Prudent Practices in the Laboratory

Size: px
Start display at page:

Download "Prudent Practices in the Laboratory"

Transcription

1 Prudent Practices in the Laboratory Taken from NATIONAL ACADEMY PRESS, Washington, D.C.1995 A selection of useful sections TABLE 3.9 Partial List of Incompatible Chemicals (Reactive Hazards)... 2 TABLE 6.1 Summary of Magnetic Field Effects C.11.8 Handling Spills of Elemental Mercury G.6 Reactive or Explosive Materials Requiring Special Attention... 4 PEROXIDES... 7 Other Oxidizers... 8 Dusts... 8 The "Dirty Dozen" : top suspects for laboratory accidents

2 TABLE 3.9 Partial List of Incompatible Chemicals (Reactive Hazards) Substances in the left hand column should be stored and handled so that they cannot accidentally contact corresponding substances in the right hand column under uncontrolled conditions.) Acetic acid Acetic anhydride Acetone Acetylene Alkali and alkaline earth metals, powdered aluminum Ammonia (anhydrous) Ammonium nitrate Aniline Bromine Calcium oxide Carbon, activated Chlorates Chlorine Chlorine dioxide Chromic acid, chromium trioxide Copper Fluorine Hydrazine Hydrocarbons (benzene, butane, turpentine, ) Hydrocyanic acid Hydrofluoric acid (anhydrous) Hydrogen peroxide Hydrogen sulfide Iodine Mercury Nitric acid (concentrated) Nitroparaffins Oxalic acid Oxygen Perchloric acid Chromic acid, nitric acid, peroxides, permanganates Hydroxyl-containing compounds such as ethylene glycol, perchloric acid Concentrated nitric and sulfuric acid mixtures, hydrogen peroxide Chlorine, bromine, copper, silver, fluorine, mercury Carbon dioxide, carbon tetrachloride, other chlorinated hydrocarbons (also prohibit the use of water, foam, and dry chemical extinguishers on fires involving these metals -dry sand should be employed) Mercury, chlorine, calcium hypochlorite, iodine, bromine, hydrogen fluoride Acids, metal powders, flammable liquids, chlorates, nitrites, sulfur, finely divided organics, combustibles Nitric acid, hydrogen peroxide Ammonia, acetylene, butadiene, butane, other petroleum gases, sodium carbide, turpentine, benzene, finely divided metals Water Calcium hypochlorite, other oxidants Ammonium salts, acids, metal powders, sulfur, finely divided organics, combustibles Ammonia, acetylene, butadiene, butane, other petroleum gases, hydrogen, sodium carbide, turpentine, benzene, finely divided metals Ammonia, methane, phosphine, hydrogen sulfide Acetic acid, naphthalene, camphor, glycerol, turpentine, alcohol, other flammable liquids Acetylene, hydrogen peroxide, flammable liquids, flammable gases, nitratable substances Isolate from everything Hydrogen peroxide, nitric acid, any other oxidant Fluorine, chlorine, bromine, chromic acid, peroxides Nitric acid, alkalis Ammonia (aqueous or anhydrous) Hydrogen fluoride Copper, chromium, iron, most metals or their salts, any flammable liquid, combustible materials, aniline, nitromethane Fuming nitric acid,a oxidizing gases Acetylene, ammonia (anhydrous or aqueous) Acetylene, fulminic acid (Produced in nitric acid-ethanol mixtures), ammonia Acetic acid, acetone, alcohol, aniline, chromic acid, hydrocyanic acid, hydrogen sulfide, Inorganic bases, amines Silver and mercury and their salts Oils, grease, hydrogen, flammable liquids, solids, gases Acetic anhydride, bismuth and its alloys, alcohol, paper, wood, grease, oils (all organics) 2

3 Peroxides, organic Phosphorus (white) Phosphorus pentoxide Potassium chlorate Potassium perchlorate Potassium permanganate Silver and silver salts Sodium nitrite Sodium peroxide Sulfuric acid Acids (organic or mineral), (also avoid friction, store cold) Air, oxygen Alcohols, strong bases, water Acids (see also chlorates) Acids (see also perchloric acid) Glycerol, ethylene glycol, benzaldehyde, sulfuric acid Acetylene, oxalic acid, tartaric acid, fulminic acid (Produced in nitric acidethanol mixtures), ammonium compounds Ammonium nitrate and other ammonium salts Any oxidizable substance, such as ethanol, methanol, glacial acetic acid, acetic anhydride, benzaldehyde, carbon disulfide, glycerol, ethylene glycol, ethyl acetate, methyl acetate, furfural Chlorates, perchlorates, permanganates Hazards in the Chemical Laboratory, 4th edition, L. Bretherick, Ed. (1986). TABLE 6.1 Summary of Magnetic Field Effects Level at Which Effects Occur (gauss) Effects on electron microscopes 1 Disturbance of color computer displays 1-3 Disturbance of monochrome computer displays 3-5 Erasure of credit card and bank card coding 10 Effects on watches and micromechanical devices 10 Lowest known field effect on pacemakers 17 Saturation of transformers and amplifiers 50 Erasure of floppy disks 350 Site Planning Guide for Superconducting NMR Systems, Bruker Instruments (1992). 5.C.11.8 Handling Spills of Elemental Mercury Mercury spills can be avoided by using supplies and equipment that do not contain mercury. However, most mercury spills do not pose a high risk. The initial response to a spill of elemental mercury should be to isolate the spill area and begin the cleanup procedure. Those doing the cleanup should wear protective gloves. The cleanup should begin with collecting the droplets. The large droplets can be consolidated by using a scraper or a piece of cardboard, and the pool of mercury removed with a pump or other appropriate equipment. A standard vacuum cleaner should never be used to pick up mercury. If a house vacuum system is used, it can be protected from the mercury by a charcoal filter in a trap. For cleaning up small mercury droplets, a special vacuum pump may be used, or the mercury may be picked up on wet toweling, which consolidates the small droplets to larger pieces, or picked up with a piece of adhesive tape. Commercial mercury spill cleanup sponges and spill control kits are available. The common practice of using sulfur should be discontinued because the practice is ineffective and the resulting waste creates a disposal problem. The mercury should be placed in a thick-wall high-density polyethylene bottle and transferred to a central depository for reclamation. After a mercury spill the exposed work surfaces and floors should be decontaminated by using an appropriate decontamination kit. 3

4 5.G.6 Reactive or Explosive Materials Requiring Special Attention An explosive is any chemical compound or mechanical mixture that, when subjected to heat, impact, friction, detonation, or other suitable initiation, undergoes rapid chemical change, evolving large volumes of highly heated gases that exert pressure on the surrounding medium. The term applies to materials that either detonate or deflagrate. Heat, light, mechanical shock, and certain catalysts initiate explosive reactions. Hydrogen and chlorine react explosively in the presence of light. Acids, bases, and other substances catalyze the explosive polymerization of acrolein, and many metal ions can catalyze the violent decomposition of hydrogen peroxide. Shock-sensitive materials include acetylides, azides, nitrogen triiodide, organic nitrates, nitro compounds, perchlorate salts (especially those of heavy metals such as ruthenium and osmium), many organic peroxides, and compounds containing diazo, halamine, nitroso, and ozonide functional groups. Even a small sample may be dangerous. Furthermore, the hazard is associated not with the total energy released, but rather with the remarkably high rate of a detonation reaction. A high-order explosion of even milligram quantities can drive small fragments of glass or other matter deep into the body. It is important to use minimum amounts of these hazardous materials with adequate shielding and personal protection. A compound is apt to be explosive if its heat of formation is more than about 100 calories per gram (cal/g) less than the sum of the heats of formation of its products. In making this calculation, a reasonable reaction should be used in order to yield the most exothermic products. Scaling up reactions can introduce several hazards. Another situation that can lead to problems is a reaction susceptible to an induction period; particular care must be given to the rate of reagent addition versus its rate of consumption. Finally, the hazards of exothermic reactions or unstable or reactive chemicals are exacerbated under extreme conditions, such as high temperature or high pressure used for hydrogenations, oxygenations, or work with supercritical fluids. The following list is not intended to be all-inclusive. Further guidance on reactive and explosive materials should be sought. Acetylenic compounds can be explosive in mixtures of 2.5 to 80% with air. At pressures of 2 or more atmospheres, acetylene (C2H2) subjected to an electrical discharge or high temperature decomposes with explosive violence. Dry acetylides detonate on receiving the slightest shock. Acetylene must be handled in acetone solution and never stored alone in a cylinder. Aluminum chloride (AlCl3) should be considered a potentially dangerous material. If moisture is present, there may be sufficient decomposition to form hydrogen chloride (HC1) and build up considerable pressure. If a bottle is to be opened after long storage, it should first be completely enclosed in a heavy towel. Ammonia (NH3) reacts with iodine to give nitrogen triiodide, which detonates on touch. Ammonia reacts with hypochlorites to give chlorine. Mixtures of NH3 and organic halides sometimes react violently when heated under pressure. Ammonia is combustible. Inhalation of concentrated fumes can be fatal. Azides, both organic and inorganic, and some azo compounds can be heat- and shock-sensitive. Azides such as sodium azide can displace halide from chlorinated hydrocarbons such as dichloromethane to form highly explosive organic polyazides; this substitution reaction is facilitated in solvents such as dimethyl sulfoxide (DMSO). Carbon disulfide (CS2) is both very toxic and very flammable; mixed with air, its vapors can be ignited by a steam bath or pipe, a hot plate, or a light bulb. Chlorine (C12) is toxic and may react violently with hydrogen (H2) or with hydrocarbons when exposed to sunlight. Chromium trioxide pyridine complex (CrO3 C5H5N) may explode if the CrO3 concentration is too high. The complex should be prepared by addition of CrO3 to excess C5H5N. Diazomethane (CH2N2) and related diazo compounds should be treated with extreme caution. They are very toxic, and the pure gases and liquids explode readily even from contact with sharp edges of glass (ground glass joints). Solutions in ether are safer from this standpoint. An ether solution of diazomethane is rendered harmless by drop wise addition of acetic acid. Diethyl, diisopropyl, and other ethers, including tetrahydrofuran and 1,4-dioxane and particularly the branched-chain type of ethers, sometimes explode during heating or refluxing because the 4

5 presence of peroxides has developed from air oxidation. Ferrous salts or sodium bisulfite can be used to decompose these peroxides, and passage over basic active alumina can remove most of the peroxidic material. In general, however, old samples of ethers should be disposed of after testing, following procedures for disposal of peroxides (see Chapter 7, section 7.D.2.5). Dimethyl sulfoxide (DMSO), (CH3)2SO, decomposes violently on contact with a wide variety of active halogen compounds, such as acyl chlorides. Explosions from contact with active metal hydrides have been reported. Dimethyl sulfoxide does penetrate and carry dissolved substances through the skin membrane. Dry benzoyl peroxide (C6H5CO2)2 is easily ignited and sensitive to shock. It decomposes spontaneously at temperatures above 50 C. It is reported to be desensitized by addition of 20% water. Dry ice should not be kept in a container that is not designed to withstand pressure. Containers of other substances stored over dry ice for extended periods generally absorb carbon dioxide (CO2) unless they have been sealed with care. When such containers are removed from storage and allowed to come rapidly to room temperature, the CO2 may develop sufficient pressure to burst the container with explosive violence. On removal of such containers from storage, the stopper should be loosened or the container itself should be wrapped in towels and kept behind a shield. Dry ice can produce serious burns, as is also true for all types of dry-ice-cooled cooling baths. Drying agents, such as Ascarite (sodium hydroxide-coated silica), should not be mixed with phosphorus pentoxide (P2O5) because the mixture may explode if it is warmed with a trace of water. Because the cobalt salts used as moisture indicators in some drying agents may be extracted by some organic solvents, the use of these drying agents should be restricted to drying gases. Dusts that are suspensions of oxidizable particles (e.g., magnesium powder, zinc dust, carbon powder, and flowers of sulfur) in the air can constitute powerful explosive mixtures. These materials should be used with adequate ventilation and should not be exposed to ignition sources. When finely divided, some solids, including zirconium, titanium, Raney nickel, lead (such as prepared by pyrolysis of lead tartrate), and catalysts (such as activated carbon containing active metals and hydrogen), can combust spontaneously if allowed to dry while exposed to air and should be handled wet. Ethylene oxide (C2H4O) has been known to explode when heated in a closed vessel. Experiments using ethylene oxide under pressure should be carried out behind suitable barricades. Halogenated compounds, such as chloroform (CHCl3), carbon tetrachloride (CC14), and other halogenated solvents, should not be dried with sodium, potassium, or other active metal; violent explosions usually result. Many halogenated compounds are toxic. Oxidized halogen compounds chlorates, chlorites, bromates, and iodates and the corresponding peroxy compounds may be explosive at high temperatures. Hydrogen peroxide (H2O2) stronger than 3% can be dangerous; in contact with the skin, it can cause severe burns. Thirty percent H2O2 may decompose violently if contaminated with iron, copper, chromium, or other metals or their salts. Stirring bars may inadvertently bring metal into a reaction and should be used with caution. Liquid nitrogen-cooled traps open to the atmosphere condense liquid air rapidly. Then, when the coolant is removed, an explosive pressure buildup occurs, usually with enough force to shatter glass equipment if the system has been closed. Hence, only sealed or evacuated equipment should be so cooled. Lithium aluminum hydride (LiAlH4) should not be used to dry methyl ethers or tetrahydrofuran; fires from reaction with damp ethers are often observed. The reaction of LiAlH4 with carbon dioxide has reportedly generated explosive products. Carbon dioxide or bicarbonate extinguishers should not be used for LiAlH4 fires; instead such fires should be smothered with sand or some other inert substance. Nitrates, nitro and nitroso compounds may be explosive, especially if more than one nitro group is present. Alcohols and polyols can form highly explosive nitrate esters (e.g., nitroglycerine) from reaction with nitric acid. Organometallics are hazardous because some organometallic compounds burn vigorously on contact with air or moisture. For example, solutions of t-butyl lithium can cause ignition of some 5

6 organic solvents on exposure to air. The pertinent information should be obtained for a specific compound. Oxygen tanks should be handled with care because serious explosions have resulted from contact between oil and high-pressure oxygen. Oil or grease should not be used on connections to an O2 cylinder or gas line carrying O2. Ozone (O3) is a highly reactive and toxic gas. It is formed by the action of ultraviolet light on oxygen (air), and, therefore, certain ultraviolet sources may require venting to the exhaust hood. Ozonides can be explosive. Palladium (Pd) or platinum (Pt) on carbon, platinum oxide, Raney nickel, and other catalysts present the danger of explosion if additional catalyst is added to a flask in which an air-flammable vapor mixture and/ or hydrogen is present. The use of flammable filter paper should be avoided. Parr bombs used for hydrogenations should be handled with care behind a shield, and the operator should wear goggles and a face shield. Perchlorates should be avoided insofar as possible. Perchlorate salts of organic, organometallic, and inorganic cations are potentially explosive and have been set off either by heating or by shock. Perchlorates should not be used as drying agents if there is a possibility of contact with organic compounds or of proximity to a dehydrating acid strong enough to concentrate the perchloric acid (HClO4) (e.g., in a drying train that has a bubble counter containing sulfuric acid). Safer drying agents should be used. Seventy percent HClO4 can be boiled safely at approximately 200 C, but contact of the boiling undiluted acid or the hot vapor with organic matter, or even easily oxidized inorganic matter, will lead to serious explosions. Oxidizable substances must never be allowed to contact HClO4. This includes wooden benchtops or hood enclosures, which may become highly flammable after absorbing HClO4 liquid or vapors. Beaker tongs, rather than rubber gloves, should be used when handling fuming HClO4. Perchloric acid evaporations should be carried out in a hood that has a good draft. The hood and ventilator ducts should be washed with water frequently (weekly; but see also section 8.C.7.5) to avoid danger of spontaneous combustion or explosion if this acid is in common use. Special perchloric acid hoods are available from many manufacturers. Disassembly of such hoods must be preceded by washing of the ventilation system to remove deposited perchlorates. Permanganates are explosive when treated with sulfuric acid. If both compounds are used in an absorption train, an empty trap should be placed between them and monitored for entrapment. Peroxides (inorganic) should be handled carefully. When mixed with combustible materials, barium, sodium, and potassium peroxides form explosives that ignite easily. Phosphorus (P) (red and white) forms explosive mixtures with oxidizing agents. White phosphorus should be stored under water because it ignites spontaneously in air. The reaction of phosphorus with aqueous hydroxides gives phosphine, which may either ignite spontaneously or explode in air. Phosphorus trichloride (PC13) reacts with water to form phosphorous acid with HCl evolution; the phosphorous acid decomposes on heating to form phosphine, which may either ignite spontaneously or explode. Care should be taken in opening containers of PCl3, and samples that have been exposed to moisture should not be heated without adequate shielding to protect the operator. Potassium (K) is much more reactive than sodium; it ignites quickly on exposure to humid air and, therefore, should be handled under the surface of a hydrocarbon solvent such as mineral oil or toluene (see Sodium). Potassium can form explosive peroxides on contact with air. If this happens, the act of cutting a surface crust off the metal can cause a severe explosion. Residues from vacuum distillations have been known to explode when the still was vented suddenly to the air before the residue was cool. Such explosions can be avoided by venting the still pot with nitrogen, by cooling it before venting, or by restoring the pressure slowly. Sudden venting may produce a shockwave that can detonate sensitive materials. Sodium (Na) should be stored in a closed container under kerosene, toluene, or mineral oil. Scraps of sodium or potassium should be destroyed by reaction with n-butyl alcohol. Contact with water should be avoided because sodium reacts violently with water to form hydrogen (H2) with evolution of sufficient heat to cause ignition. Carbon dioxide, bicarbonate, and carbon tetrachloride fire extinguishers should not be used on alkali metal fires. Metals like sodium become more 6

7 reactive as the surface area of the particles increases. Prudence dictates using the largest particle size consistent with the task at hand. For example, use of sodium ''balls" or cubes is preferable to use of sodium "sand" for drying solvents. Sodium amide (NaNH2) can undergo oxidation on exposure to air to give sodium nitrite in a mixture that is unstable and may explode. Sulfuric acid (H2SO4) should be avoided, if possible, as a drying agent in desiccators. If it must be used, glass beads should be placed in it to help prevent splashing when the desiccator is moved. To dilute H2SO4, the acid should be added slowly to cold water. Addition of water to the denser H2SO4 can cause localized surface boiling and spattering on the operator. Trichloroethylene (Cl2CCHCl) reacts under a variety of conditions with potassium or sodium hydroxide to form dichloroacetylene, which ignites spontaneously in air and detonates readily even at dry ice temperatures. The compound itself is highly toxic, and suitable precautions should be taken when it is used. PEROXIDES Organic peroxides are among the most hazardous substances handled in the chemical laboratory. They are generally low-power explosives that are sensitive to shock, sparks, or other accidental ignition. They are far more shock-sensitive than most primary explosives such as TNT. Also potentially hazardous are compounds that undergo autooxidation to form organic hydroperoxides and/or peroxides when exposed to the oxygen in air (see Table 3.12). Especially dangerous are ether bottles that have evaporated to dryness. A peroxide present as a contaminant in a reagent or solvent can be very hazardous and change the course of a planned reaction. Autoxidation of organic materials (solvents and other liquids are most frequently of primary concern) proceeds by a free-radical chain mechanism. For the substrate R H, the chain is initiated by ultraviolet light, by the presence of a radical source, and by the peroxide itself. Excluding oxygen by storing potential peroxide-formers under an inert atmosphere (N2 or argon) or under vacuum greatly increases their safe storage lifetime. In some cases, stabilizers or inhibitors (free-radical scavengers that terminate the chain reaction) have been added to the liquid to extend its storage lifetime. Because distillation of the stabilized liquid will remove the stabilizer, the distillate must be stored with care and monitored for peroxide formation. Note that alkali metals and their amides may form peroxides on their surfaces. Do not apply standard peroxide tests to such materials because they are both water and oxygen reactive! Types of Compounds Known to Autooxidize to Form Peroxides * Aldehydes * Ethers, especially cyclic ethers and those containing primary and secondary alkyl groups (never distill an ether before it has been shown to be free of peroxide) * Compounds containing benzylic hydrogens * Compounds containing allylic hydrogens (C = C CH), including most alkenes; vinyl and vinylidene compounds * Compounds containing a tertiary C H group (e.g., decalin and 2,5-dimethylhexane) Classes of Chemicals That Can Form Peroxides Upon Aging Class I: Unsaturated materials, especially those of low molecular weight, may polymerize violently and hazardously due to peroxide initiation. Acrylic acid Tetrafluoroethylene Acrylonitrile Vinyl acetate Butadiene Vinyl acetylene Chlorobutadiene (chloroprene) Vinyl chloride Chlorotrifluoroethylene Vinyl pyridine Methyl methacrylate Vinylidene chloride Styrene Class II: The following chemicals are a peroxide hazard upon concentration (distillation/ evaporation). A test for peroxide should be performed if concentration is intended or suspected. Acetal Dioxane (p-dioxane) Cumene 7

8 Ethylene glycol dimethyl ether (glyme) Cyclohexene Furan Cyclooctene Methyl acetylene Cyclopentene Methyl cyclopentane Diacetylene Methyl-i-butyl ketone Dicyclopentadiene Tetrahydrofuran Diethylene glycol dimethyl ether (diglyme) Tetrahydronaphthalene Diethyl ether Vinyl ethers Class III: Peroxides derived from the following compounds may explode without concentration. Divinyl ether Potassium metal Divinyl acetylene Potassium amide Isopropyl ether Sodium amide (sodamide) Vinylidene chloride Other Oxidizers Oxidizing agents may react violently when they come into contact with reducing materials, and sometimes with ordinary combustibles. Such oxidizing agents include the halogens, oxyhalogens and organic peroxyhalogens, chromates, and persulfates as well as peroxides. Inorganic peroxides are generally stable. However, they may generate organic peroxides and hydroperoxides in contact with organic compounds, react violently with water (alkali metal peroxides), and form superoxides and ozonides (alkali metal peroxides). Perchloric acid is a powerful oxidizing agent with organic compounds and other reducing agents. Perchlorate salts can be explosive and should be treated as potentially hazardous compounds. For many years, sulfuric acid dichromate mixtures were used to clean glassware (a sulfuric acid peroxydisulfate solution is now recommended because disposal of chromate is a problem). Confusion about cleaning baths has led to explosions on mixing potassium permanganate with sulfuric acid and nitric acid with alcohols. Dusts Suspensions of oxidizable particles (e.g., flour, coal dust, magnesium powder, zinc dust, carbon powder, and flowers of sulfur) in the air can constitute a powerful explosive mixture. These materials should be used with adequate ventilation and should not be exposed to ignition sources. Some solid materials, when finely divided, are spontaneously combustible if allowed to dry while exposed to air. These materials include zirconium, titanium, Raney nickel, finely divided lead (such as prepared by pyrolysis of lead tartrate), and catalysts such as activated carbon containing active metals and hydrogen. The "Dirty Dozen" : top suspects for laboratory accidents 1. Organic azides - Explosion hazards, especially with ground glass joints 2. Perchlorate salts of organic, organometallic, and inorganic complexes - Explosion hazards 3. Diethyl ether - Fires (see also entry 10 below) 4. Lithium aluminum hydride - Fires on quenching 5. Sodium, potassium - Fires on quenching 6. Potassium metal - Fires on quenching 7. Sodium-benzophenone ketyl still pots - Fires on quenching 8. Palladium on carbon - Fires on removal from the inert atmosphere, especially if wet with organic solvent or when contacting combustible materials such as filter paper 9. Heat - Exothermic reactions causing violent spills on scale-up due to inadequate provision for heat removal 10. Ethers with α-hydrogen atom - Dangerous peroxide concentration during distillation; explosion hazards, especially with ground glass joints 11. Carbon monoxide - Toxicity and role in forming nickel tetracarbonyl from steel gas lines and autoclaves 12. Organic peroxides Sensitivity to shock, sparks, and other forms of accidental detonation; sensitivity to heat, friction, impact, and light, as well as to strong oxidizing and reducing agents 8

Chemical Storage According to Compatibility

Chemical Storage According to Compatibility Chemical Storage According to Compatibility To lessen risk of exposure to hazardous chemicals, all chemicals should be separated and stored according to hazard category and compatibility. *Storage Groups

More information

Safety Manual > Incompatible Chemicals Partial Listing

Safety Manual > Incompatible Chemicals Partial Listing Safety Manual > Incompatible Chemicals Partial Listing C. Incompatible Chemicals Partial Listing Chemical Incompatible Chemicals Acetic acid Chromic acid, nitric acid, permanganates, and peroxides Acetic

More information

INCOMPATIBILITY BETWEEN CHEMICALS

INCOMPATIBILITY BETWEEN CHEMICALS INCOMPATIBILITY BETWEEN S CODE SHR 301 Date: April 2009 Revision: 02 Page: 1 of 5 INCOMPATIBILITY BETWEEN S Products that could react violently with each other should not be stored together, particularly

More information

P:NAU:CHM:21 1 Rev. 1

P:NAU:CHM:21 1 Rev. 1 P:NAU:CHM:21 Date: 11/19/2008 Supersedes: 6/3/2008 WORKING WITH HIGHLY REACTIVE OR EXPLOSIVE CHEMICALS Occasionally, it is necessary to handle materials that are known to be explosive or that may contain

More information

WESTERN CONNECTICUT STATE UNIVERSITY CHEMICAL STORAGE AND COMPATIBILITY GUIDELINES PROCEDURE S-118

WESTERN CONNECTICUT STATE UNIVERSITY CHEMICAL STORAGE AND COMPATIBILITY GUIDELINES PROCEDURE S-118 WESTERN CONNECTICUT STATE UNIVERSITY CHEMICAL STORAGE AND COMPATIBILITY GUIDELINES PROCEDURE S-118 Issued 6/4/02 Please direct any questions or comments about the applicability of this document to Luigi

More information

Chemical Storage Guidelines

Chemical Storage Guidelines Storage Guidelines Do not store excess chemical containers on the benchtops, designate a storage location and return containers to that location after each use. Do not store chemicals in the fume hood.

More information

Safe Operating Procedure

Safe Operating Procedure Safe Operating Procedure (Reviewed 1/09) USE AND STORAGE OF PEROXIDE-FORMING CHEMICALS (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) Some common laboratory

More information

Chemical Storage Guidelines Page 1 of 10

Chemical Storage Guidelines Page 1 of 10 Guidelines Page 1 of 10 1.0 PURPOSE: Proper storage is needed to minimize the hazards associated with accidentally mixing incompatible chemicals. Due to the diverse individual properties of chemicals that

More information

LABORATORY SAFETY PLAN APPENDIX

LABORATORY SAFETY PLAN APPENDIX LABORATORY SAFETY PLAN APPENDIX APPENDIX 1 REQUIRED CEE LAB ACCESS FORMS CEE Laboratory User Form As a laboratory user in the Department of Civil and Environmental Engineering at Northeastern University,

More information

HAZARDOUS MATERIALS SURVEY. Note: List ALL virgin stock materials in current and projected inventories LAB NAME: PI: ADDRESS:

HAZARDOUS MATERIALS SURVEY. Note: List ALL virgin stock materials in current and projected inventories LAB NAME: PI: ADDRESS: HAZARDOUS MATERIALS SURVEY Note: List ALL virgin stock materials in current and projected inventories LAB NAME: PI: ADDRESS: Please read each definition of the following Hazardous Materials carefully and

More information

FIRE PREVENTION PROGRAM

FIRE PREVENTION PROGRAM FIRE PREVENTION PROGRAM Scope Fires, like all other types of accidents, are largely preventable. The purpose of this fire plan is to comply with Cal/OSHA regulation T8CCR3221 and eliminate the causes of

More information

Chemical Storage Guidelines

Chemical Storage Guidelines Office of Research Environmental Health & Safety Department 921 South 8th Avenue, Stop 8106 Pocatello, Idaho 83209-8106 Phone: (208) 282-2310 Fax: (208) 282-4649 www.isu.edu ISU is an Equal Opportunity

More information

Principal Investigator: Department: Laboratory room #s: Updated/revised: Chemical Name Amount Physical state Location Hazard Class

Principal Investigator: Department: Laboratory room #s: Updated/revised: Chemical Name Amount Physical state Location Hazard Class Chemical Inventory Principal Investigator: Department: Laboratory room #s: Updated/revised: Chemical Name Amount Physical state Location Hazard Class 1 SUGGESTED SHELF STORAGE PATTERN - ORGANIC Organic

More information

INSTRUCTIONS ON EVERY AP EXAM:

INSTRUCTIONS ON EVERY AP EXAM: Most Common Reaction Types: 1. Acid-base neutralization (both weak & strong) 2. Nonmetal and metal oxides with water 3. Active metals with water 4. Single replacement redox 5. Double replacement precipitation

More information

Proper Storage of Chemicals in Laboratories

Proper Storage of Chemicals in Laboratories Proper Storage of Chemicals in Laboratories Dr. Ideisan I. Abu-Abdoun Department of Chemistry UOS abuabdoun@sharjah.ac.ae UOS 28 - Feb. 2013 Contents Introduction Requirements Storage Facilities and Practices

More information

Glove Selection Chart

Glove Selection Chart Glove Selection Chart The following guide is a general guide for glove selection in relation to chemicals handled. The information presented here is believed to be accurate; however, we cannot guarantee

More information

CORROSIVES 1. Should be kept in acid resistant cabinets or on polyethylene trays. 2. Must never be stored on high shelves. 1

CORROSIVES 1. Should be kept in acid resistant cabinets or on polyethylene trays. 2. Must never be stored on high shelves. 1 Storing Chemicals (from Laboratory Safety Manual. June 1999) Proper chemical storage is extremely important in order to maximize personal safety with respect to chemical spills, chemical incompatibilities,

More information

Chemical Segregation and Storage Guide

Chemical Segregation and Storage Guide Chemical Segregation and Storage Guide This resource developed by LabCentral for the Pagliuca Harvard Life Lab Revision 1, Effective Dec 13, 2016 Table of Contents 1.0 PURPOSE AND SCOPE...3 2.0 CLASSES

More information

Safe Handling of Peroxide-Formers (PFs)

Safe Handling of Peroxide-Formers (PFs) Safe Handling of Peroxide-Formers (PFs) Many common laboratory reagents can undergo auto-oxidation under normal storage conditions resulting in the unwanted formation of peroxides. This often is only a

More information

PEROXIDE-FORMING CHEMICALS

PEROXIDE-FORMING CHEMICALS XVIII. PEROXIDE-FORMING CHEMICALS Some common laboratory chemicals can form peroxides on exposure to air. Peroxides are shocksensitive and can be violently explosive in concentrated form or as solids.

More information

Chemical Reactivity and Storage. Presented by QBE Loss Control Services

Chemical Reactivity and Storage. Presented by QBE Loss Control Services Chemical Reactivity and Storage Presented by QBE Loss Control Services Objectives To understand basic terminology relating to chemical hazard classes and reactivity To be able to identify chemicals that

More information

Standard Operating Procedure. Reactive Chemicals. Investigator: General Safety Location: EHS Revision: 1.0

Standard Operating Procedure. Reactive Chemicals. Investigator: General Safety Location: EHS Revision: 1.0 Page 1 of 7 1.0 PURPOSE: Highly reactive chemicals include those which are inherently unstable and susceptible to rapid decomposition as well as chemicals which, under specific conditions, can react alone,

More information

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen?

1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? Stoichiometry Mole-to-Mole 1. How many moles of hydrogen are needed to completely react with 2.00 moles of nitrogen? N 2 + H 2 NH 3 2. If 5.50 moles of calcium carbide (CaC 2 ) reacts with an excess of

More information

BGSU s Guide to Chemical Storage

BGSU s Guide to Chemical Storage BGSU s Guide to Chemical Storage Environmental Health & Safety 372-2171 Chemical Storage Guidlines General Guidelines Store dry chemicals on shelves. Store flammables together. Use approved flammable storage

More information

Chemical Safety. Peter Yeung D.G. Manager. Safety Office The University of Hong Kong

Chemical Safety. Peter Yeung D.G. Manager. Safety Office The University of Hong Kong Chemical Safety Peter Yeung D.G. Manager Safety Office The University of Hong Kong Lesson Learned 1. Laboratory fire 2. Chemical spill 3. Incompatibles in waste disposal Lab. Fire Sodium/Solvent Chemical

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

GUIDELINES FOR THE SAFE USE OF PYROPHORIC LIQUID REAGENTS

GUIDELINES FOR THE SAFE USE OF PYROPHORIC LIQUID REAGENTS Page 1 of 5 GUIDELINES FOR THE SAFE USE OF Pyrophoric liquid reagents are substances that spontaneously ignite when exposed to air and/or moisture. These reagents are commonly utilized in chemical synthesis

More information

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol 1 of 5 1/26/2010 11:40 AM Experiment 2 Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol In the reactions we will perform in this experiment, hexane will be used to represent the saturated

More information

Chemistry 283g- Experiment 4

Chemistry 283g- Experiment 4 EXPEIMENT 4: Alkenes: Preparations and eactions elevant sections in the text: Fox & Whitesell, 3 rd Ed. Elimination eactions of Alcohols: pg. 426-428, 431-432 Electrophilic Addition to Alkenes: pg. 484-488,

More information

PEROXIDE-FORMING CHEMICALS IDENTIFICATION, MANAGEMENT AND HANDLING

PEROXIDE-FORMING CHEMICALS IDENTIFICATION, MANAGEMENT AND HANDLING PEROXIDE-FORMING CHEMICALS IDENTIFICATION, MANAGEMENT AND HANDLING WHAT ARE PEROXIDES? Chemicals that can react with oxygen A compound containing an oxygenoxygen single bond They are useful catalysts BUT

More information

PRODUCT DATA SHEET PDS A88_E

PRODUCT DATA SHEET PDS A88_E Plugs Suitable for A B C D Ref. Quantity Box/Bag (mm) (mm) (mm) (mm) TCP5 M12R + Pg7R M12R 4,5 8,5 10,8 4,5 3.000/100 TCP10 Pg9R Pg9R 6 12 12 4,5 2.000/100 TCP12 M12 + Pg7 M12 + Pg7 M16R + Pg11R M16R +

More information

Appendix 5: table of chemical compatibility for tubing

Appendix 5: table of chemical compatibility for tubing Appendix 5: table of chemical compatibility for tubing KEY 1 Excellent 2 Good 3 Fair 4 Not recommended - no data Silicone PharMed Iso-Versinic PVC Acetaldehyde 3 4 4 2 Acetamide, 67% in w 1 2 4 4 Acetate

More information

IDENTIFYING UNKNOWN CHEMICALS IN SCIENCE LABS

IDENTIFYING UNKNOWN CHEMICALS IN SCIENCE LABS IDENTIFYING UNKNOWN CHEMICALS IN SCIENCE LABS When a chemical or solution has not been labeled, was improperly labeled, or its label has deteriorated, become obscured or illegible, it becomes an unknown.

More information

Classifying Chemical Reactions Analyzing and Predicting Products

Classifying Chemical Reactions Analyzing and Predicting Products Classifying Chemical Reactions Analyzing and Predicting Products Background A chemical reaction is defined as any process in which one or more substances are converted into new substances with different

More information

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction

General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction General Stoichiometry Notes STOICHIOMETRY: tells relative amts of reactants & products in a chemical reaction Given an amount of a substance involved in a chemical reaction, we can figure out the amount

More information

Peek Chemical Resistance

Peek Chemical Resistance Peek Chemical Resistance R = Resistant LR = Limited Resistance NR = Not Recommended ND = No Data Chemical Resistance 20 o C 60 o C 100 o C Acetaldehyde NR NR R Acetic acid (10%) R R R Acetic acid (glac./anh.)

More information

Control of Potentially Explosive Chemicals in Laboratories. Peroxides and Peroxidizable chemicals

Control of Potentially Explosive Chemicals in Laboratories. Peroxides and Peroxidizable chemicals EHSO home page Control of Potentially Explosive Chemicals in Laboratories Many relatively common chemicals can become explosive when stored improperly or for excessive periods of time. This note contains

More information

Safety in the Chemistry Laboratory

Safety in the Chemistry Laboratory Safety in the Chemistry Laboratory CHAPTER1 Safety must be everyone s primary concern in the chemistry lab. Understanding and following all safety rules in the organic chemistry lab is critical to your

More information

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information

25. Qualitative Analysis 2

25. Qualitative Analysis 2 25. Qualitative Analysis 2 This experiment uses a series of wet chemistry analytical tests to determine the functional group present in a series of known and an unknown compound. Each student receives

More information

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES Experiment 4 Name: 15 P HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES 13 Al e In this experiment, you will also observe physical and chemical properties and physical and chemical changes.

More information

PRODUCT DATA SHEET PDS A112_E. Metric thread M 1.5 pitch CEI EN CEI EN 50262

PRODUCT DATA SHEET PDS A112_E. Metric thread M 1.5 pitch CEI EN CEI EN 50262 reduced cable entry Metric thread M 1.5 pitch CEI EN 60423 CEI EN 50262 Ref. P Fixing A B C L Light Hole min-max Spanner min-max Quantity Grey (mm) (mm) (mm) (mm) (mm) 1910S.M16N M16x1,5 16,5 4-7,5 19

More information

Safe Use of Pyrophoric/Water Reactive Materials

Safe Use of Pyrophoric/Water Reactive Materials Introduction Safe Use of Pyrophoric/Water Reactive Materials Pyrophoric and water reactive materials can ignite spontaneously on contact with air, moisture in the air, or water. Improper handling of these

More information

ICSE Board. Class X Chemistry. Board Paper Time: 1½ hrs Total Marks: 80

ICSE Board. Class X Chemistry. Board Paper Time: 1½ hrs Total Marks: 80 ICSE Board Class X Chemistry Board Paper 2013 Time: 1½ hrs Total Marks: 80 General Instructions: 1. Answers to this paper must be written on the paper provided separately. 2. You will NOT be allowed to

More information

APPENDIX C CHEMICALS USED IN CLANDESTINE DRUG LABS

APPENDIX C CHEMICALS USED IN CLANDESTINE DRUG LABS APPENDIX C CHEMICALS USED IN CLANDESTINE DRUG LABS You must exercise extreme caution when ope at the scene of an illegal drug lab. Do not walk into, touch, or move chemicals or spilled material. Avoid

More information

MAHESH TUTORIALS I.C.S.E.

MAHESH TUTORIALS I.C.S.E. MAHESH TUTORIALS I.C.S.E. GRADE - X (2017-2018) Exam No. : MT/ICSE/SEMI PRELIM - I-SET -A 008 Sulphuric acid, Ammonia, Analytical Chemistry, Organic Chemistry HCl, Nitric acid, Metallurgy Chemistry SCIENCE

More information

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis OCR (A) Chemistry A-level Module 6: Organic Chemistry and Analysis Organic Synthesis Notes by Adam Robertson DEFINITIONS Heterolytic fission: The breaking of a covalent bond when one of the bonded atoms

More information

ICSE Chemistry Board Paper 2016

ICSE Chemistry Board Paper 2016 2015 Time: 2 hours; Max. Marks: 80 General Instructions: Answers to this Paper must be written on the paper provided separately. You will not be allowed 10 write during the first 15 minutes. This time

More information

ICSE Board Class X Chemistry Board Paper Time: 1½ hrs Total Marks: 80

ICSE Board Class X Chemistry Board Paper Time: 1½ hrs Total Marks: 80 ICSE Board Class X Chemistry Board Paper 2011 Time: 1½ hrs Total Marks: 80 General Instructions: 1. Answers to this paper must be written on the paper provided separately. 2. You will NOT be allowed to

More information

5 Focus Areas & Chemical Compatibility. (just a little, with a focus on REDOX)

5 Focus Areas & Chemical Compatibility. (just a little, with a focus on REDOX) 5 Focus Areas & Chemical Compatibility (just a little, with a focus on REDOX) RESEARCH LAB INCIDENT FREQUENCY 2014-8/2015 25 20 15 10 5 0 CLEANUP RESPONSE BY CHEMICAL/INCIDENT 2014-8/2015 16 14 12 10 8

More information

AP Chemistry Summer Assignment

AP Chemistry Summer Assignment AP Chemistry Summer Assignment Due Date: Thursday, September 1 st, 2011 Directions: Show all of your work for full credit. Include units and labels. Record answers to the correct number of significant

More information

Stoichiometry of Gases

Stoichiometry of Gases CHAPTER 13 Stoichiometry of Gases Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have

More information

Experiment 8 - Double Displacement Reactions

Experiment 8 - Double Displacement Reactions Experiment 8 - Double Displacement Reactions A double displacement reaction involves two ionic compounds that are dissolved in water. In a double displacement reaction, it appears as though the ions are

More information

EH&S Guidelines for Peroxide Forming Chemicals

EH&S Guidelines for Peroxide Forming Chemicals EH&S Guidelines for Peroxide Forming Chemicals July 20, 2011 EH&S Guidelines for Peroxide Forming Chemicals Contents INTRODUCTION... 3 MANAGEMENT... 3 COMMON PEROXIDES AND MAXIMUM RETENTION TIMES... 4

More information

GRIGNARD REACTION Synthesis of Benzoic Acid

GRIGNARD REACTION Synthesis of Benzoic Acid 1 GRIGNARD REACTION Synthesis of Benzoic Acid In the 1920 s, the first survey of the acceleration of chemical transformations by ultrasound was published. Since then, many more applications of ultrasound

More information

5. The mass of oxygen required to completely convert 4.0 grams of hydrogen to water is 1) 8.0 grams; 2) 2.0 grams; 3) 32 grams; 4) 16 grams.

5. The mass of oxygen required to completely convert 4.0 grams of hydrogen to water is 1) 8.0 grams; 2) 2.0 grams; 3) 32 grams; 4) 16 grams. CHEMISTRY TEST NAME: MASS AND VOLUME DATE: EQUATION RELATIONSHIPS Directions: For each of the following questions, choose the number that best answers the question and place it on your answer sheet. Directions:

More information

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds.

Organic Chemistry. Alkanes are hydrocarbons in which the carbon atoms are joined by single covalent bonds. Organic Chemistry Organic compounds: The branch of chemistry which deals with the study of carbon compounds is called organic chemistry. Catenation: The carbon atom has a property to undergo self linking

More information

St. John s College High School Mr. Trubic AP Midterm Review Packet 1

St. John s College High School Mr. Trubic AP Midterm Review Packet 1 Name Date Directions: Read each question carefully and write your response in the space provided following each question. Your responses to these questions will be scored on the basis of the accuracy and

More information

EXPERIMENT 6 Empirical Formula of a Compound

EXPERIMENT 6 Empirical Formula of a Compound EXPERIMENT 6 Empirical Formula of a Compound INTRODUCTION Chemical formulas indicate the composition of compounds. A formula that gives only the simplest ratio of the relative number of atoms in a compound

More information

Delaware State University

Delaware State University Delaware State University University Area(s) Responsible: Office of Enterprise Risk Management Policy Number & Name: 7-31: Hazardous Materials Handling and Storage Approval Date: 1/30/2013 Revisions: Reviewed:

More information

Test Booklet. Subject: SC, Grade: HS 2009 End of Course Chemistry. Student name:

Test Booklet. Subject: SC, Grade: HS 2009 End of Course Chemistry. Student name: Test Booklet Subject: SC, Grade: HS 2009 End of Course Chemistry Student name: Author: Virginia District: Virginia Released Tests Printed: Tuesday April 23, 2013 1 Which of these would be best to measure

More information

Question Bank Organic Chemistry II

Question Bank Organic Chemistry II Question Bank Organic Chemistry II 1. What are saturated and unsaturated hydrocarbons. Classify the following as saturated and unsaturated hydrocarbons. CH 4, C 2 H 2, C 2 H 6, C 3 H 6, C 3 H 4 Ans. Compounds

More information

Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test.

Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test. 1 Qualitative Analysis Prelab Assignmet Date, Title, Introduction. You will complete the procedures during the lab period as you plan for each test. Introduction In this experiment you will be determining

More information

Classification of Mystery Substances

Classification of Mystery Substances Classification of Mystery Substances This document supports the safety activity Mystery Substance Identification: The Identification of Unlabeled Chemicals Found on School Premises from Flinn Scientific.

More information

AP Chemistry Unit 2 Test (Chapters 3 and 4)

AP Chemistry Unit 2 Test (Chapters 3 and 4) AP Chemistry Unit 2 Test (Chapters 3 and 4) NAME: 1. A student is assigned the task of determining the mass percent of silver in an alloy of copper and silver by dissolving a sample of the alloy in excess

More information

This packet contains review material from Pre-AP Chemistry. Be prepared to take a quiz over this material during the first week of school.

This packet contains review material from Pre-AP Chemistry. Be prepared to take a quiz over this material during the first week of school. This packet contains review material from Pre-AP Chemistry. Be prepared to take a quiz over this material during the first week of school. How many significant figures (digits) are represented by each

More information

CHAPTER 10 HAZARDOUS MATERIAL DISPOSAL 4.0 DISPOSAL OF HAZARDOUS CHEMICAL WASTE

CHAPTER 10 HAZARDOUS MATERIAL DISPOSAL 4.0 DISPOSAL OF HAZARDOUS CHEMICAL WASTE CHAPTER 10 HAZARDOUS MATERIAL DISPOSAL 4.0 DISPOSAL OF HAZARDOUS CHEMICAL WASTE 4.1 Introduction... 1 4.2 Liquid Chemical Waste Streams... 1 4.3 Chemicals That Require Special Handling... 2 4.3.1 Table

More information

CHAPTER 9 CHEMICAL QUANTITIES

CHAPTER 9 CHEMICAL QUANTITIES Chemistry Name Hour Chemistry Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 9 CHEMICAL QUANTITIES Day Plans for the day Assignment(s) for the day 1 Begin Chapter

More information

Due Friday, August 18 th, 2017 Mrs. Hockstok - AP Chemistry Class Olentangy Orange High School Summer Assignment

Due Friday, August 18 th, 2017 Mrs. Hockstok - AP Chemistry Class Olentangy Orange High School Summer Assignment Due Friday, August 18 th, 2017 Mrs. Hockstok - AP Chemistry Class Olentangy Orange High School Summer Assignment 2017-2018 You will have a quiz on the first day of school (August 16 th, 2017) on the polyatomic

More information

Experiment 5 Reactions of Hydrocarbons

Experiment 5 Reactions of Hydrocarbons Experiment 5 Reactions of ydrocarbons ydrocarbons are compounds that only contain carbon and hydrogen. ydrocarbons can be classified further by the type of bonds they contain. If a hydrocarbon contains

More information

The ratio of the concentrations of a substance in the two solvents at equilibrium is called its distribution coefficient, K D :

The ratio of the concentrations of a substance in the two solvents at equilibrium is called its distribution coefficient, K D : CHM 147 Advanced Chemistry II Lab Extraction: A Separation and Isolation Technique Adapted from Extraction: A Separation and isolation Technique, Hart, Harold; Craine, Leslie; Hart, David; Organic Chemistry,

More information

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION 032/1 CHEMISTRY 1 (For Both School and Private Candidates) Time: 3 Hours Thursday, 06 th November

More information

TYPES OF CHEMICAL REACTIONS

TYPES OF CHEMICAL REACTIONS EXPERIMENT 11 (2 Weeks) Chemistry 110 Laboratory TYPES OF CHEMICAL REACTIONS PURPOSE: The purpose of this experiment is perform, balance and classify chemical reactions based on observations. Students

More information

Classifying Chemical Reactions: Lab Directions

Classifying Chemical Reactions: Lab Directions Classifying Chemical Reactions: Lab Directions Please Return Background: The power of chemical reactions to transform our lives is visible all around us in our homes, in our cars, even in our bodies. Chemists

More information

500 SERIES CHEMICAL RESISTANCE GUIDE

500 SERIES CHEMICAL RESISTANCE GUIDE 500 SERIES CHEMICAL RESISTANCE GUIDE INTRODUCTION The Stonchem 500 Series Chemical Resistance Guide is designed to aid in the proper selection of material for every job application. Exposure to over 250

More information

Classifying Chemical Reactions

Classifying Chemical Reactions 1 Classifying Chemical Reactions Analyzing and Predicting Products Introduction The power of chemical reactions to transform our lives is visible all around us-in our cars, even in our bodies. Chemists

More information

Extra Questions. Chemical Formula IUPAC Name Ionic, Molecular, or Acid. ethanol. sulfurous acid. titanium (IV) oxide. gallium sulfate.

Extra Questions. Chemical Formula IUPAC Name Ionic, Molecular, or Acid. ethanol. sulfurous acid. titanium (IV) oxide. gallium sulfate. Chemistry 30 Recap Chemistry 20 Complete the following chart: Extra Questions Name: Chemical Formula IUPAC Name Ionic, Molecular, or Acid PbI2 (s) ethanol NaHS (aq) sulfurous acid H2O2 (l) titanium (IV)

More information

Chapter 6. Chemical Reactions. Sodium reacts violently with bromine to form sodium bromide.

Chapter 6. Chemical Reactions. Sodium reacts violently with bromine to form sodium bromide. Chapter 6 Chemical Reactions Sodium reacts violently with bromine to form sodium bromide. Evidence of Chemical Reactions Chemical Equations Reactants Products Reactant(s): Substance(s) present before the

More information

Some Reactions of Hydrocarbons Experiment #2

Some Reactions of Hydrocarbons Experiment #2 Some Reactions of Hydrocarbons Experiment #2 Objective: To distinguish alkanes, alkenes and aromatic hydrocarbons by their chemical reactions and reactivity. Introduction Hydrocarbons are organic compounds

More information

PREVENTING HAZARDOUS WASTE FINES

PREVENTING HAZARDOUS WASTE FINES University of Medicine and Dentistry of New Jersey EOHSS FACTSHEET PREVENTING HAZARDOUS WASTE FINES In the last few years institutions such as MIT, University of New Hampshire, Yale, Stanford, and Boston

More information

Unit 4: Chemical Changes (Higher Content)

Unit 4: Chemical Changes (Higher Content) Metals react with oxygen to produce metal oxides. E.g. Copper + Oxygen > Copper Oxide The reactions are oxidation reactions because the metals gain oxygen. Reactivity of Metals Metal Extraction Metals

More information

Name: Unit 9- Stoichiometry Day Page # Description IC/HW

Name: Unit 9- Stoichiometry Day Page # Description IC/HW Name: Unit 9- Stoichiometry Day Page # Description IC/HW Due Date Completed ALL 2 Warm-up IC 1 3 Stoichiometry Notes IC 1 4 Mole Map IC X 1 5 Mole to Mole Practice IC 1 6 Mass to Mole Practice IC 1/2 X

More information

Honors Cup Synthetic Proposal (230 V- Tu PM- W08)

Honors Cup Synthetic Proposal (230 V- Tu PM- W08) Honors Cup Synthetic Proposal (230 V- Tu PM- W08) Section: 230 Group Members: Christina Suh, Mark Pressprich, Michelle Robinette Title: Synthesis of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) from

More information

One point is awarded for balancing the equation properly.

One point is awarded for balancing the equation properly. WRITING AP EQUATIONS AP equation sets are found in the free response section of the AP test. You get three equations to complete. The equations are of mixed types. The section is worth 15 points and is

More information

HEALTH & SAFETY IN CHEMISTRY LABORATORY

HEALTH & SAFETY IN CHEMISTRY LABORATORY HEALTH & SAFETY IN CHEMISTRY LABORATORY By: Susila Kristianingrum susila.k@uny.ac.id Basic Competence: Students can describe aspects of safety in the laboratory and apply it in the learning process in

More information

Chemical/Flammable Storage Management Program

Chemical/Flammable Storage Management Program Chemical/Flammable Storage Management Program Inventory and Inspection Each laboratory is to maintain an inventory of the chemicals stored in the laboratory as part of the Laboratory Safety Manual. Designate

More information

Substances and Mixtures:Separating a Mixture into Its Components

Substances and Mixtures:Separating a Mixture into Its Components MiraCosta College Introductory Chemistry Laboratory Substances and Mixtures:Separating a Mixture into Its Components EXPERIMENTAL TASK To separate a mixture of calcium carbonate, iron and sodium chloride

More information

SAFETY TRAINING LEAFLET 08 ACETYLENE, CALCIUM CARBIDE, LIME SLUDGE AND PURIFYING MATERIALS

SAFETY TRAINING LEAFLET 08 ACETYLENE, CALCIUM CARBIDE, LIME SLUDGE AND PURIFYING MATERIALS SAFETY TRAINING LEAFLET 08 ACETYLENE, CALCIUM CARBIDE, LIME SLUDGE AND PURIFYING MATERIALS Doc 23.08/18 EUROPEAN INDUSTRIAL GASES ASSOCIATION AISBL AVENUE DES ARTS 3-5 B 1210 BRUSSELS Tel: +32 2 217 70

More information

Chemical Reactions Chapter 8 PART TWO

Chemical Reactions Chapter 8 PART TWO NAME Hour Date Chemical Reactions Chapter 8 PART TWO Practice A Assessment 1 Objective 5: Predict the product of a combination reaction by writing a complete balanced equation. Directions: Write a complete

More information

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind.

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind. 1. calcium + oxygen 2. cupric carbonate 3. aluminum + hydrochloric

More information

Part 01 - Notes: Reactions & Classification

Part 01 - Notes: Reactions & Classification Objectives: Identify, define, and explain: combination reaction, synthesis reaction, decomposition reaction, single replacement reaction, double replacement reaction, combustion reaction, rapid oxidation,

More information

CHEMISTRY. SCIENCE Paper 2

CHEMISTRY. SCIENCE Paper 2 CHEMISTRY SCIENCE Paper 2 (Two hours) Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading

More information

Planet Earth. Topic. Unit 1. Introducing chemistry. Unit 2. The atmosphere. Unit 3. The ocean. Unit 4. Rocks and minerals

Planet Earth. Topic. Unit 1. Introducing chemistry. Unit 2. The atmosphere. Unit 3. The ocean. Unit 4. Rocks and minerals Topic 1 Planet Earth Unit 1 Unit 2 Unit 3 Unit 4 Introducing chemistry The atmosphere The ocean Rocks and minerals Key C o ncepts Planet Earth The atmosphere Classification of matter element, mixture and

More information

Expt 10: Friedel-Crafts Alkylation of p-xylene

Expt 10: Friedel-Crafts Alkylation of p-xylene Expt 10: Friedel-Crafts Alkylation of p-xylene INTRODUCTION The Friedel-Crafts alkylation reaction is one of the most useful methods for adding alkyl substituents to an aromatic ring. Mechanistically,

More information

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER

MR. D HR UV AS HE R I.C.S.E. BOA RD PAP ER MR D HR UV AS HE R ICSE BOA RD PAP ER 200 6 1 ICSE-2006 Section 1 (40 Marks) (Attempt all questions from this section) Question 1 (a) Select from the list given below (A to F), the o0ne substance in each

More information

5. What is the name of the compound PbO? 6. What is the name of HCl(aq)?

5. What is the name of the compound PbO? 6. What is the name of HCl(aq)? 1. Which idea of John Dalton is no longer considered part of the modern view of atoms? (A) Atoms are extremely small. (B) Atoms of the same element have identical masses. (C) Atoms combine in simple whole

More information

Name (PRINT): Group: Achieved points. Possible points. Test Directions:

Name (PRINT): Group: Achieved points. Possible points. Test Directions: 1 10 Name (PRINT): Group: Achieved points Possible points % 40 Test Directions: 1. PRINT your name and group at the top of page 1. 2. Use a #2 pencil to mark your answer. 3. A Periodic table is attached

More information

Chemistry Final Exam Sample Items

Chemistry Final Exam Sample Items Chemistry Final Exam Sample Items 1. Which best describes the current atomic theory? a. Atoms consist of electrons circling in definite orbits around a positive nucleus. b. Atoms are composed of electrons

More information

Question 1: Solution 1:

Question 1: Solution 1: Book Name: Selina Concise Question 1: Comment, sulphuric acid is referred to as: (a) King of chemicals (b) Oil of vitriol Solution 1: (a) Sulphuric acid is called King of Chemicals because there is no

More information