Measurement of cement s particle size distribution by the buoyancy weighing-bar method

Size: px
Start display at page:

Download "Measurement of cement s particle size distribution by the buoyancy weighing-bar method"

Transcription

1 Measurement of cement s particle size distribution by te buoyancy weiging-bar metod *Rondang Tambun, Nofriko ratama, Ely, and Farida Hanum Department of Cemical Engineering, Faculty of Engineering, University of Sumatera Utara, Jl. Almamater Kampus USU Medan 20155, Indonesia; *Corresponding Autor: rondang_tambun@yaoo.com / rondang@usu.ac.id Abstract One of te important caracteristics of cement quality is particle size distribution. Tere are several simple metods to measure te particle size distribution of cement based on te Stokes diameter, like Andreasen pipette metod, sedimentation balance metod, centrifugal sedimentation metod, etc. A major disadvantages of tese metods are tey are time consuming process and require special skills. article size distribution also can be analyzed by using a different principle troug microscopy, laser diffraction/scattering metods and Coulter counter metod. Even tese metods produce igly accurate results witin a sorter time, owever, te equipments are expensive. In te present study, it as developed a new metod to overcome te problem. Te metod is te buoyancy weiging-bar metod. Tis metod is a simple and cost-effective. Te principle of te buoyancy weiging-bar metod tat te density cange in a suspension due to particle migration is measured by weiging buoyancy against a weiging bar ung in te suspension, and te particle size distribution is calculated using te lengt of te weiging-bar and te time course cange in te te apparent mass of te weiging bar. Tis apparatus consists of an analytical balance wit a ook for underfloor weiging, and a weiging bar, wic is used to detect te density cange in suspension. Te result obtained sow tat te buoyancy weiging bar metod is suitable for measuring te particle size distribution of cement, and te result is comparable to tat of determined by settling balance metod. Introduction Key words: buoyancy, cement, particle size distribution, weiging-bar One of te important caracteristics of cement quality is te particle size distribution. Tere are several simple metods to measure te particle size distribution based on te Stokes diameter, like Andreasen pipette metod (Society of Eng. Jpn, 1988), sedimentation balance metod (Fukui et al., 2000), centrifugal sedimentation metod (Arakawa et al., 1984), etc. However, all tese metods are time consuming and require special skills. On te oter and, te particle size distribution can be analyzed using a different principle troug microscopy (Kuriyama, et al., 2000), laser diffraction/scattering metod (Minosima, et al., 2005), and Coulter counter metod (Oira, et al., 2004). Tese metods require numerous samples to accurately determine particle size distribution. Altoug te laser diffraction/scattering and Coulter counter metods produce igly accurate results witin a sorter time, te equipments for tese metods are extremely expensive. Hence, a simple and cost effective metod to determine te particle size distribution of cement is in ig demand. In tis study, it was developed a new metod to measure te particle size distribution by using te buoyancy weiging-bar metod (BWM). In tis metod, density cange in a suspension due to particle migration is measured by weiging buoyancy against te 112

2 weiging-bar ung in a suspension. Ten te particle size distribution is calculated using te lengt of te weiging-bar and te time-course cange in te apparent mass of te weiging-bar (Motoi et al., 2010, Obata et al.,2009, Oira et al., 2010, Tambun et al., 2011, Tambun et al., 2012a, 2012b). In tis experiment, te initial buoyant mass of te weiging-bar W0 depends on te particles between te top and bottom of te weiging-bar in a suspension. Te initial density of suspension ρs0, initial buoyant mass of te weiging-bar W0, and initial apparent mass of te weiging-bar G0 in a suspension at t = 0 are given by te following equations. S0 L C 0 L, W0 VBS0, (2) G 0 VBB W0 VB( B S0 ), (3) were ρl and ρ are te liquid density and te particle density, respectively. C0 is te initial solid mass concentration of suspension, ρb is te density of te weiging-bar in suspension, and VB is te volume of te weiging-bar. Te solid mass concentration of suspension C(t) decreases wit time because large particles settle. Te density of suspension ρs, buoyant mass of te weiging-bar W, and apparent mass of te weiging-bar G in a suspension at time t are expressed as C( t) S( t ) L L, (4) ( S W t) V B ( t), G( t) VBB W ( t) VB( B S( t)). (6) Te solid mass concentration of suspension C(t) becomes zero once all te small particles also settle. Te final density of suspension ρs, final buoyant mass of te weiging-bar W, and final apparent mass of te weiging-bar G in a suspension at t = are given by te following equations. S L, (7) W V B L, (8) G VBB W VB( B L). (9) Equation (10) sows te mass balance of settling particles in a suspension (Allen., 1990). xmax xi v( t C0 C( t) C0 f ( dx C0 f ( dx. (10) xi xmin Te left side in Eq. (10) is te quantity of particles tat move onto te bottom side of te weiging-bar. Te first term on te rigt side represents te mass of particles larger tan particle size xi among te particles tat move, wile te second term on te rigt side is te mass of particles smaller tan particle size xi among te particles tat move. From Eqs. (2), (5), (8), and (10), xmax xi v( t W0 W ( t) ( W0 W ) f ( dx ( W0 W ) f ( dx, (11) xi xmin were v( is te settling velocity of te particle and f( is te mass frequency of te particle size x. Differentiating Eq. (11) wit respect to te time t gives dw x i v( ( W0 W ) f ( dx. (12) dt xmin From Eqs. (11) and (12), (1) (5) 113

3 dw W W R t. (13) dt Te apparent mass of te weiging-bar, wic is given by Eq. (6), gradually increases from G0 to G. Te volume and density of te weiging-bar are constant values. Differentiating Eq. (6) wit respect to time t gives dg dt dw dt. (14) Terefore, according to Eqs. (6), (13), and (14), G V W dg t G dt dg t dt B B R R, (15) were GR = VBρB-WR. Te value of GR is calculated from te tangent line based on Eq. (15). Te cumulative mass oversize is xmax G0 GR R 100 f ( dx D, (16) x G0 G were D is te cumulative mass undersize. article size x is given by Stokes formula 18Lv( x, (17) g ( ) L Te settling velocity of te particles v( is calculated using Eq. (18) v(, (18) t were is te lengt of te weiging- bar and t is te time lapse. From Eqs. (17) and ( 18), time t is an inverse function of particle size x. Te particle size distribution of te suspended particles is calculated using te particle size at eac time and ten plotting te corresponding cumulative mass undersize D. Materials and Metods rocedure Figure 1 scematically illustrates tis experiment. Te weiging tools was weiging bar ( φ 10.0 mm x mm, submerged lengt: mm) wic was composed of aluminum (density: 2700 kg/m 3 ). Figure 1. Scematic diagram of te experimental apparatus 114

4 Te particle suspension was placed in a 1000 ml measuring glass cylinder (diameter: 65.0 mm). Te analytical balance (minimum readout mass 0.1 mg) ad a below balance weiging ook for anging measurement. Te sample material was cement (density: 2500 kg/m 3 ). Etanol and metanol were used as a dispersion liquid, and te influence of etanol and metanol concentrations were investigated. Te etanol and metanol concentrations were 99.8% ( p.a), 70%, 50% and 30%. Te suspensions ad a solid concentration of 10 kg/m 3 (ca. 1 wt.%) (Oira et al., 2010). To prepare a suspension, a 1000 ml liquid and te particles to be tested were mixed in a glass cylinder. Using a anging wire, wic did not extend due to te weigt of te weiging-bar, te weiging-bar was ung from te analytical balance. Te room temperature was approximately 298 K. After torougly stirring te suspension using an agitator, te weiging-bar was set wit te balance. Te measuring data, wic consist of time t and te corresponding mass of te bar GB, were recorded. Te measuring time was two ours and te data were collected every 60 second intervals. After te measurement, te particle size distribution was calculated based on te above described teory. As comparison metod, te particle size distributions were also measured by using te settling balance metod. Results and Discussion Figure 2 sows te cange wit time in te apparent mass of weiging-bar GB wen cement was used. Figure 2(a) was te te apparent mass of te weiging-bar as a function of time using etanol (p.a) as liquid, and Figure 2(b) was te te apparent mass of te weiging-bar as a function of time using metanol (p.a) as liquid. Bot of te figures sow tat te apparent mass of te weiging-bar increased until all te cement particles settled below te lower end of te weiging-bar, and ten te apparent mass of te weiging-bar became constant. Te cange in te apparent mass was due to te cange in te buoyant mass against te weiging-bar as well as particle settling. a. Using etanol as liquid b. Using metanol as liquid Figure 2. Apparent mass of te weiging-bar as a function of time (a. Using etanol as liquid b. Using metanol as liquid) Figure 3 and 4 sow te influence of etanol and metanol concentration at determination of cement particle size distributions by using te BWM. Te solid line indicates te distribution measured by te settling balance metod. Te result obtained sow tat te concentration of etanol and metanol influence te particle size distributions of cement. Te etanol (p.a) and metanol (p.a) gave te close result to tat measured of settling balance metod. Hence, BWM can measure te particle size distribution of cement by using etanol and metanol as liquid. 115

5 Figure 5 sows te particle size distributions determination of cement by BWM using etanol (p.a) and metanol (p.a). Te results sow tat te etanol (p.a) gave te closer result to tat measured by settling balance tan metanol (p.a). Hence, te etanol is more suitable as liquid in determination of cement s particle size distributions by using BWM. Figure 3. Influence of etanol concentration at cement particle size distributions measurement by using BWM Figure 4. Influence of metanol concentration at cement particle size distributions measurement by using BWM Figure 5. article size distributions measurement of cement using etanol (p.a) and metanol (p.a) 116

6 Conclusions Te study investigates te influences of concentration of etanol and metanol as liquid in particle size distribution measurement of cement by BWM. From tis study, te following results were concluded: 1. Te particle size distributions of cement could be measured by BWM using etanol and metanol as liquid, and te particle size distributions obtained were comparable to tose measured by settling balance. 2. Te iger concentration of etanol and metanol gave te better result tan te lower concentration. 3. Te particle size distributions of cement by BWM using etanol (p.a) as liquid gave te closer result to tat measured by settling balance metod tan metanol (p.a) as liquid. Acknowledgements Te autors would like to tank Ministry of Researc, Tecnology, and Higer Education of Republic Indonesia for Researc Grant, under enelitian Fundamental sceme, References Allen, T. (1990). article Size Measurement, Fourt edition, Capman and Hall, London, pp Arakawa, M., Simomura, G., Imamura, A., Yazawa, N., Yokoyama, T., Kaya, N. (1984). A New Apparatus for Measuring article Size Distribution based on Centrifugal Sedimentation, Journal of te Society of Materials Science of Japan, 33, Fukui, K., Yosida,H., Siba. M., Tokunaga, Y. (2000). Investigation about Data Reduction and Sedimentation Distance of Sedimentation Balance Metod, Journal of Cemical Engineering of Japan, 33, Kuriyama, M., Tokanai, H., Harada, E. (2000). Maximum Stable Drop Size of seudoplastic Dispersed ase in Agitation Dispersion, Kagaku Kogaku Ronbunsu, 26, Minosima, M., Matsusima, K., Sinoara, K. (2005). Experimental Study on Size Distribution of Granules repared by Spray Drying: Te Case of a Dispersed Slurry Containing Binder, Kagaku Kogaku Ronbunsu, 31, Motoi, T., Oira, Y., Obata, E. (2010). Measurement of te Floating article Size Distribution by Buoyancy Weiging Bar Metod. owder Tecnology, 201, Obata, E., Oira, Y., Ota, M. (2009). New Measurement of article Size Distribution by Buoyancy Weiging Bar Metod. owder Tecnology, 196, Oira, Y., Furukawa, K., Tambun, R., Simadzu, M., Obata, E. (2010). Buoyancy Weiging- Bar Metod: A article Size Distribution Measurement using New Settling Metod. Journal of te Sedimentological Society of Japan, 69, Oira, Y., Takaasi, H., Takaasi, M., Ando, K. (2004). Wall Heat Transfer in a Double- Tube Coal-Slurry Bubble Column, Kagaku Kogaku Ronbunsu, 30, Society of Cemical Engineering of Japan. (1988). edition, Maruzen, Tokyo, Japan, pp Cemical Engineering Handbook, 5 t Tambun, R., Motoi, T., Simadzu, M., Oira, Y., Obata, E. (2011). Size Distribution Measurement of Floating articles in te Allen Region by a Buoyancy Weiging Bar Metod. Advanced owder Tecnology, 22, Tambun, R., Nakano, K., Simadzu, M., Oira, Y., Obata, E. (2012). Sizes Influences of Weiging Bar and Vessel in te Buoyancy Weiging-Bar Metod on Floating article Size Distribution Measurements. Advanced owder Tecnology, 23, Tambun, R., Simadzu, M., Oira, Y., Obata, E. (2012). Definition of te New Mean article Size based on te Settling Velocity in Liquid. Journal of Cemical Engineering of Japan, 45,

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12.

Notes: Most of the material in this chapter is taken from Young and Freedman, Chap. 12. Capter 6. Fluid Mecanics Notes: Most of te material in tis capter is taken from Young and Freedman, Cap. 12. 6.1 Fluid Statics Fluids, i.e., substances tat can flow, are te subjects of tis capter. But

More information

Simulation and verification of a plate heat exchanger with a built-in tap water accumulator

Simulation and verification of a plate heat exchanger with a built-in tap water accumulator Simulation and verification of a plate eat excanger wit a built-in tap water accumulator Anders Eriksson Abstract In order to test and verify a compact brazed eat excanger (CBE wit a built-in accumulation

More information

ADCP MEASUREMENTS OF VERTICAL FLOW STRUCTURE AND COEFFICIENTS OF FLOAT IN FLOOD FLOWS

ADCP MEASUREMENTS OF VERTICAL FLOW STRUCTURE AND COEFFICIENTS OF FLOAT IN FLOOD FLOWS ADCP MEASUREMENTS OF VERTICAL FLOW STRUCTURE AND COEFFICIENTS OF FLOAT IN FLOOD FLOWS Yasuo NIHEI (1) and Takeiro SAKAI (2) (1) Department of Civil Engineering, Tokyo University of Science, 2641 Yamazaki,

More information

Desalination by vacuum membrane distillation: sensitivity analysis

Desalination by vacuum membrane distillation: sensitivity analysis Separation and Purification Tecnology 33 (2003) 75/87 www.elsevier.com/locate/seppur Desalination by vacuum membrane distillation: sensitivity analysis Fawzi Banat *, Fami Abu Al-Rub, Kalid Bani-Melem

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section.1 Derivatives and Rates of Cange 2016 Kiryl Tsiscanka Derivatives and Rates of Cange Measuring te Rate of Increase of Blood Alcool Concentration Biomedical scientists ave studied te cemical and

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Chapters 19 & 20 Heat and the First Law of Thermodynamics

Chapters 19 & 20 Heat and the First Law of Thermodynamics Capters 19 & 20 Heat and te First Law of Termodynamics Te Zerot Law of Termodynamics Te First Law of Termodynamics Termal Processes Te Second Law of Termodynamics Heat Engines and te Carnot Cycle Refrigerators,

More information

Theoretical Analysis of Flow Characteristics and Bearing Load for Mass-produced External Gear Pump

Theoretical Analysis of Flow Characteristics and Bearing Load for Mass-produced External Gear Pump TECHNICAL PAPE Teoretical Analysis of Flow Caracteristics and Bearing Load for Mass-produced External Gear Pump N. YOSHIDA Tis paper presents teoretical equations for calculating pump flow rate and bearing

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3.

Chapter 1 Functions and Graphs. Section 1.5 = = = 4. Check Point Exercises The slope of the line y = 3x+ 1 is 3. Capter Functions and Graps Section. Ceck Point Exercises. Te slope of te line y x+ is. y y m( x x y ( x ( y ( x+ point-slope y x+ 6 y x+ slope-intercept. a. Write te equation in slope-intercept form: x+

More information

1 Limits and Continuity

1 Limits and Continuity 1 Limits and Continuity 1.0 Tangent Lines, Velocities, Growt In tion 0.2, we estimated te slope of a line tangent to te grap of a function at a point. At te end of tion 0.3, we constructed a new function

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

The Basics of Vacuum Technology

The Basics of Vacuum Technology Te Basics of Vacuum Tecnology Grolik Benno, Kopp Joacim January 2, 2003 Basics Many scientific and industrial processes are so sensitive tat is is necessary to omit te disturbing influence of air. For

More information

Fluids and Buoyancy. 1. What will happen to the scale reading as the mass is lowered?

Fluids and Buoyancy. 1. What will happen to the scale reading as the mass is lowered? Fluids and Buoyancy. Wat will appen to te scale reading as te mass is lowered? M Using rcimedes Principle: any body fully or partially submerged in a fluid is buoyed up by a force equal to te weigt of

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Comment on Experimental observations of saltwater up-coning

Comment on Experimental observations of saltwater up-coning 1 Comment on Experimental observations of saltwater up-coning H. Zang 1,, D.A. Barry 2 and G.C. Hocking 3 1 Griffit Scool of Engineering, Griffit University, Gold Coast Campus, QLD 4222, Australia. Tel.:

More information

5.1 We will begin this section with the definition of a rational expression. We

5.1 We will begin this section with the definition of a rational expression. We Basic Properties and Reducing to Lowest Terms 5.1 We will begin tis section wit te definition of a rational epression. We will ten state te two basic properties associated wit rational epressions and go

More information

EOQ and EPQ-Partial Backordering-Approximations

EOQ and EPQ-Partial Backordering-Approximations USING A ONSTANT RATE TO APPROXIMATE A LINEARLY HANGING RATE FOR THE EOQ AND EPQ WITH PARTIAL BAKORDERING David W. Pentico, Palumo-Donaue Scool of Business, Duquesne University, Pittsurg, PA 158-18, pentico@duq.edu,

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6

1. (a) 3. (a) 4 3 (b) (a) t = 5: 9. (a) = 11. (a) The equation of the line through P = (2, 3) and Q = (8, 11) is y 3 = 8 6 A Answers Important Note about Precision of Answers: In many of te problems in tis book you are required to read information from a grap and to calculate wit tat information. You sould take reasonable

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

De-Coupler Design for an Interacting Tanks System

De-Coupler Design for an Interacting Tanks System IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 3 (Sep. - Oct. 2013), PP 77-81 De-Coupler Design for an Interacting Tanks System

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

Optimal Shape Design of a Two-dimensional Asymmetric Diffsuer in Turbulent Flow

Optimal Shape Design of a Two-dimensional Asymmetric Diffsuer in Turbulent Flow THE 5 TH ASIAN COMPUTAITIONAL FLUID DYNAMICS BUSAN, KOREA, OCTOBER 7 ~ OCTOBER 30, 003 Optimal Sape Design of a Two-dimensional Asymmetric Diffsuer in Turbulent Flow Seokyun Lim and Haeceon Coi. Center

More information

The Foundations of Chemistry 1

The Foundations of Chemistry 1 Te Foundations of Cemistry 1 1-1 (a) Biocemistry is te study of te cemistry of living tings. (b) Analytical cemistry studies te quantitative and qualitative composition analysis of substances. (c) Geocemistry

More information

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab

Te comparison of dierent models M i is based on teir relative probabilities, wic can be expressed, again using Bayes' teorem, in terms of prior probab To appear in: Advances in Neural Information Processing Systems 9, eds. M. C. Mozer, M. I. Jordan and T. Petsce. MIT Press, 997 Bayesian Model Comparison by Monte Carlo Caining David Barber D.Barber@aston.ac.uk

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Lines, Conics, Tangents, Limits and the Derivative

Lines, Conics, Tangents, Limits and the Derivative Lines, Conics, Tangents, Limits and te Derivative Te Straigt Line An two points on te (,) plane wen joined form a line segment. If te line segment is etended beond te two points ten it is called a straigt

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Distribution of reynolds shear stress in steady and unsteady flows

Distribution of reynolds shear stress in steady and unsteady flows University of Wollongong Researc Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 13 Distribution of reynolds sear stress in steady

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Development of new and validation of existing convection correlations for rooms with displacement ventilation systems

Development of new and validation of existing convection correlations for rooms with displacement ventilation systems Energy and Buildings 38 (2006) 163 173 www.elsevier.com/locate/enbuild Development of new and validation of existing convection correlations for rooms wit displacement ventilation systems Atila Novoselac

More information

Appendix A. Fluorinated Silane Coating Procedure for Pyrex and Quartz

Appendix A. Fluorinated Silane Coating Procedure for Pyrex and Quartz Appendix A. Fluorinated Silane Coating Procedure for Pyrex and Quartz Coating Compound: United Cemical Tecnologies Compound #T2494 1. Mix te coating solution: a. Start wit a 200 cm 3 etanol to 10 cm 3

More information

Particle size analysis -Chapter 3

Particle size analysis -Chapter 3 Particle size analysis -Chapter 3 Importance of PSA Size and hence surface area of particles affect: The rate of drug dissolution and release from dosage forms Flow properties of granules and powders.

More information

The entransy dissipation minimization principle under given heat duty and heat transfer area conditions

The entransy dissipation minimization principle under given heat duty and heat transfer area conditions Article Engineering Termopysics July 2011 Vol.56 No.19: 2071 2076 doi: 10.1007/s11434-010-4189-x SPECIAL TOPICS: Te entransy dissipation minimization principle under given eat duty and eat transfer area

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

Work and Energy. Introduction. Work. PHY energy - J. Hedberg

Work and Energy. Introduction. Work. PHY energy - J. Hedberg Work and Energy PHY 207 - energy - J. Hedberg - 2017 1. Introduction 2. Work 3. Kinetic Energy 4. Potential Energy 5. Conservation of Mecanical Energy 6. Ex: Te Loop te Loop 7. Conservative and Non-conservative

More information

Ratio estimation using stratified ranked set sample

Ratio estimation using stratified ranked set sample METRON - International Journal of Statistics 003, vol. LXI, n. 1, pp. 75-90 HANI M. SAMAWI MAHMOUD I. SIAM Ratio estimation using stratified ranked set sample Summary - Ratio estimation metod is used to

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

Basic Nonparametric Estimation Spring 2002

Basic Nonparametric Estimation Spring 2002 Basic Nonparametric Estimation Spring 2002 Te following topics are covered today: Basic Nonparametric Regression. Tere are four books tat you can find reference: Silverman986, Wand and Jones995, Hardle990,

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

Chapter 5 FINITE DIFFERENCE METHOD (FDM)

Chapter 5 FINITE DIFFERENCE METHOD (FDM) MEE7 Computer Modeling Tecniques in Engineering Capter 5 FINITE DIFFERENCE METHOD (FDM) 5. Introduction to FDM Te finite difference tecniques are based upon approximations wic permit replacing differential

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

10.1 VIBRATIONAL RELAXATION *

10.1 VIBRATIONAL RELAXATION * Andrei Tokmakoff, MIT Department of Cemistry, 3//009 p. 0-0. VIRATIONAL RELAXATION * Here we want to address ow a quantum mecanical vibration undergoes irreversible energy dissipation as a result of interactions

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

A Modified Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows with Collisions

A Modified Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows with Collisions A Modified Distributed Lagrange Multiplier/Fictitious Domain Metod for Particulate Flows wit Collisions P. Sing Department of Mecanical Engineering New Jersey Institute of Tecnology University Heigts Newark,

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

Study of Convective Heat Transfer through Micro Channels with Different Configurations

Study of Convective Heat Transfer through Micro Channels with Different Configurations International Journal of Current Engineering and Tecnology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rigts Reserved Available at ttp://inpressco.com/category/ijcet Researc Article Study of

More information

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES

AN ANALYSIS OF AMPLITUDE AND PERIOD OF ALTERNATING ICE LOADS ON CONICAL STRUCTURES Ice in te Environment: Proceedings of te 1t IAHR International Symposium on Ice Dunedin, New Zealand, nd t December International Association of Hydraulic Engineering and Researc AN ANALYSIS OF AMPLITUDE

More information

Exercise 19 - OLD EXAM, FDTD

Exercise 19 - OLD EXAM, FDTD Exercise 19 - OLD EXAM, FDTD A 1D wave propagation may be considered by te coupled differential equations u x + a v t v x + b u t a) 2 points: Derive te decoupled differential equation and give c in terms

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Journal of Applied Science and Agriculture. The Effects Of Corrugated Geometry On Flow And Heat Transfer In Corrugated Channel Using Nanofluid

Journal of Applied Science and Agriculture. The Effects Of Corrugated Geometry On Flow And Heat Transfer In Corrugated Channel Using Nanofluid Journal o Applied Science and Agriculture, 9() February 04, Pages: 408-47 AENSI Journals Journal o Applied Science and Agriculture ISSN 86-9 Journal ome page: www.aensiweb.com/jasa/index.tml Te Eects O

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Solution for the Homework 4

Solution for the Homework 4 Solution for te Homework 4 Problem 6.5: In tis section we computed te single-particle translational partition function, tr, by summing over all definite-energy wavefunctions. An alternative approac, owever,

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c.

Chapter 4 Derivatives [ ] = ( ) ( )= + ( ) + + = ()= + ()+ Exercise 4.1. Review of Prerequisite Skills. 1. f. 6. d. 4. b. lim. x x. = lim = c. Capter Derivatives Review of Prerequisite Skills. f. p p p 7 9 p p p Eercise.. i. ( a ) a ( b) a [ ] b a b ab b a. d. f. 9. c. + + ( ) ( + ) + ( + ) ( + ) ( + ) + + + + ( ) ( + ) + + ( ) ( ) ( + ) + 7

More information

arxiv: v1 [physics.flu-dyn] 3 Jun 2015

arxiv: v1 [physics.flu-dyn] 3 Jun 2015 A Convective-like Energy-Stable Open Boundary Condition for Simulations of Incompressible Flows arxiv:156.132v1 [pysics.flu-dyn] 3 Jun 215 S. Dong Center for Computational & Applied Matematics Department

More information

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes *

A general articulation angle stability model for non-slewing articulated mobile cranes on slopes * tecnical note 3 general articulation angle stability model for non-slewing articulated mobile cranes on slopes * J Wu, L uzzomi and M Hodkiewicz Scool of Mecanical and Cemical Engineering, University of

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

Inf sup testing of upwind methods

Inf sup testing of upwind methods INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Met. Engng 000; 48:745 760 Inf sup testing of upwind metods Klaus-Jurgen Bate 1; ;, Dena Hendriana 1, Franco Brezzi and Giancarlo

More information

GRID CONVERGENCE ERROR ANALYSIS FOR MIXED-ORDER NUMERICAL SCHEMES

GRID CONVERGENCE ERROR ANALYSIS FOR MIXED-ORDER NUMERICAL SCHEMES GRID CONVERGENCE ERROR ANALYSIS FOR MIXED-ORDER NUMERICAL SCHEMES Cristoper J. Roy Sandia National Laboratories* P. O. Box 5800, MS 085 Albuquerque, NM 8785-085 AIAA Paper 00-606 Abstract New developments

More information

Experimental Analysis of Heat Transfer Augmentation in Double Pipe Heat Exchanger using Tangential Entry of Fluid

Experimental Analysis of Heat Transfer Augmentation in Double Pipe Heat Exchanger using Tangential Entry of Fluid ISR Journal of Mecanical & Civil Engineering (ISRJMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP 29-34 www.iosrjournals.org Experimental Analysis of Heat Transfer Augmentation in Double Pipe Heat Excanger

More information

EFFECTS OF LINE AND PASSIVATION GEOMETRY ON CURVATURE EVOLUTION DURING PROCESSING AND THERMAL CYCLING IN COPPER INTERCONNECT LINES

EFFECTS OF LINE AND PASSIVATION GEOMETRY ON CURVATURE EVOLUTION DURING PROCESSING AND THERMAL CYCLING IN COPPER INTERCONNECT LINES Acta mater. 48 (000) 3169±3175 www.elsevier.com/locate/actamat EFFECTS OF LINE AND PASSIVATION GEOMETRY ON CURVATURE EVOLUTION DURING PROCESSING AND THERMAL CYCLING IN COPPER INTERCONNECT LINES T.-S. PARK

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA EXAMINATION MODULE 5

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA EXAMINATION MODULE 5 THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA EXAMINATION NEW MODULAR SCHEME introduced from te examinations in 009 MODULE 5 SOLUTIONS FOR SPECIMEN PAPER B THE QUESTIONS ARE CONTAINED IN A SEPARATE FILE

More information

Differential Calculus (The basics) Prepared by Mr. C. Hull

Differential Calculus (The basics) Prepared by Mr. C. Hull Differential Calculus Te basics) A : Limits In tis work on limits, we will deal only wit functions i.e. tose relationsips in wic an input variable ) defines a unique output variable y). Wen we work wit

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Numerical Simulation of Ventilation Air Flow in Underground Mine Workings

Numerical Simulation of Ventilation Air Flow in Underground Mine Workings Numerical Simulation of Ventilation Air Flow in Underground Mine Workings S.M. Aminossadati Te University of Queensland, CRCMining, Brisbane, Australia K. ooman Te University of Queensland, Brisbane, Australia

More information

Finite Element Analysis of J-Integral for Surface Cracks in Round Bars under Combined Mode I Loading

Finite Element Analysis of J-Integral for Surface Cracks in Round Bars under Combined Mode I Loading nternational Journal of ntegrated Engineering, Vol. 9 No. 2 (207) p. -8 Finite Element Analysis of J-ntegral for Surface Cracks in Round Bars under Combined Mode Loading A.E smail, A.K Ariffin 2, S. Abdulla

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

arxiv: v1 [math.dg] 4 Feb 2015

arxiv: v1 [math.dg] 4 Feb 2015 CENTROID OF TRIANGLES ASSOCIATED WITH A CURVE arxiv:1502.01205v1 [mat.dg] 4 Feb 2015 Dong-Soo Kim and Dong Seo Kim Abstract. Arcimedes sowed tat te area between a parabola and any cord AB on te parabola

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

Model development for the beveling of quartz crystal blanks

Model development for the beveling of quartz crystal blanks 9t International Congress on Modelling and Simulation, Pert, Australia, 6 December 0 ttp://mssanz.org.au/modsim0 Model development for te beveling of quartz crystal blanks C. Dong a a Department of Mecanical

More information

Mathematics 123.3: Solutions to Lab Assignment #5

Mathematics 123.3: Solutions to Lab Assignment #5 Matematics 3.3: Solutions to Lab Assignment #5 Find te derivative of te given function using te definition of derivative. State te domain of te function and te domain of its derivative..: f(x) 6 x Solution:

More information

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow Neale, A.; Derome, D.; Blocken, B.; Carmeliet, J.E.

CFD calculation of convective heat transfer coefficients and validation Part I: Laminar flow Neale, A.; Derome, D.; Blocken, B.; Carmeliet, J.E. CFD calculation of convective eat transfer coefficients and validation Part I: Laminar flow Neale, A.; Derome, D.; Blocken, B.; Carmeliet, J.E. Publised in: IEA Annex 41 working meeting, Kyoto, Japan Publised:

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information