Title solubility of compressed acetylene.

Size: px
Start display at page:

Download "Title solubility of compressed acetylene."

Transcription

1 Ttle The solubltes of compressed acet solublty of compressed acetylene Author(s) Hraoka, Hroyuk Ctaton The Revew of Physcal Chemstry of 18 ssue Date URL Rght Type Departmental Bulletn Paper Textverson publsher Kyoto Unversty

2 The Revew of Physcal Chemstry of Japan Vol. 24 No. 1 (1954) THE SOLUBLTES OF COMPRESSED ACETYLENE GAS N LQUDS, The Solublky of Compressed Acekylane Gas n Wa}er BY HROYUR HfRAOKA ntroducton The measurements of the solublty of compressed acetylene gas n acetone were performed early by M. P. E. Berthelot and P. M. E. Veulle` and W. Sller * and recently by P. Holemann and R. Hasselmannrl. The measurements of ts solublty n other lquds, however, have not been done yet. Now then, n ths experment, the solublty of compressed acetylene ga4 n water s measured n the range of pressure from 5 to 40 kg/cm' and that of temperature from 1 to `C, usng the bubblng method. There s a plan to extend ths study over other lquds. -Apparatus and Mekhod ~f v. c ~Y y w BC B ~; ~; ~; ~,,; ;; -----' a A N Flq 1 8 h F6 2 1) c. P. 1) Holemann and R. Hasselmann, Clunr. ng. T cg.. 25, 466 (1953)

3 The Revew of Physcal Chemstry of Japan Vol. 24 No. 1 (1954) 14 H. Hcaeoxn The expermental apparatus conssts of the parts of the hgh pressure cylnders and the lqud phase analyser shown n Fgs. 1 and 2, respectvely. n Fg. 1, a glass vessel of about 400cc, s whch water s flled to one thrd capacty at the start of each run, s nserted nto a cylnder A. The end of the ppe (lmm n nner dameter) shown by a dotted lne n the cylnder, s about 2cm apart from the bottom of the glass vessel. A large cylnder B of about 0 cc capacty s used as a reservor to keep the pressure flactuaton as small as possble durng the samplng and also n the course of the bubblng procedure, and moreover serves to make the temperature of the nlet gas that of the thermostat prevously. A, B and ther ppe lnes between them are below the level of the water n the thermostat, whch s held at constant temperature wthn --1-1/ C. Vs are hgh pressure valves and G s a Bourdon type gauge by whch pressure can be read accurately wthn the error of 1 / of the pressure used. The samples are taken out through V whch s connected to the apparatus of the lqud phase analyser shown n Fg. 2. n Fg. 2, a s a lqud burette graduated to O.OScc, b a gas burette, each bulb of whch havng 35cc capacty and c also a gas burette graduated to O.lec. A, B and C are mercury reservors belongng to a, b and c, respectvely. M s a manometer, by means of whch the pressure n the burettes s kept at the barometrc one. All the burettes are held n the water jacket and kept at constant temperature by crculatng water. The purty of acetylene gas s from 99.5 to 99.6 : and the water used as a solvent s free from the carbon doxde dssolved n a dstlled water. The procedures to establsh the equlbrum from both sdes of the hgh pressure and the low pressure are the same as adopted by R. Webe et al.'> to brng about the equlbrum and from the results obtaned no dfference s found between the two approaches. The experment s conducted n the followng manner. Acetylene gas s ntroduced nto the part of hgh pressure through V, to replace the ar n t, and compressed to a nearly desred pressure, then all valves except V, are closed. After keepng the thermostat at the desred temperature, the gas s bubbled at the rate of about 2 ltres per mnute. On carryng out the bubblng procedure, V, s opened and V. s closed. Then the compressed gas s led nto the apparatus through V, and s allowed to expand to the atmosphere through V;, so as to keep the pressure at a requred level, whch s several to ten per cent hgher or lower than a desred pressure, usng the pressure gauge of the compressor. After ths procedure V; s closed, Va opened and the gas allowed to escape through V6 to keep a desred pressure by means of the gauge G. After the bubblng procedure s fnshed, V_ s opened and V V, and V~ are closed. f the pressure change s recognzed standng at rest for several hours, the gas s bubbled agan at a desred pressure, because the system s not n equlbrum. 21 V. L. Gaddy. R. Webe and C. Hers, Ld. Eng. CHtnr., (1932); J. Am, Clmur. Sot., 55, 947 (1933)

4 0 The Revew of Physcal Chemstry of Japan Vol. 24 No. 1 (1954) The Solubltes of Compressed Acetylene Gas n Lquds, 15 After equlbrum s establshed, the lqud phase analyss s carred on n the followng procedure. Frst, V_s s slghtly opened n order to replace the gas n the ppe between V, and V, wth the saturated soluton. Then both heads of the mercury columns of manometer beng balanced, the cock f s closed. As V, s slghtly released, the cock g or h s opened and the bulk of gas separated from the water s collected n the gas burettes, nearly at the barometrc pressure by the mercury reservor B or C. After a certan nuantty of the sample s taken out, V, s closed and the pressure n the burettes s kept correctly at the bazometrc one. The quantty of the lqud samples taken out s 3 or 5cc. After standng for a long tme n order to reach the equlbrum at the temperature of the water jacket and the bazometnc pressure, the lqud and the gas are measured n the burettes of the lqud and gas, respectvely. The pressure drop n the hgh pressure appararus due to the samplng s recovered so rapdly that the pressure fall would not gve the measurable nfluence on the equlbrum n the apparatus. The pressure fall observed s wthn 1% of the total pressure. Accordng to the above mentoned procedure, the next samplng s performed n successon. The results of these measurements are reproducble at each temperature and pressure. Resulks The results expressed as the number of cc of acetylene (S. T. P.) contaned n lg of water, whch s denoted by r hereafter, are gven n Table 1. n Fg. 3 the number of cc of the gas (S. T. P.) per gram of water s plotted aganst the total pressure or za 4 c c"~. ~, C Lc 6~.'\ a ~: a ]s ~o ]0'C a' a~.~ ~. a"~ 3VC Presau r< rc j, Fueac[s 5 to v 'LO a ss d0 Pressure or Fugacty, kg/cm= Fg. 3

5 The Revew of Physcal Chemstry of Japan Vol. 24 No. 1 (1954) lf H. H~woxn ' Table 1 Temp. Press. kalcm= The e~ solublry~of acetylene n water (cc~hjb-hx s.o 7 4, ll ~ C.5 40 tb Table 2 The absorpton coeffcent of acetylene n water (x-c:dfcc-h_a/kg/cm-) Temp, C Press. k8/cm' s z6 ~ 1.033* L ZG L.oo oss2 L.6o L os1 o.; s~ The values of L. W. Wnker the fugacty of the acetylene. n order to correct for the gas quantty dssolved n the lqud burette, the values of L. W. Wnklers are added to the amounts obtaned from the gas burettes. The total pressure s assumed to be equal to the partal pressure of the acetylene gas n the hgh pressure appazatus, because the vapor pressure of water s neglgble compared wth the partal pressure of acetylene, whle the vapor pressure of water n the burettes s taken nto account, as t s not to be neglected wth the bazometrc pressure. n Table 2 the absorpton coeffcents of acetylene n water defned by equaton (1) are gven, a=f Vzyz (cc-c:h,jcc-h:o/kg/cm=) () where f s the fugacty of acetylene gas and Vo s the number of cc of the gas (S.T.P.) dssolved n Vc cc of the lqud and n the values of Table 2 the densty of the water 3) L. W. Wnkler, LandalbBurnsltn, ;lat. Cr1. Tabfe,

6 The Revew of Physcal Chemstry of Japan Vol. 24 No. 1 (1954) The Solubltes of Compressed Acetylene Gas n Lquds, 17 ' s constant assumed at to be each 1.OOg. t s notced from Table 2 that the absorpton coeffcent s temperature. Table 3 The fugacty of acetylene (cg/cm') Temp_ Press. kg/cm" D G The fugacty of acetylene gas s calculated by graphcal ntegraton usng the state dagram measured by R. Kyama et al. > and equaton (2), n P =- f a 11 PZdP' Z=RT (2) where J, P, V, T and R are fugacty, pressure, volume, absolute temperature and gas constant, respectvely. The values of the fugactes calculated from the dagram of R. H.vewtons) are about 2:b lower than those gven n Table 3. From Fg. 3 or Table 2, equaton (3) s derved, r=k. f (cc-cah:/8-ha0) (3 ) where K s constant, and numercally equal to a n ths experment. n Tables and 2, and Fg. 3 the data above 5kg/cm' at 1 C and 15kglcm' at 10 C are not gven, because the measurement s not to be performed owng to the abnormal phenomena descrbed below, whch take place above 7kg/cm' at 1`C and kg/cm= at 10 C. That s to say, under these condtons the crculaton of the gas s frequently nterrupted. From the gradual decrease of the pressure at rest after the bubblng procedure, t may be assumed that the equlbrum s not establshed. n the case above mentoned a small quantty of the water evolves a large quantty of the gas whch s unable to be measured by the present apparatus. So, t should be consdered that some substance, maybe acetylene hydrate*, s formed at these and pressures, and the soluton becomes hgh vscous due to ths sub- temp ratvres stance. 4) R. Kyama, T. kegam and K. noue, Ths Jourral, 21, 58 (1911) 5) R. H. Newton, nd. Eng. Chenr., (1935) r The detals of ths hydrate wll be reported.

7 The Revew of Physcal Chemstry of Japan Vol. 24 No. 1 (1954) RADKA Table 4 The heat of soluton Lp xal~ (Kcal/mole) Pressure, 0 kg/cm' 1 so xp~"r LS xpf[a` Lp u[. s xe~'~o' fo- /" , t o~ as v ' f the heat of soluton s expressed by Q and assumed to be constant at a gven pressure n the temperature range of ths experment, the relaton between Q and absolute temperature T, s thermodynamcally gven by equa- J ~ ~ ton (4 ), whch holds for the 1/T'x 109 present acetylene water soluton Fs. 4 from equaton (3), where Q s postve n the case of exothermc dssoluton and C constant. A plot of values of the logarthm of the solublty as a functon of the recprocal of absolute temperature s gven n Fg. 4, and the values of the heat of the soluton calculated, usng equaton (4), are gven n Table 4. As wll be seen from Fg. 4, straght lnes are obtaned for any pressures and the heat of soluton s decreased wth the ncrease of pressure The author has great preasure to express hs hearty thanks to Prof. Ryo Kyama, Dr. Jro Osug and Mr. Kezo Suzuk for ther knd gudances throughout ths re search and ther revsons of ths paper. The author s ndebted to the Department of Educaton for the Grant n Ad for the Fundamental Scentfc ndvdual Research shared out Prof. Ryo Kyama. The Laboratory of Physcal Chemstry, Kyoto U~lversty.

Ttle Cs-trans somerzaton of malec a pressure Author(s) Kyama, Ryo; Mnomura, Shgeru Ctaton The Revew of Physcal Chemstry of ssue Date 1952 URL http://hdl.handle.net/2433/46672 Rght Type Departmental Bulletn

More information

Ttle The solubltes of compressed acet solublty of compressed acetylene Author(s) Kyama, Ryo; Hraoka, Hroyuk Ctaton The Revew of Physcal Chemstry of Issue Date 1956-8-3 URL http://hdl.handle.net/2433/46734

More information

Ttle The state dagrams of formaldehyde acetylene mxtures Author(s) Kyama, Ryo; Teransh, Hrosh Ctaton The Revew of Physcal Chemstry of 17 Issue Date 1952 URL http://hdl.handle.net/2433/46674 Rght Type Departmental

More information

TitleSynthesis of melamine from urea, II.

TitleSynthesis of melamine from urea, II. TtleSynthess of melamne from urea, II Author(s) Knoshta, Hdeo Ctaton The Revew of Physcal Chemstry of 7 Issue Date 9-0- URL http://hdl.handle.net//7 Rght Type Departmental Bulletn Paper Textverson publsher

More information

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9. 9.9 Real Solutons Exhbt Devatons from Raoult s Law If two volatle and mscble lquds are combned to form a soluton, Raoult s law s not obeyed. Use the expermental data n Table 9.3: Physcal Chemstry 00 Pearson

More information

Non-Ideality Through Fugacity and Activity

Non-Ideality Through Fugacity and Activity Non-Idealty Through Fugacty and Actvty S. Patel Deartment of Chemstry and Bochemstry, Unversty of Delaware, Newark, Delaware 19716, USA Corresondng author. E-mal: saatel@udel.edu 1 I. FUGACITY In ths dscusson,

More information

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A.

A quote of the week (or camel of the week): There is no expedience to which a man will not go to avoid the labor of thinking. Thomas A. A quote of the week (or camel of the week): here s no expedence to whch a man wll not go to avod the labor of thnkng. homas A. Edson Hess law. Algorthm S Select a reacton, possbly contanng specfc compounds

More information

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential Open Systems: Chemcal Potental and Partal Molar Quanttes Chemcal Potental For closed systems, we have derved the followng relatonshps: du = TdS pdv dh = TdS + Vdp da = SdT pdv dg = VdP SdT For open systems,

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

G4023 Mid-Term Exam #1 Solutions

G4023 Mid-Term Exam #1 Solutions Exam1Solutons.nb 1 G03 Md-Term Exam #1 Solutons 1-Oct-0, 1:10 p.m to :5 p.m n 1 Pupn Ths exam s open-book, open-notes. You may also use prnt-outs of the homework solutons and a calculator. 1 (30 ponts,

More information

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Solutions to Example Problems on Heat Transfer Prncples of Food and Boprocess Engneerng (FS 31) Solutons to Example Problems on Heat Transfer 1. We start wth Fourer s law of heat conducton: Q = k A ( T/ x) Rearrangng, we get: Q/A = k ( T/ x) Here,

More information

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property. Unt Eght Calculatons wth Entropy Mechancal Engneerng 370 Thermodynamcs Larry Caretto October 6, 010 Outlne Quz Seven Solutons Second law revew Goals for unt eght Usng entropy to calculate the maxmum work

More information

Gasometric Determination of NaHCO 3 in a Mixture

Gasometric Determination of NaHCO 3 in a Mixture 60 50 40 0 0 5 15 25 35 40 Temperature ( o C) 9/28/16 Gasometrc Determnaton of NaHCO 3 n a Mxture apor Pressure (mm Hg) apor Pressure of Water 1 NaHCO 3 (s) + H + (aq) Na + (aq) + H 2 O (l) + CO 2 (g)

More information

Name: SID: Discussion Session:

Name: SID: Discussion Session: Name: SID: Dscusson Sesson: Chemcal Engneerng Thermodynamcs 141 -- Fall 007 Thursday, November 15, 007 Mdterm II SOLUTIONS - 70 mnutes 110 Ponts Total Closed Book and Notes (0 ponts) 1. Evaluate whether

More information

Experiment 1 Mass, volume and density

Experiment 1 Mass, volume and density Experment 1 Mass, volume and densty Purpose 1. Famlarze wth basc measurement tools such as verner calper, mcrometer, and laboratory balance. 2. Learn how to use the concepts of sgnfcant fgures, expermental

More information

Temperature. Chapter Heat Engine

Temperature. Chapter Heat Engine Chapter 3 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum ntropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 9 we dscussed the

More information

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total). CHEMISTRY 123-07 Mdterm #2 answer key November 04, 2010 Statstcs: Average: 68 p (68%); Hghest: 91 p (91%); Lowest: 37 p (37%) Number of students performng at or above average: 58 (53%) Number of students

More information

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram

Adiabatic Sorption of Ammonia-Water System and Depicting in p-t-x Diagram Adabatc Sorpton of Ammona-Water System and Depctng n p-t-x Dagram J. POSPISIL, Z. SKALA Faculty of Mechancal Engneerng Brno Unversty of Technology Techncka 2, Brno 61669 CZECH REPUBLIC Abstract: - Absorpton

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD

THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS OF A TELESCOPIC HYDRAULIC CYLINDER SUBJECTED TO EULER S LOAD Journal of Appled Mathematcs and Computatonal Mechancs 7, 6(3), 7- www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.3. e-issn 353-588 THE EFFECT OF TORSIONAL RIGIDITY BETWEEN ELEMENTS ON FREE VIBRATIONS

More information

Be true to your work, your word, and your friend.

Be true to your work, your word, and your friend. Chemstry 13 NT Be true to your work, your word, and your frend. Henry Davd Thoreau 1 Chem 13 NT Chemcal Equlbrum Module Usng the Equlbrum Constant Interpretng the Equlbrum Constant Predctng the Drecton

More information

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem SOLUTION TO HOMEWORK #7 #roblem 1 10.1-1 a. In order to solve ths problem, we need to know what happens at the bubble pont; at ths pont, the frst bubble s formed, so we can assume that all of the number

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component Department of Energ oltecnco d Mlano Va Lambruschn - 05 MILANO Eercses of Fundamentals of Chemcal rocesses rof. Ganpero Gropp Eercse 8 Estmaton of the composton of the lqud and vapor streams etng a unt

More information

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS

APPENDIX 2 FITTING A STRAIGHT LINE TO OBSERVATIONS Unversty of Oulu Student Laboratory n Physcs Laboratory Exercses n Physcs 1 1 APPEDIX FITTIG A STRAIGHT LIE TO OBSERVATIOS In the physcal measurements we often make a seres of measurements of the dependent

More information

Calculating the Quasi-static Pressures of Confined Explosions Considering Chemical Reactions under the Constant Entropy Assumption

Calculating the Quasi-static Pressures of Confined Explosions Considering Chemical Reactions under the Constant Entropy Assumption Appled Mechancs and Materals Onlne: 202-04-20 ISS: 662-7482, ol. 64, pp 396-400 do:0.4028/www.scentfc.net/amm.64.396 202 Trans Tech Publcatons, Swtzerland Calculatng the Quas-statc Pressures of Confned

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

Solutions Review Worksheet

Solutions Review Worksheet Solutons Revew Worksheet NOTE: Namng acds s ntroduced on pages 163-4 and agan on pages 208-9.. You learned ths and were quzzed on t, but snce acd names are n the Data Booklet you wll not be tested on ths

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 16 8/4/14 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 214. Real Vapors and Fugacty Henry s Law accounts or the propertes o extremely dlute soluton. s shown n Fgure

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014 Lecture 12 7/25/14 ERD: 7.1-7.5 Devoe: 8.1.1-8.1.2, 8.2.1-8.2.3, 8.4.1-8.4.3 Unversty o Washngton Department o Chemstry Chemstry 452/456 Summer Quarter 2014 A. Free Energy and Changes n Composton: The

More information

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed

Irregular vibrations in multi-mass discrete-continuous systems torsionally deformed (2) 4 48 Irregular vbratons n mult-mass dscrete-contnuous systems torsonally deformed Abstract In the paper rregular vbratons of dscrete-contnuous systems consstng of an arbtrary number rgd bodes connected

More information

THE CURRENT BALANCE Physics 258/259

THE CURRENT BALANCE Physics 258/259 DSH 1988, 005 THE CURRENT BALANCE Physcs 58/59 The tme average force between two parallel conductors carryng an alternatng current s measured by balancng ths force aganst the gravtatonal force on a set

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Determination of activity coefficients of dimethyl ether in butyl acetate and 2-propanol

Determination of activity coefficients of dimethyl ether in butyl acetate and 2-propanol Determnaton of actvty coeffcents of dmethyl ether n butyl acetate and 2-propanol Petar Petrov Determnaton of actvty coeefcents of dmethyl ether n butyl acetate and 2-propanol: The paper presents expermental

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

CHEMICAL ENGINEERING

CHEMICAL ENGINEERING Postal Correspondence GATE & PSUs -MT To Buy Postal Correspondence Packages call at 0-9990657855 1 TABLE OF CONTENT S. No. Ttle Page no. 1. Introducton 3 2. Dffuson 10 3. Dryng and Humdfcaton 24 4. Absorpton

More information

Electrochemical Equilibrium Electromotive Force

Electrochemical Equilibrium Electromotive Force CHM465/865, 24-3, Lecture 5-7, 2 th Sep., 24 lectrochemcal qulbrum lectromotve Force Relaton between chemcal and electrc drvng forces lectrochemcal system at constant T and p: consder Gbbs free energy

More information

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski

EPR Paradox and the Physical Meaning of an Experiment in Quantum Mechanics. Vesselin C. Noninski EPR Paradox and the Physcal Meanng of an Experment n Quantum Mechancs Vesseln C Nonnsk vesselnnonnsk@verzonnet Abstract It s shown that there s one purely determnstc outcome when measurement s made on

More information

Exercises of Chapter 2

Exercises of Chapter 2 Exercses of Chapter Chuang-Cheh Ln Department of Computer Scence and Informaton Engneerng, Natonal Chung Cheng Unversty, Mng-Hsung, Chay 61, Tawan. Exercse.6. Suppose that we ndependently roll two standard

More information

Supplementary Notes for Chapter 9 Mixture Thermodynamics

Supplementary Notes for Chapter 9 Mixture Thermodynamics Supplementary Notes for Chapter 9 Mxture Thermodynamcs Key ponts Nne major topcs of Chapter 9 are revewed below: 1. Notaton and operatonal equatons for mxtures 2. PVTN EOSs for mxtures 3. General effects

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Mass Transfer Processes

Mass Transfer Processes Mass Transfer Processes S. Majd Hassanzadeh Department of Earth Scences Faculty of Geoscences Utrecht Unversty Outlne: 1. Measures of Concentraton 2. Volatlzaton and Dssoluton 3. Adsorpton Processes 4.

More information

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018

MATH 5630: Discrete Time-Space Model Hung Phan, UMass Lowell March 1, 2018 MATH 5630: Dscrete Tme-Space Model Hung Phan, UMass Lowell March, 08 Newton s Law of Coolng Consder the coolng of a well strred coffee so that the temperature does not depend on space Newton s law of collng

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University General Thermodynamcs for Process Smulaton Dr. Jungho Cho, Professor Department of Chemcal Engneerng Dong Yang Unversty Four Crtera for Equlbra μ = μ v Stuaton α T = T β α β P = P l μ = μ l1 l 2 Thermal

More information

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient

Lab 2e Thermal System Response and Effective Heat Transfer Coefficient 58:080 Expermental Engneerng 1 OBJECTIVE Lab 2e Thermal System Response and Effectve Heat Transfer Coeffcent Warnng: though the experment has educatonal objectves (to learn about bolng heat transfer, etc.),

More information

Electrical double layer: revisit based on boundary conditions

Electrical double layer: revisit based on boundary conditions Electrcal double layer: revst based on boundary condtons Jong U. Km Department of Electrcal and Computer Engneerng, Texas A&M Unversty College Staton, TX 77843-318, USA Abstract The electrcal double layer

More information

Solution Thermodynamics

Solution Thermodynamics Soluton hermodynamcs usng Wagner Notaton by Stanley. Howard Department of aterals and etallurgcal Engneerng South Dakota School of nes and echnology Rapd Cty, SD 57701 January 7, 001 Soluton hermodynamcs

More information

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Lecture. Polymer Thermodynamics 0331 L Chemical Potential Prof. Dr. rer. nat. habl. S. Enders Faculty III for Process Scence Insttute of Chemcal Engneerng Department of Thermodynamcs Lecture Polymer Thermodynamcs 033 L 337 3. Chemcal Potental Polymer Thermodynamcs

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

University Physics AI No. 10 The First Law of Thermodynamics

University Physics AI No. 10 The First Law of Thermodynamics Unversty hyscs I No he Frst Law o hermodynamcs lass Number Name Ihoose the orrect nswer Whch o the ollowng processes must volate the rst law o thermodynamcs? (here may be more than one answer!) (,B,D )

More information

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017

EXAMPLES of THEORETICAL PROBLEMS in the COURSE MMV031 HEAT TRANSFER, version 2017 EXAMPLES of THEORETICAL PROBLEMS n the COURSE MMV03 HEAT TRANSFER, verson 207 a) What s eant by sotropc ateral? b) What s eant by hoogeneous ateral? 2 Defne the theral dffusvty and gve the unts for the

More information

Why? Chemistry Crunch #4.1 : Name: KEY Phase Changes. Success Criteria: Prerequisites: Vocabulary:

Why? Chemistry Crunch #4.1 : Name: KEY Phase Changes. Success Criteria: Prerequisites: Vocabulary: Chemstry Crunch #4.1 : Name: KEY Phase Changes Why? Most substances wll eventually go through a phase change when heated or cooled (sometmes they chemcally react nstead). Molecules of a substance are held

More information

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

3. Be able to derive the chemical equilibrium constants from statistical mechanics. Lecture #17 1 Lecture 17 Objectves: 1. Notaton of chemcal reactons 2. General equlbrum 3. Be able to derve the chemcal equlbrum constants from statstcal mechancs. 4. Identfy how nondeal behavor can be

More information

Beyond Zudilin s Conjectured q-analog of Schmidt s problem

Beyond Zudilin s Conjectured q-analog of Schmidt s problem Beyond Zudln s Conectured q-analog of Schmdt s problem Thotsaporn Ae Thanatpanonda thotsaporn@gmalcom Mathematcs Subect Classfcaton: 11B65 33B99 Abstract Usng the methodology of (rgorous expermental mathematcs

More information

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11)

Gravitational Acceleration: A case of constant acceleration (approx. 2 hr.) (6/7/11) Gravtatonal Acceleraton: A case of constant acceleraton (approx. hr.) (6/7/11) Introducton The gravtatonal force s one of the fundamental forces of nature. Under the nfluence of ths force all objects havng

More information

A Robust Method for Calculating the Correlation Coefficient

A Robust Method for Calculating the Correlation Coefficient A Robust Method for Calculatng the Correlaton Coeffcent E.B. Nven and C. V. Deutsch Relatonshps between prmary and secondary data are frequently quantfed usng the correlaton coeffcent; however, the tradtonal

More information

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit

Problem Set #6 solution, Chem 340, Fall 2013 Due Friday, Oct 11, 2013 Please show all work for credit Problem Set #6 soluton, Chem 340, Fall 2013 Due Frday, Oct 11, 2013 Please show all work for credt To hand n: Atkns Chap 3 Exercses: 3.3(b), 3.8(b), 3.13(b), 3.15(b) Problems: 3.1, 3.12, 3.36, 3.43 Engel

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

THE IGNITION PARAMETER - A quantification of the probability of ignition

THE IGNITION PARAMETER - A quantification of the probability of ignition THE IGNITION PARAMETER - A quantfcaton of the probablty of ton INFUB9-2011 Topc: Modellng of fundamental processes Man author Nels Bjarne K. Rasmussen Dansh Gas Technology Centre (DGC) NBR@dgc.dk Co-author

More information

Chemical Engineering Department University of Washington

Chemical Engineering Department University of Washington Chemcal Engneerng Department Unversty of Washngton ChemE 60 - Exam I July 4, 003 - Mass Flow Rate of Steam Through a Turbne (5 onts) Steam enters a turbne at 70 o C and.8 Ma and leaves at 00 ka wth a qualty

More information

Fermi-Dirac statistics

Fermi-Dirac statistics UCC/Physcs/MK/EM/October 8, 205 Fer-Drac statstcs Fer-Drac dstrbuton Matter partcles that are eleentary ostly have a type of angular oentu called spn. hese partcles are known to have a agnetc oent whch

More information

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method

Solution of Linear System of Equations and Matrix Inversion Gauss Seidel Iteration Method Soluton of Lnear System of Equatons and Matr Inverson Gauss Sedel Iteraton Method It s another well-known teratve method for solvng a system of lnear equatons of the form a + a22 + + ann = b a2 + a222

More information

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase)

Design Equations. ν ij r i V R. ν ij r i. Q n components. = Q f c jf Qc j + Continuous Stirred Tank Reactor (steady-state and constant phase) Desgn Equatons Batch Reactor d(v R c j ) dt = ν j r V R n dt dt = UA(T a T) r H R V R ncomponents V R c j C pj j Plug Flow Reactor d(qc j ) dv = ν j r 2 dt dv = R U(T a T) n r H R Q n components j c j

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State I wsh to publsh my paper on The Internatonal Journal of Thermophyscs. Ttle: A Practcal Method to Calculate Partal Propertes from Equaton of State Authors: Ryo Akasaka (correspondng author) 1 and Takehro

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamcs Second Law Entropy Lana Sherdan De Anza College May 8, 2018 Last tme the Boltzmann dstrbuton (dstrbuton of energes) the Maxwell-Boltzmann dstrbuton (dstrbuton of speeds) the Second Law of

More information

PERFORMANCE OF HEAVY-DUTY PLANETARY GEARS

PERFORMANCE OF HEAVY-DUTY PLANETARY GEARS THE INTERNATIONAL CONFERENCE OF THE CARPATHIAN EURO-REGION SPECIALISTS IN INDUSTRIAL SYSTEMS 6 th edton PERFORMANCE OF HEAVY-DUTY PLANETARY GEARS Attla Csobán, Mhály Kozma 1, 1 Professor PhD., Eng. Budapest

More information

Inductance Calculation for Conductors of Arbitrary Shape

Inductance Calculation for Conductors of Arbitrary Shape CRYO/02/028 Aprl 5, 2002 Inductance Calculaton for Conductors of Arbtrary Shape L. Bottura Dstrbuton: Internal Summary In ths note we descrbe a method for the numercal calculaton of nductances among conductors

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS Thermal Energy Recall that KE can always be separated nto 2 terms: KE system = 1 2 M 2 total v CM KE nternal Rgd-body rotaton and elastc / sound waves Use smplfyng assumptons KE of

More information

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION Advanced Mathematcal Models & Applcatons Vol.3, No.3, 2018, pp.215-222 ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EUATION

More information

Assignment 4. Adsorption Isotherms

Assignment 4. Adsorption Isotherms Insttute of Process Engneerng Assgnment 4. Adsorpton Isotherms Part A: Compettve adsorpton of methane and ethane In large scale adsorpton processes, more than one compound from a mxture of gases get adsorbed,

More information

Review of Classical Thermodynamics

Review of Classical Thermodynamics Revew of Classcal hermodynamcs Physcs 4362, Lecture #1, 2 Syllabus What s hermodynamcs? 1 [A law] s more mpressve the greater the smplcty of ts premses, the more dfferent are the knds of thngs t relates,

More information

Effect of loading frequency on the settlement of granular layer

Effect of loading frequency on the settlement of granular layer Effect of loadng frequency on the settlement of granular layer Akko KONO Ralway Techncal Research Insttute, Japan Takash Matsushma Tsukuba Unversty, Japan ABSTRACT: Cyclc loadng tests were performed both

More information

Ttle The reacton between urea and phtha pressure Author(s) Yanagmoto, Takao Ctaton The Revew of Physcal Chemstry of 77 Issue Date 1956-02-20 URL http://hdl.handle.net/2433/46732 Rght Type Departmental

More information

ERROR RESEARCH ON A HEPA FILTER MEDIA TESTING SYSTEM OF MPPS(MOST PENETRATION PARTICLE SIZE) EFFICIENCY

ERROR RESEARCH ON A HEPA FILTER MEDIA TESTING SYSTEM OF MPPS(MOST PENETRATION PARTICLE SIZE) EFFICIENCY Proceedngs: Indoor Ar 2005 ERROR RESEARCH ON A HEPA FILTER MEDIA TESTING SYSTEM OF MPPS(MOST PENETRATION PARTICLE SIZE) EFFICIENCY S Lu, J Lu *, N Zhu School of Envronmental Scence and Technology, Tanjn

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 31 Multcollnearty Dr. Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur 6. Rdge regresson The OLSE s the best lnear unbased

More information

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices

Supplementary Information for Observation of Parity-Time Symmetry in. Optically Induced Atomic Lattices Supplementary Informaton for Observaton of Party-Tme Symmetry n Optcally Induced Atomc attces Zhaoyang Zhang 1,, Yq Zhang, Jteng Sheng 3, u Yang 1, 4, Mohammad-Al Mr 5, Demetros N. Chrstodouldes 5, Bng

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

This column is a continuation of our previous column

This column is a continuation of our previous column Comparson of Goodness of Ft Statstcs for Lnear Regresson, Part II The authors contnue ther dscusson of the correlaton coeffcent n developng a calbraton for quanttatve analyss. Jerome Workman Jr. and Howard

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract Endogenous tmng n a mxed olgopoly consstng o a sngle publc rm and oregn compettors Yuanzhu Lu Chna Economcs and Management Academy, Central Unversty o Fnance and Economcs Abstract We nvestgate endogenous

More information

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid.

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid. Searatons n Chemcal Engneerng Searatons (gas from a mxture of gases, lquds from a mxture of lquds, solds from a soluton of solds n lquds, dssolved gases from lquds, solvents from gases artally/comletely

More information

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Physics 5153 Classical Mechanics. Principle of Virtual Work-1 P. Guterrez 1 Introducton Physcs 5153 Classcal Mechancs Prncple of Vrtual Work The frst varatonal prncple we encounter n mechancs s the prncple of vrtual work. It establshes the equlbrum condton of a mechancal

More information

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model Lecture 4. Thermodynamcs [Ch. 2] Energy, Entropy, and Avalablty Balances Phase Equlbra - Fugactes and actvty coeffcents -K-values Nondeal Thermodynamc Property Models - P-v-T equaton-of-state models -

More information

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4) I. Classcal Assumptons Econ7 Appled Econometrcs Topc 3: Classcal Model (Studenmund, Chapter 4) We have defned OLS and studed some algebrac propertes of OLS. In ths topc we wll study statstcal propertes

More information

Temperature. Chapter Temperature Scales

Temperature. Chapter Temperature Scales Chapter 12 Temperature In prevous chapters of these notes we ntroduced the Prncple of Maxmum Entropy as a technque for estmatng probablty dstrbutons consstent wth constrants. In Chapter 8 we dscussed the

More information

% & 5.3 PRACTICAL APPLICATIONS. Given system, (49) , determine the Boolean Function, , in such a way that we always have expression: " Y1 = Y2

% & 5.3 PRACTICAL APPLICATIONS. Given system, (49) , determine the Boolean Function, , in such a way that we always have expression:  Y1 = Y2 5.3 PRACTICAL APPLICATIONS st EXAMPLE: Gven system, (49) & K K Y XvX 3 ( 2 & X ), determne the Boolean Functon, Y2 X2 & X 3 v X " X3 (X2,X)", n such a way that we always have expresson: " Y Y2 " (50).

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potental Energy and Conservaton of Energy In ths chapter we wll ntroduce the followng concepts: Potental Energy Conservatve and non-conservatve forces Mechancal Energy Conservaton of Mechancal

More information

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes

DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR. Introductory Econometrics 1 hour 30 minutes 25/6 Canddates Only January Examnatons 26 Student Number: Desk Number:...... DO NOT OPEN THE QUESTION PAPER UNTIL INSTRUCTED TO DO SO BY THE CHIEF INVIGILATOR Department Module Code Module Ttle Exam Duraton

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information