hydrogenation on Pd(111) under the Realistic Reaction Condition Lidong Zhang a, Zheng-Jiang Shao a, Xiao-Ming Cao a,*, and P. Hu a,b,*

More information

Aniline hydrogenolysis on nickel: effects of surface hydrogen and surface structure

Aniline hydrogenolysis on nickel: effects of surface hydrogen and surface structure Catalysis Letters 34 (1995) 365-374 365 Aniline hydrogenolysis on nickel: effects of surface hydrogen and surface structure Scan X. Huang, Daniel A. Fischer a and John L. Gland 1 Department of Chemistry,

More information

Adsorption and Thermal Decomposition of Acetaldehyde on Si(111)-7 7

Adsorption and Thermal Decomposition of Acetaldehyde on Si(111)-7 7 1872 J. Phys. Chem. B 1997, 101, 1872-1877 Adsorption and Thermal Decomposition of Acetaldehyde on Si(111)-7 7 Y. Bu, J. Breslin, and M. C. Lin* Department of Chemistry, Emory UniVersity, Atlanta, Georgia

More information

Ming-Cheng Wu, Charles M. Truong, and D. Wayne Goodman. I. Introduction J. Phys. Chem. 1993, 97,

Ming-Cheng Wu, Charles M. Truong, and D. Wayne Goodman. I. Introduction J. Phys. Chem. 1993, 97, 4182 J. Phys. Chem. 1993, 97, 41824186 nteractions of Ammonia with a NiO( 100) Surface Studied by HighResolution Electron Energy Loss Spectroscopy and Temperature Programmed Desorption Spectroscopy MingCheng

More information

5. Surface species and reactions on WO 3 -based powders studied by DRIFTS and TPD

5. Surface species and reactions on WO 3 -based powders studied by DRIFTS and TPD 5. Surface species and reactions on -based powders 5. Surface species and reactions on -based powders studied by DRIFTS and TPD Introduction...148 5.1 DRIFTS studies...149 5.1.0 Experimental procedure...149

More information

Correlations in coverage-dependent atomic adsorption energies on Pd(111)

Correlations in coverage-dependent atomic adsorption energies on Pd(111) Correlations in coverage-dependent atomic adsorption energies on Pd(111) John R. Kitchin* Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA Received 23

More information

Amandeep S. Bolina, Angela J. Wolff, and Wendy A. Brown*

Amandeep S. Bolina, Angela J. Wolff, and Wendy A. Brown* 16836 J. Phys. Chem. B 2005, 109, 16836-16845 Reflection Absorption Infrared Spectroscopy and Temperature-Programmed Desorption Studies of the Adsorption and Desorption of Amorphous and Crystalline Water

More information

Catalytic Water Formation on Platinum: A First-Principles Study

Catalytic Water Formation on Platinum: A First-Principles Study J. Am. Chem. Soc. 2001, 123, 4235-4242 4235 Catalytic Water Formation on Platinum: A First-Principles Study A. Michaelides and P. Hu* Contribution from the School of Chemistry, The Queen s UniVersity of

More information

Adsorption and Reaction of Formic Acid on a Pseudomorphic Palladium Monolayer on Mo(110)

Adsorption and Reaction of Formic Acid on a Pseudomorphic Palladium Monolayer on Mo(110) J. Phys. Chem. 1996, 100, 245-252 245 Adsorption and Reaction of Formic Acid on a Pseudomorphic Palladium Monolayer on Mo(110) Chen Xu and D. W. Goodman* Department of Chemistry, Texas A&M UniVersity,

More information

Ammonia adsorption on Zr(0001): effect of electron bombardment on hydrogen production

Ammonia adsorption on Zr(0001): effect of electron bombardment on hydrogen production SURFACE AND INTERFACE ANALYSIS Surf. Interface Anal. 2002; 33: 945 949 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sia.1475 Ammonia adsorption on Zr(0001): effect

More information

Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals

Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals Downloaded from orbit.dtu.dk on: Jan 03, 2018 Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals Kitchin, J. R.; Nørskov, Jens Kehlet; Barteau,

More information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, Supported Single Pt 1 /Au 1 Atoms for Methanol Steam Reforming Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*, State Key

More information

Chapter 7. Surface reactivity: geometry and electronic structure

Chapter 7. Surface reactivity: geometry and electronic structure 146 Chapter 7. Surface reactivity: geometry and electronic structure 7.1 Introduction As described in previous chapters, the Ir(210) surface structure can be modified at will and in situ: the atomically

More information

Catalytic Activity of IrO 2 (110) Surface: A DFT study

Catalytic Activity of IrO 2 (110) Surface: A DFT study Catalytic Activity of IrO 2 (110) Surface: A DFT study Jyh-Chiang Jiang Department of Chemical Engineering, National Taiwan University of Science and Technology (NTUST) NCTS-NCKU 9/7, 2010 Computational

More information

Chemisorption of Ultrathin Pd Layers on W(110) and

Chemisorption of Ultrathin Pd Layers on W(110) and Langmuir 1988,4, 1091-1095 Chemisorption of Ultrathin Pd Layers on W(110) and W(100): Adsorption of H2 and COT,$ 1091 Paul J. Berlowitz and D. Wayne Goodman* Surface Science Division, Sandia National Laboratories,

More information

OFFICE OF NAVAL RESEARCH. Contract No. N J Technical Report No. 20. Department of Chemistry. Prepared for Publication.

OFFICE OF NAVAL RESEARCH. Contract No. N J Technical Report No. 20. Department of Chemistry. Prepared for Publication. AD-A266 903 OFFICE OF NAVAL RESEARCH R&T Project Code 413 a 001 Contract No. N00014-89-J-1235 Technical Report No. 20 The thermal dissociation of NH 2 CHO (ND 2 CHO) on Si(100)-2xl by... Y. Bu, and M.

More information

Younes Abghoui, Anna L. Garden, Valtýr Freyr Hlynsson, Snædís Björgvinsdóttir, Hrefna Ólafsdóttir, Egill Skúlason

Younes Abghoui, Anna L. Garden, Valtýr Freyr Hlynsson, Snædís Björgvinsdóttir, Hrefna Ólafsdóttir, Egill Skúlason Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions

More information

Electronic Supplementary Information to. Understanding CeO 2 as Deacon catalyst by probe molecule adsorption and in situ infrared characterisation

Electronic Supplementary Information to. Understanding CeO 2 as Deacon catalyst by probe molecule adsorption and in situ infrared characterisation Electronic Supplementary Information to Understanding CeO 2 as Deacon catalyst by probe molecule adsorption and in situ infrared characterisation Ramzi Farra, a Sabine Wrabetz, a Manfred E. Schuster, a

More information

Adsorption, desorption, and diffusion on surfaces. Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics

Adsorption, desorption, and diffusion on surfaces. Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics Adsorption, desorption, and diffusion on surfaces Joachim Schnadt Divsion of Synchrotron Radiation Research Department of Physics Adsorption and desorption Adsorption Desorption Chemisorption: formation

More information

Adsorption of gases on solids (focus on physisorption)

Adsorption of gases on solids (focus on physisorption) Adsorption of gases on solids (focus on physisorption) Adsorption Solid surfaces show strong affinity towards gas molecules that it comes in contact with and some amt of them are trapped on the surface

More information

Kinetic modeling in heterogeneous catalysis.

Kinetic modeling in heterogeneous catalysis. Kinetic modeling in heterogeneous catalysis. C. Franklin Goldsmith Modern Methods in Heterogeneous Catalysis Research Friday, January 27 th, 2012 Microkinetic modeling is a valuable tool in catalysis.

More information

Surface Chemistry of Alanine on Ni{111} Supporting Information

Surface Chemistry of Alanine on Ni{111} Supporting Information S1 Surface Chemistry of Alanine on Ni{111} Richard E. J. Nicklin 1, Alix Cornish 1, Andrey Shavorskiy 2, Silvia Baldanza 1, Karina Schulte 3, Zhi Liu 2, Roger A. Bennett 1, Georg Held 1,4 1 Department

More information

Partial oxidation of methanol on well-ordered V 2 O 5 (001)/Au(111) thin films

Partial oxidation of methanol on well-ordered V 2 O 5 (001)/Au(111) thin films PAPER www.rsc.org/pccp Physical Chemistry Chemical Physics Partial oxidation of methanol on well-ordered V 2 O 5 (001)/Au(111) thin films J. M. Sturm,w D. Göbke, H. Kuhlenbeck,*z J. Döbler,y U. Reinhardt,z

More information

Table 1: Residence time (τ) in seconds for adsorbed molecules

Table 1: Residence time (τ) in seconds for adsorbed molecules 1 Surfaces We got our first hint of the importance of surface processes in the mass spectrum of a high vacuum environment. The spectrum was dominated by water and carbon monoxide, species that represent

More information

Bifunctional alloys for the electroreduction of CO 2 and CO

Bifunctional alloys for the electroreduction of CO 2 and CO Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Bifunctional alloys for the electroreduction of CO 2 and CO Heine A.Hansen a, Chuan

More information

Water clustering on nanostructured iron oxide films

Water clustering on nanostructured iron oxide films ARTICLE Received 12 May 2013 Accepted 22 May 2014 Published 30 Jun 2014 Water clustering on nanostructured iron oxide films Lindsay R. Merte1,2, Ralf Bechstein1, W. Guowen Peng3, Felix Rieboldt1, Carrie

More information

Synthesis and decomposition of ammonia on transition metal surfaces: bond-order-conse~ation-morse-potential analysis

Synthesis and decomposition of ammonia on transition metal surfaces: bond-order-conse~ation-morse-potential analysis Surface Science Letters 259 (1991) L791-L796 North-Hoiiaod surface science letters Surface Science Letters Synthesis and decomposition of ammonia on transition metal surfaces: bond-order-conse~ation-morse-potential

More information

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts

Supporting Information. Heterostructures of MXene and N-doped graphene as highly. active bifunctional electrocatalysts Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2018 Supporting Information Heterostructures of MXene and N-doped graphene as highly active bifunctional

More information

Catalysis Today. Effects of heat and mass transfer on the kinetics of CO oxidation over RuO 2 (1 1 0) catalyst. Donghai Mei a,, Guang Lin b.

Catalysis Today. Effects of heat and mass transfer on the kinetics of CO oxidation over RuO 2 (1 1 0) catalyst. Donghai Mei a,, Guang Lin b. Catalysis Today 165 (2011) 56 63 Contents lists available at ScienceDirect Catalysis Today journal homepage: www.elsevier.com/locate/cattod Effects of heat and mass transfer on the kinetics of oxidation

More information

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101)

Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Supporting Information for Selectivity in the initial C-H bond cleavage of n-butane on PdO(101) Can Hakanoglu (a), Feng Zhang (a), Abbin Antony (a), Aravind Asthagiri (b) and Jason F. Weaver (a) * (a)

More information

Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2

Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2 Supporting Information Design of High-Performance Pd-based Alloy Nanocatalysts for Direct Synthesis of H 2 O 2 HaoxiangXu a, DaojianCheng a*, Yi Gao b,* a International Research Center for Soft Matter,

More information

Ab Initio Study of Hydrogen Storage on CNT

Ab Initio Study of Hydrogen Storage on CNT Ab Initio Study of Hydrogen Storage on CNT Zhiyong Zhang, Henry Liu, and KJ Cho Stanford University Presented at the ICNT 2005, San Francisco Financial Support: GCEP (Global Climate and Energy Project)

More information

Hydrogenation of Single Walled Carbon Nanotubes

Hydrogenation of Single Walled Carbon Nanotubes Hydrogenation of Single Walled Carbon Nanotubes Anders Nilsson Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University Coworkers and Ackowledgement A. Nikitin 1), H. Ogasawara 1), D.

More information

The effect of subsurface hydrogen on the adsorption of ethylene on Pd(1 1 1)

The effect of subsurface hydrogen on the adsorption of ethylene on Pd(1 1 1) Surface Science 540 (2003) L600 L604 Surface Science Letters The effect of subsurface hydrogen on the adsorption of ethylene on Pd(1 1 1) D. Stacchiola, W.T. Tysoe * Department of Chemistry and Laboratory

More information

Supplementary Information. Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces

Supplementary Information. Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces Supplementary Information Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces Deborah Prezzi 1,4, Daejin Eom 2,3,4, Kwang T. Rim 2, Hui Zhou 3, Michael Lefenfeld #2, Shengxiong Xiao 2,

More information

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16

Understanding Chemical Reactions through Computer Modeling. Tyler R. Josephson University of Delaware 4/21/16 Understanding Chemical Reactions through Computer Modeling Tyler R. Josephson University of Delaware 4/21/16 A little about me B.S. in Chem E from U of M, 2011 Currently, Ph.D. student at University of

More information

Evidence for partial dissociation of water on flat MgO(1 0 0) surfaces

Evidence for partial dissociation of water on flat MgO(1 0 0) surfaces 6 February 2002 Chemical Physics Letters 352 (2002) 318 322 www.elsevier.com/locate/cplett Evidence for partial dissociation of water on flat MgO(1 0 0) surfaces Y.D. Kim a, R.M. Lynden-Bell b, *, A. Alavi

More information

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation

Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane. Activation Supporting Information for: Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation Weifeng Tu, 1 Mireille Ghoussoub, Chandra Veer Singh,,3** and Ya-Huei (Cathy) Chin 1,*

More information

Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate

Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate Elementary Steps of the Catalytic NO x Reduction with NH 3 : Cluster Studies on Reactant Adsorption at Vanadium Oxide Substrate M. Gruber and K. Hermann Inorg. Chem. Dept., Fritz-Haber-Institut der Max-Planck-Gesellschaft,

More information

Carboxylic Acid Deprotonation on the Ag(110) and Ag(111) Surfaces

Carboxylic Acid Deprotonation on the Ag(110) and Ag(111) Surfaces 6638 Langmuir 2001, 17, 6638-6646 Carboxylic Acid Deprotonation on the Ag(110) and Ag(111) Surfaces Bryan Parker Department of Chemistry, University of Illinois, Urbana, Illinois 61801 Boonchuan Immaraporn

More information

ADSORPTION ON SURFACES. Kinetics of small molecule binding to solid surfaces

ADSORPTION ON SURFACES. Kinetics of small molecule binding to solid surfaces ADSORPTION ON SURFACES Kinetics of small molecule binding to solid surfaces When the reactants arrive at the catalyst surface, reactions are accelerated Physisorption and Chemisorption 1- diffusion to

More information

Extending UHV studies to the mbar range: vibrationalsfg spectroscopy of high-pressure CO adsorption on Pt(1 1 1) and Pd(1 1 1)

Extending UHV studies to the mbar range: vibrationalsfg spectroscopy of high-pressure CO adsorption on Pt(1 1 1) and Pd(1 1 1) Vacuum 71 (2003) 83 87 Extending UHV studies to the mbar range: vibrationalsfg spectroscopy of high-pressure CO adsorption on Pt(1 1 1) and Pd(1 1 1) G.unther Rupprechter*, Holger Unterhalt, Matthias Morkel,

More information

Experimental and Quantum Investigation on Ice Surface Structure and Reactivity

Experimental and Quantum Investigation on Ice Surface Structure and Reactivity Experimental and Quantum Investigation on Ice Surface Structure and Reactivity A.Allouche J.P.Aycard F.Borget T.Chiavassa I.Couturier C.Manca F.Marinelli C.Martin S.Raunier P.Roubin Physique des Interactions

More information

Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores

Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores pubs.acs.org/jpcc Tuning the Oxygen Reduction Activity of Pd Shell Nanoparticles with Random Alloy Cores Liang Zhang and Graeme Henkelman* Department of Chemistry and Biochemistry and the Institute for

More information

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Powered by TCPDF (www.tcpdf.org) This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Title: Badescu, S. C.

More information

Oxide Formation of Transition Metal Surfaces and Effect on Catalysis

Oxide Formation of Transition Metal Surfaces and Effect on Catalysis Oxide Formation of Transition Metal Surfaces and Effect on Catalysis Wei-Xue Li State Key Laboratory of Catalysis, and Center for Theoretical and Computational Chemistry Dalian Institute of Chemical Physics,

More information

The Surface Chemistry of Propylene, 1-Iodopropane, and 1,3-Diiodopropane on MoAl Alloy Thin Films Formed on Dehydroxylated Alumina

The Surface Chemistry of Propylene, 1-Iodopropane, and 1,3-Diiodopropane on MoAl Alloy Thin Films Formed on Dehydroxylated Alumina J. Phys. Chem. B 2006, 110, 12555-12571 12555 The Surface Chemistry of Propylene, 1-Iodopropane, and 1,3-Diiodopropane on MoAl Alloy Thin Films Formed on Dehydroxylated Alumina Feng Gao, Yilin Wang, and

More information

THE PHYSICAL AND CHEMICAL PROPERTIES OF ULTRATHIN OXIDE FILMS

THE PHYSICAL AND CHEMICAL PROPERTIES OF ULTRATHIN OXIDE FILMS Annu. Rev. Phys. Chem. 1997. 48:43 68 Copyright c 1997 by Annual Reviews Inc. All rights reserved THE PHYSICAL AND CHEMICAL PROPERTIES OF ULTRATHIN OXIDE FILMS S. C. Street, C. Xu, and D. W. Goodman Department

More information

PCCP PAPER. Mechanistic insights on ethanol dehydrogenation on Pd Au model catalysts: a combined experimental and DFT study.

PCCP PAPER. Mechanistic insights on ethanol dehydrogenation on Pd Au model catalysts: a combined experimental and DFT study. PAPER View Article Online View Journal View Issue Cite this: Phys. Chem. Chem. Phys., 2017, 19, 30578 Received 27th July 2017, Accepted 2nd November 2017 DOI: 10.1039/c7cp05097f rsc.li/pccp Introduction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Shape-controlled TiO 2 nanoparticles and TiO 2 P25 interacting with CO and H 2 O 2 molecular probes: a synergic approach for surface structure recognition and physico-chemical

More information

Supporting Information. Surface Chemistry of 1- and 3-Hexyne on Pt(111): Desorption, Decomposition and Dehydrocyclization

Supporting Information. Surface Chemistry of 1- and 3-Hexyne on Pt(111): Desorption, Decomposition and Dehydrocyclization Supporting Information Surface Chemistry of 1- and 3-Hexyne on Pt(111): Desorption, Decomposition and Dehydrocyclization M. D. Rötzer 1, M. Krause 1, A. S. Crampton 1,2, E. Mitterreiter 1, H. H. Heenen

More information

Structure-Reactivity Correlations in Pd-Au Bimetallic Nanoclusters

Structure-Reactivity Correlations in Pd-Au Bimetallic Nanoclusters pubs.acs.org/langmuir 2010 American Chemical Society Structure-Reactivity Correlations in Pd-Au Bimetallic Nanoclusters Elad Gross and Micha Asscher* Institute of Chemistry, The Hebrew University of Jerusalem,

More information

Catalysis at the Sub-Nanoscale: Complex CO Oxidation Chemistry on a Few Au Atoms

Catalysis at the Sub-Nanoscale: Complex CO Oxidation Chemistry on a Few Au Atoms Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 214 Catalysis at the Sub-Nanoscale: Complex CO Oxidation Chemistry on a Few Au

More information

The Transition State for Surface-Catalyzed Dehalogenation: C I Cleavage on Pd(111)

The Transition State for Surface-Catalyzed Dehalogenation: C I Cleavage on Pd(111) Journal of Catalysis 203, 41 50 (2001) doi:10.1006/jcat.2001.3310, available online at http://www.idealibrary.com on The Transition State for Surface-Catalyzed Dehalogenation: C I Cleavage on Pd(111) Mark

More information

Microkinetic Modeling and Analysis of Ethanol Partial Oxidation and Reforming Reaction Pathways on Platinum at Short Contact Times

Microkinetic Modeling and Analysis of Ethanol Partial Oxidation and Reforming Reaction Pathways on Platinum at Short Contact Times University of Connecticut DigitalCommons@UConn Master's Theses University of Connecticut Graduate School 2-4-2013 Microkinetic Modeling and Analysis of Ethanol Partial Oxidation and Reforming Reaction

More information

Photo-Reactivity. Jerusalem, Israel. Israel

Photo-Reactivity. Jerusalem, Israel. Israel Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 CsPbBr 3 and CH 3 NH 3 PbBr 3 Promote Visible-light Photo-Reactivity Shankar Harisingh

More information

Magnetite decorated graphite nanoplatelets as cost effective CO 2 adsorbent

Magnetite decorated graphite nanoplatelets as cost effective CO 2 adsorbent Supplementary Information Magnetite decorated graphite nanoplatelets as cost effective CO 2 adsorbent Ashish Kumar Mishra and Sundara Ramaprabhu * Alternative Energy and Nanotechnology Laboratory (AENL),

More information

GAS-SURFACE INTERACTIONS

GAS-SURFACE INTERACTIONS Page 1 of 16 GAS-SURFACE INTERACTIONS In modern surface science, important technological processes often involve the adsorption of molecules in gaseous form onto a surface. We can treat this adsorption

More information

Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory

Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory Conversion of Methane and Light Alkanes to Chemicals over Heterogeneous Catalysts Lessons Learned from Experiment and Theory March 8, 201 6 Alexis T. Bell Department of Chemical and Biomolecular Engineering

More information

Supporting Information. Mechanistic Insight to Selective Catalytic Reduction. A DFT Study

Supporting Information. Mechanistic Insight to Selective Catalytic Reduction. A DFT Study Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 05 Supporting Information Mechanistic Insight to Selective Catalytic Reduction

More information

Supporting Information

Supporting Information Supporting Information First-Principles-based Microkinetics Simulations of Synthesis Gas Conversion on a Stepped Rhodium Surface Ivo A.W. Filot, Robin J.P. Broos, Jeaphianne P.M. van Rijn, Gerardus J.H.A.

More information

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: Chemical Kinetics Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions: reactant concentration temperature action of catalysts surface

More information

Part III: Theoretical Surface Science Adsorption at Surfaces

Part III: Theoretical Surface Science Adsorption at Surfaces Technische Universität München Part III: Theoretical Surface Science Adsorption at Surfaces Karsten Reuter Lecture course: Solid State Theory Adsorption at surfaces (T,p) Phase II Phase I Corrosion Growth

More information