REACTION CRYSTALLIZATION OF SULFAMIC ACID FROM UREA AND FUMING SULFURIC ACID

Size: px
Start display at page:

Download "REACTION CRYSTALLIZATION OF SULFAMIC ACID FROM UREA AND FUMING SULFURIC ACID"

Transcription

1 REACTION CRYSTALLIZATION OF SULFAMIC ACID FROM UREA AND FUMING SULFURIC ACID Ken TOYOKURA,Kenji TAWAand Junji UENO Department of Applied Chemistry, Waseda University, Tokyo 160 Reaction crystallization of sulfamic acid from urea and fuming sulfuric acid was studied in a continuous well-mixed crystallizer. In this work, growth rate and nucleation rate were correlated with retention time. Secondary nucleation obtained from two kinds of agitators was studied briefly on the basis of the collision model. On the other hand, reaction rate was represented by the pseudo-first order of urea concentration in a vessel and the correlation between reaction rate and retention time was also obtained. Because both reaction rate and crystallization rate were correlated with retention time, a new design method without use of correlative equations of supersaturation is proposed and a chart based on retention time is submitted. Intr oduction A numberof studies of crystallizer design have been carried out in recent years. Most concerned physical crystallization and have been satisfactorily applied for some industrial purposes. On the other hand, reaction crystallization is considered an important field in industrial operations and its design requires study. But the phenomena of reaction crystallization are complicated, and design of reaction crystallizers is not easy at present. Studies of reaction crystallization considering both reaction rate and crystallization rate have scarcely been reported. Design for reaction crystallization has been generally attempted by applying the theory obtained from physical crystallization. In reaction crystallization, reaction rate is effective in creating supersaturation and the idea of classification of reaction crystallization by rate of reaction is devised for development of design theories by the authors. The criterion of the classification is whether most of the chemical reaction occurs before reactants are mixed well in a vessel, or after. In the latter case, the slow reaction group, supersaturation is supposed to be homogeneous throughout a well-stirred vessel, but in the former case distribution of supersaturation in a vessel might markedly occur. Reaction crystallization of sulfamic acid is thought to occur after urea and fuming sulfuric acid are mixed well in a vessel. Its reaction rate is easily estimated by observing the generation rate of carbon dioxide gas. Therefore, this system was adopted as an appro- Received March 2, Correspondence concerning this article should be addressed to K. Toyokura. 24 priate one for study of reaction crystallization with slow rate of reaction. Growth rate and nucleation rate of crystals necessary for design are correlated with supersaturation in general. But the operational supersaturation is often difficult to observe. Particle size of product crystal is generally important and the correlation between particle size of product crystal and retention time in a continuous well-mixed vessel was proposed3} for slightly soluble system, and a new design theory based on retention time has been proposed in conformity with crystallization theory without using the correlative equation with supersaturation. Based on this theory, the above relation was extended to reaction crystallization of sulfamic acid and a correlation was obtained also for this system. On the other hand, the correlation between reaction rate and retention time was derived from the material balance at steady state. Then both reaction rate and crystallization correlated with the retention time. rate were 1. Experimental Apparatus and Procedure 1. 1 Experimental apparatus A diagram of this experimental apparatus is shown in Fig. 1. The crystallizer was a stainless steel beaker, 150 mmin diameter and 170 mmindepth. Thisvessel was dipped in a constant-temperature bath. Agitators used were of two kinds; one was the paddle type with two blades, 25mm in width and 100mm in length, and the other was the paddle type with four blades each of which had an inclination of 45 degrees, 25mm in width and 130mm in length. Carbon dioxide generated by reaction was stored in a gas tank by reduction of the inside pressure to 10 mmhg.removal of reactants was performed with an aspirator. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN

2 1. 2 Experimental procedure The reaction of sulfamic acid is written as Eq. (1). NH2CONH2+SO3+H2SO4-»2NH2SO3H+CO2 (1) Urea dissolved in 100% sulfuric acid and 30% fuming sulfuric acid were dropped (25 ml each) into the vessel atthe same time from the feed tanks (3) in Fig. 1. The interval of addition was 1/10 of the retention time (The volume of solution in the vessel was 500ml). Aportion equivalent to volumeincrease as a result of adding the feed solution was drawn out from the outlet (4) as slurry and the vessel volume was thus kept constant. Carbon dioxide generated by reaction was stored in the gas tank (6) after being passed through the washer (5) filled with dilute sulfuric acid. Its volume was plotted against the elapsed time. When its as slope becameconstant, reaction rate was regarded steady state. And crystallization rate was considered to reach steady state after more than five times the retention operation continued time from attaining the steady state of reaction rate. was stopped. The weight of crystals Then the operation in the vessel and the crystal size Experimental distribution were measured. conditions were as follows : reaction temperature 90 C, molar ratio SO3/urea 1.8, the revolution rate per minute rpm for the twoblade agitator, rpm for the four-leaning blade agitator. These conditions were chosen from a preliminary test of batch operation using the same vessel in order to make the progress of reaction smooth by dropping 30% fuming sulfuric acid into the vessel containing urea dissolved in 100% sulfuric acid under several temperature ranges. Conditions chosen here may not always be the best, but this is an easy example to obtain data for discussion of reaction crystallization based on reaction rate and crystallization rate. 2. Results 2. 1 Reactionrate Production rate of sulfamic acid is given as twice the generation rate of carbon dioxide from Eq. (1). Reaction rate of urea is equal to the generation rate of carbon dioxide. The relation between urea concentration in a vessel CA[mol//] calculated from the marerial balance and reaction rate ra [mol//*min] is shown in Fig. 2. Here, circles mean the data of the preliminary batch operation and triangles those of the continuous one. From this, it was concluded that reaction rate was correlated with the pseudo-first order of urea concentration in a vessel, and Eq. (2) was obtained. r^=0.096 C^ (2) In continuous operation of this reaction, the material balance is expressed as Eq. (3). VOL. 12 NO Fig. 1 Experimental apparatus Fig. 2 Correlation between reaction rate and urea concentration in a vessel CAoG-CAG-rA V=O (3) where C^0[mol//] is the initial concentration of urea, G[l/min] is the volumetric flow rate and V[l] is the volume of crystallizer. Substituting Eq. (2) for ra in Eq. (3), CA becomes Eq. (4). CA={l/(l &)}CAo (4) where (9[min] is the retention time and is equal to V/G. The term in the parenthesis of Eq. (4) is approximated as Eq. (5) in the range of retention time used, from 30 to 250 minutes. l/(l+0.096<9)=5.8 <9- -9 (5) Consequently, Eq. (4) becomes Eq. (6) for the case of CA =2.0. CA=U.6&-0-9 (6) Combination ofeq. (2) and (6) gives Eq. (7). ra=l.l (7) To make sure of this relation, the reaction rate given in a continuous operation was plotted against the retention time. In Fig. 3, circles mean the data obtained from the two-blade agitator and triangles those from the four-leaning blade agitator. The line 25

3 Fig. 3 Correlation between reaction rate and retention time Fig. 4 Correlation between production rate and reaction rate Fig. 5 Size distribution of this figure is the relation of Eq. (7), which is regarded as holding good nearly throughout this system. Andthis figure makes it clear that reaction rate was not affected by the difference of agitators for the range of these experimental conditions. On the other hand, production rate of sulfamic acid P[mol//-min] is given as twice the reaction rate from Eq. (1), but the correlation was given by Eq. (8), as shown in Fig. 4. The distinction of data points in Fig. 4 is the same as in Fig. 3. P=arA (8) In these tests, the value ofa was This difference between test data and the value estimated from Eq. (1) is supposed to be caused by the double decomposition of product crystals and others, but details were not studied here Growthrate and nucleation rate Growthrate was measuredby a commonmethod using the results of the size distribution as follows. Figure 5 is an example of the size distribution obtained from this experiment. The vertical axis is the logarithm of the dimensionless numberof particles and the horizontal axis is the particle size. Growth rate was calculated from the slope of this straight line expressed by the tangent using the next equation. tangent= -2. 3O3(dl/d0)O (9) In a continuous well-mixed crystallizer, the straight line in this method shows that AL law is applicable. When AL law is applied to a continuous well-mixed crystallizer, following equations have already been reported2k P=(l-e)PcV'/6 (10) lm= 3(dl/dd)0 (1 1) Fi= (9/2)P/Pc V' lm3 (12) By these equations, dominant size Im and nucleation rate Fvr- in these tests were calculated from test data of P, dl/dd and 0. On the other hand, the correlation between growth rate and retention time has already been reported3) in the latest paper for the precipitation of slightly soluble salts by ionic reaction. Since in this reaction crystallization of sulfamic acid the solubility of sulfamic acid is comparatively small and this relation is convenient to apply to discussion of industrial operations, growth rate and nucleation rate calculated by Eq. (12) were plotted against retention time in Figs. 6 and 7, respectively. From these figures, the correlations were given as follows: Whenusing the two-blade agitator, dl/d6=2l.60- '87 (13) F^H^x lo (14) Whenusing the four-leaning blade agitator, dl/d6=2sj (15) 3. Discussion Frv=635x Wl0-1 2" (16) 3. 1 Crystallization rate In a continuous well-mixed crystallizer, the relation between growth rate and retention time is derived from Eqs. (ll) and (12) as Eq. (17) dl / P \1/3 "'-=( ) /7/-l/3@-l (IJ\ dd \69cv 26 JOURNAL OF CHEMICAL ENGINEERING OF JAPAN

4 The power of the retention time for growth rate in Eq. (17) is different from that in Eqs. (13) and (15). This supposes that production rate and nucleation rate are functions of retention time, respectively. On the other hand, growth rate obtained from the four-leaning blade agitator was about 1.3 times that from the two-blade agitator. When growth rate is postulated to be represented by Eq. (18) as the function of supersaturation AC, the difference of growth rate caused by the two kinds of agitators in Fig. 6 is considered to result from the difference of supersaturation because the effect offluidity is thought to be not so great under good mixing conditions in each case. di/do=k(ac) (18) In Fig. 7, though scattered plots can't show the situation, secondary nucleation rate obtained from the two-blade agitator was about 2.3 times that from the four-leaning blade agitator. Mechanism of secondary nucleation which is considered to take place in a vessel is complicated, but an explanation was given by applying the collision model reported by de Jong et al}\ In these tests, the difference of experimental conditions for nucleation rate is the revolution rate per minute and the size and shape of agitator, and the factor affecting secondary nucleation is considered to be the revolution rate and impeller area for the direction of revolution. The power of revolution rate for secondary nucleation rate has been reported as 3 by de Jong and as 2 to 3 by the experimental results of K-alum system carried out by Toyokura4). Considering that the contribution of supersaturation to secondary nucleation rate is the same as that to growth rate in the collision model4}, and assuming that secondary nucleation rate is proportional to impeller area for the direction of revolution, the power of revolution rate for secondary nucleation rate was calculated as 2.8 in this case. This experimental value was in the range described above, but details are subjects for the future Application to design method The correlation between crystallization rate and retention time make the following method possible. Combination ofeqs. (10) and (12) gives Eq. (19). i^=(9/2)(l -s)/6> /m3 (19) Since the production rate is a function of reaction rate, 1- was shown to be a function of the retention time like Eq. (20), from Eq. (10). l- =0.096>0 1 (20) In Eq. (19), when 1-s is constant or a function of retention time, this equation shows the relation of Fv\ & and Im. Figure 8 shows the relation between Fv' and 0 with Im parameters when 1-s is represented by a function of retention time like Eq. (20). Two Fv'-0 lines in Fig. 8 are test data shown in Fig. 7. VOL. 12 NO Fig. 6 Correlation between growth rate and retention time Fig. 7 Correlation between nucleation rate and retention time Fig. 8 Correlation between nucleation rates and retention time for determination of design conditions If the relation between Fv' and 6 is obtained in a crystallization experiment, a series of crosspoints are given from two kinds of Fvr-0 lines, like this figure 27

5 and Fv' and 6 are decided for the desired particle size Im. The crystallizer volume is decided from Eq. (12) for the production rate set up. According to this chart, a long retention time is necessary to obtain large particle size, and to get large particle size with good efficiencies, Fv'-& line must be lowered. These two Fv'-& lines show the possibility of lowering this line by studying secondaly nucleation. This chart is considered to indicate the direction of development of processes like this, but detailed study of secondary nucleation is necessary for this purpose. Nomenclature ca AC Fv' G K I Im urea concentration in a vessel [mol//j initial concentration of urea [mol//] supersaturation [mol// or Kg-mol/m3] nucleation rate per unit volume [number/m3 à"hr] volumetric flow rate overall growth rate coefficient crystal size dominant size of crystals numberof crystals pi production rate reaction rate of urea volume of crystallizer coefficien t void fraction retention time time density of crystal [Kg/hr, mol//- min] [mol// - min] [m3] [-] [-] [min or hr] [min or hr] [Kg/m3] Literature Cited 1) E, P. K. Ottense and E. J. de Jong: /. Cryst. Growth, 13, 114, 500 (1974). 2) Shirotsuka, T. and K. Toyokura: AIChE Symposium Series, 67, No. 110, 145 (1971). 3) Toyokura, K. and K. Ono: Kagaku Kogaku Ronbunshu, 4, 38 (1978). 4) Toyokura, K. : to be published in "Industrial Clystallization '78", E. J. de Jong-editor, North Holland Publishing Company, Amsterdam. (Presented at the 42 nd Annual Meeting of The Soc. of Chem. Engrs., Japan, at Hiroshima, April 1977.) 28 JOURNAL OF CHEMICAL ENGINEERING OF JAPAN

Investigation of adiabatic batch reactor

Investigation of adiabatic batch reactor Investigation of adiabatic batch reactor Introduction The theory of chemical reactors is summarized in instructions to Investigation of chemical reactors. If a reactor operates adiabatically then no heat

More information

APPLICATION OF STIRRED TANK REACTOR EQUIPPED WITH DRAFT TUBE TO SUSPENSION POLYMERIZATION OF STYRENE

APPLICATION OF STIRRED TANK REACTOR EQUIPPED WITH DRAFT TUBE TO SUSPENSION POLYMERIZATION OF STYRENE APPLICATION OF STIRRED TANK REACTOR EQUIPPED WITH DRAFT TUBE TO SUSPENSION POLYMERIZATION OF STYRENE Masato TANAKAand Takashi IZUMI Department of Chemical Engineering, Niigata University, Niigata 950-21

More information

APPLICATION OF THE RELAXATION METHOD FOR SOLVING REACTING DISTILLATION PROBLEMS

APPLICATION OF THE RELAXATION METHOD FOR SOLVING REACTING DISTILLATION PROBLEMS APPLICATION OF THE RELAXATION METHOD FOR SOLVING REACTING DISTILLATION PROBLEMS Hiromasa KOMATSU Numazu College of Technology, Numazu 410 A new method for correcting liquid compositions by the relaxation

More information

Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24

Name: Rate of reaction. Class: Higher revision questions. Date: 57 minutes. Time: 56 marks. Marks: Comments: Page 1 of 24 Rate of reaction Higher revision questions Name: Class: Date: Time: 57 minutes Marks: 56 marks Comments: Page of 24 A student investigated the rate of the reaction between magnesium and dilute hydrochloric

More information

Sample Free-Response Questions

Sample Free-Response Questions Exam Information Sample Free-Response Questions Question 1 is a long constructed-response question that should require about 20 minutes to answer. Questions 2, 3, and 4 are short constructed-response questions

More information

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14 Properties of Solutions and Kinetics Unit 8 Chapters 4.5, 13 and 14 Unit 8.1: Solutions Chapters 4.5, 13.1-13.4 Classification of Matter Solutions are homogeneous mixtures Solute A solute is the dissolved

More information

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve.

In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. Q1.(a) In an investigation of the rate of reaction between hydrochloric acid and pure magnesium, a student obtained the following curve. The reaction of magnesium with dilute hydrochloric acid is exothermic.

More information

Chapter 15. Solutions

Chapter 15. Solutions Chapter 15 Solutions Key Terms for this Chapter Make sure you know the meaning of these: Solution Solute Solvent Aqueous solution Solubility Saturated Unsaturated Supersaturated Concentrated Dilute 15-2

More information

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask.

A student adds the following volumes of aqueous sodium thiosulfate, dilute hydrochloric acid and distilled water to the conical flask. 1 When aqueous sodium thiosulfate and dilute hydrochloric acid are mixed, a precipitate of insoluble sulfur is produced. This makes the mixture difficult to see through. Na 2 S 2 O 3 (aq) + 2HCl (aq) S(s)

More information

Experimental Procedure Lab 402

Experimental Procedure Lab 402 Experimental Procedure Lab 402 Overview Measured volume of several solutions having known concentrations of reactants are mixed in a series of trials. The time required for a visible color change to appear

More information

CFD Analysis and Experimental Evaluation of the Effective Parameters on Paint Homogeneity in Mixing Tanks

CFD Analysis and Experimental Evaluation of the Effective Parameters on Paint Homogeneity in Mixing Tanks ISTP-16, 2005, PRAGUE 16 TH INTERNATIONAL SYMPOSIUM ON TRANSPORT PHENOMENA CFD Analysis and Experimental Evaluation of the Effective Parameters on Paint Homogeneity in Mixing Tanks N. K. Mohtaram*, M.

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination

EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination OBJECTIVES: EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination Observe temperature versus time and record data for pure acetic acid cooled in an ice-water bath Plot temperature

More information

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS Udaya Bhaskar Reddy R*, Gopalakrishnan S, Ramasamy E Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore-

More information

or supersaturatedsaturated Page 1

or supersaturatedsaturated Page 1 Solutions Unit #9 Chapter #11 A solution is a HOMOGENEOUS mixture of 2 or more substances in a single phase. One constituent is usually regarded as the SOLVENT and the others as SOLUTES. 1 Definitions

More information

Process Classification

Process Classification Process Classification Before writing a material balance (MB) you must first identify the type of process in question. Batch no material (mass) is transferred into or out of the system over the time period

More information

The remaining questions were developed by John Gelder.

The remaining questions were developed by John Gelder. 1.Design an experiment to collect data that supports the claim that a 1.0 M NaCl solution is a homogeneous mixture. Describe the steps, the data you would collect, and how the data support the claim. Laboratory

More information

Thermodynamic stability and transformation of pharmaceutical polymorphs*

Thermodynamic stability and transformation of pharmaceutical polymorphs* Pure Appl. Chem., Vol. 77, No. 3, pp. 581 591, 2005. DOI: 10.1351/pac200577030581 2005 IUPAC Thermodynamic stability and transformation of pharmaceutical polymorphs* Mitsutaka Kitamura Department of Mechanical

More information

Solutions. Why does a raw egg swell or shrink when placed in different solutions?

Solutions. Why does a raw egg swell or shrink when placed in different solutions? Solutions 1 Why does a raw egg swell or shrink when placed in different solutions? Classification of Matter 2 Some Definitions 3 If a compound is soluble it is capable of being dissolved. A solution is

More information

A First Course on Kinetics and Reaction Engineering Example 11.5

A First Course on Kinetics and Reaction Engineering Example 11.5 Example 11.5 Problem Purpose This problem illustrates the use of the age function measured using a step change stimulus to test whether a reactor conforms to the assumptions of the ideal PFR model. Then

More information

IODINE CLOCK REACTION KINETICS

IODINE CLOCK REACTION KINETICS Name: Section Chemistry 104 Laboratory University of Massachusetts Boston IODINE CLOCK REACTION KINETICS PRELAB ASSIGNMENT Calculate the initial concentration of H 2 O 2 that exists immediately after mixing

More information

1. Starting of a project and entering of basic initial data.

1. Starting of a project and entering of basic initial data. PROGRAM VISIMIX TURBULENT SV. Example 1. Contents. 1. Starting of a project and entering of basic initial data. 1.1. Opening a Project. 1.2. Entering dimensions of the tank. 1.3. Entering baffles. 1.4.

More information

Formation of valine microcrystals through rapid antisolvent precipitation

Formation of valine microcrystals through rapid antisolvent precipitation Formation of valine microcrystals through rapid antisolvent precipitation Miroslav Variny a, Sandra Alvarez de Miguel b, Barry D. Moore c, Jan Sefcik b a Department of Chemical and Biochemical Engineering,

More information

AGITATION/GAS-LIQUID DISPERSION. CHEM-E Fluid Flow in Process Units

AGITATION/GAS-LIQUID DISPERSION. CHEM-E Fluid Flow in Process Units AGITATION/GAS-LIQUID DISPERSION CHEM-E7160 - Fluid Flow in Process Units 1. INTRODUCTION Agitation: Mixing: Blending: Suspension: Dispersion: Induced motion of a material in a specific way, usually in

More information

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method

Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Rate law Determination of the Crystal Violet Reaction Using the Isolation Method Introduction A common challenge in chemical kinetics is to determine the rate law for a reaction with multiple reactants.

More information

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION PURPOSE: To determine the Rate Law and the Activation Energy for a reaction from experimental data. PRINCIPLES: The Rate Law is a mathematical expression that predicts the rate of a reaction from the concentration

More information

Unit 10: Part 1: Polarity and Intermolecular Forces

Unit 10: Part 1: Polarity and Intermolecular Forces Unit 10: Part 1: Polarity and Intermolecular Forces Name: Block: Intermolecular Forces of Attraction and Phase Changes Intramolecular Bonding: attractive forces that occur between atoms WITHIN a molecule;

More information

Direct Production of Crystalline Boric Acid through Heterogeneous Reaction of Solid Borax with Propionic Acid: Operation and Simulation

Direct Production of Crystalline Boric Acid through Heterogeneous Reaction of Solid Borax with Propionic Acid: Operation and Simulation Korean J. Chem. Eng., 2(5), 956-962 (2004) Direct Production of Crystalline Boric Acid through Heterogeneous Reaction of Solid Borax with Propionic Acid: Operation and Simulation Bahman ZareNezhad Chemical

More information

Desalination 222 (2008) Dmitry Lisitsin, David Hasson*, Raphael Semiat

Desalination 222 (2008) Dmitry Lisitsin, David Hasson*, Raphael Semiat Desalination (8) 5 58 The potential of CO for pretreating brackish and wastewater desalination feeds Dmitry Lisitsin, David Hasson*, Raphael Semiat Rabin Desalination Laboratory, Grand Water Research Institute,

More information

CRYSTALLIZATION OF GRISEOFULVIN BY BATCH ANTI-SOLVENT PROCESS

CRYSTALLIZATION OF GRISEOFULVIN BY BATCH ANTI-SOLVENT PROCESS CRYSTALLIZATION OF GRISEOFULVIN BY BATCH ANTI-SOLVENT PROCESS B. De Gioannis, P. Jestin, P. Subra * Laboratoire d Ingénierie des Matériaux et des Hautes Pressions, CNRS, Institut Galilée, Université Paris

More information

NITROGEN AND ITS COMPOUNDS Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure.

NITROGEN AND ITS COMPOUNDS Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure. NAME SCHOOL INDEX NUMBER DATE NITROGEN AND ITS COMPOUNDS 1. 1990 Q30 (i) Explain how the following would affect the yield of ammonia. An increase in (i). Pressure. (2 marks) marks)... (ii) Temperature

More information

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A MAIN EXAMINATION P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu JANUARY APRIL 2014 TRIMESTER

More information

FACTORS AFFECTING THE PHASE INVERSION OF DISPERSED IMMISCIBLE LIQUID-LIQUID MIXTURES

FACTORS AFFECTING THE PHASE INVERSION OF DISPERSED IMMISCIBLE LIQUID-LIQUID MIXTURES AIChE Symposium Series Journal American Institute of Chemical Engineers FACTORS AFFECTING THE PHASE INVERSION OF DISPERSED IMMISCIBLE LIQUID-LIQUID MIXTURES An experimental technique Is devised through

More information

see page 8 of these notes )

see page 8 of these notes ) UNIT 1 Note Packet INTRODUCTION TO CHEMISTRY Name: METRICS AND MEASUREMENT In the chemistry classroom and lab, the metric system of measurement is used, so it is important to know what you are measuring,

More information

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I

L-17 Coagulation and Flocculation Part-I. Environmental Engineering-I L-17 Coagulation and Flocculation Part-I Environmental Engineering-I Content Part-I Coagulation, Types of Coagulant, Part-II dosing, rapid mixing, Flocculation-design parameters. Purpose The primary purpose

More information

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate In this experiment you, as a class, will determine the solubility of sodium tetraborate decahydrate (Na 2 B 4 O 7 10 H 2 O or Na 2 [B

More information

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS At the end of this week s lecture, students should be able to: Differentiate between the three ideal reactors Develop and apply the

More information

GENERAL INSTRUCTIONS GENERAL PREPARATION

GENERAL INSTRUCTIONS GENERAL PREPARATION GENERAL INSTRUCTIONS Introduction The Van London-pHoenix Company Fluoroborate Ion Selective Electrode is used to quickly, simply, accurately, and economically measure Fluoroborate in aqueous solutions.

More information

A First Course on Kinetics and Reaction Engineering Example 14.3

A First Course on Kinetics and Reaction Engineering Example 14.3 Example 14.3 Problem Purpose This problem illustrates differential analysis using data from a differentially operated PFR. Problem Statement The isomerization of cyclopropane, equation (1), was known from

More information

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia.

Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. Q1. The chart shows the processes involved in the manufacture of nitric acid from ammonia. (a) Complete the word equation for the reaction that takes place in the first reaction vessel. ammonia +... nitrogen

More information

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form

Solutions. Solutions. How Does a Solution Form? Solutions. Energy Changes in Solution. How Does a Solution Form Ummm Solutions Solutions Solutions are homogeneous mixtures of two or more pure substances. In a solution, the solute is dispersed uniformly throughout the solvent. Solutions The intermolecular forces

More information

Problems Points (Max.) Points Received

Problems Points (Max.) Points Received Chemical Engineering 142 Chemical Kinetics and Reaction Engineering Midterm 1 Tuesday, October 8, 2013 8:10 am-9:30 am The exam is 100 points total. Please read through the questions very carefully before

More information

In the exam you will be asked to tackle questions such as the one below.

In the exam you will be asked to tackle questions such as the one below. Get started AO3 2 Preparing salts This unit will help you to plan, describe and understand an experiment to prepare a salt. In the exam you will be asked to tackle questions such as the one below. Exam-style

More information

Hydrogen Sulfide Removal from Waste Air by Oxidation reaction with Sodium Hypochlorite in CSTR

Hydrogen Sulfide Removal from Waste Air by Oxidation reaction with Sodium Hypochlorite in CSTR he9 The Forth PSU Engineering onference 8-9 December 5 ydrogen Sulfide Removal from Waste Air by Oxidation reaction with Sodium ypochlorite in STR harun Bunyakan* Juntima hungsiriporn Junya Intamanee azardous

More information

ISEC The 21st International Solvent Extraction Conference. Standardized Settling Cell to Characterize Liquid-Liquid Dispersion

ISEC The 21st International Solvent Extraction Conference. Standardized Settling Cell to Characterize Liquid-Liquid Dispersion Standardized Settling Cell to Characterize Liquid-Liquid Dispersion David LELEU*, Andreas PFENNIG University of Liège, Department of Chemical Engineering - Products, Environment, and Processes (PEPs),

More information

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2)

Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. (g) + Cl 2. (g) 2HCl(g) (2) Q1. The gas-phase reaction between hydrogen and chlorine is very slow at room temperature. H 2 (g) + Cl 2 (g) 2HCl(g) (a) Define the term activation energy....... Give one reason why the reaction between

More information

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT

Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Lowell High School AP Chemistry Spring 2009 REACTION KINETICS EXPERIMENT Complete the following for Pre-Lab on a clean sheet of paper: (1) In your own words, explain the following: a. why the I 2 concentration

More information

Rate of Reaction. Introduction

Rate of Reaction. Introduction 5 Rate of Reaction Introduction This experiment will allow you to study the effects of concentration, temperature, and catalysts on a reaction rate. The reaction whose rate you will study is the oxidation

More information

Modern Chemistry Chapter 12- Solutions

Modern Chemistry Chapter 12- Solutions Modern Chemistry Chapter 12- Solutions Section 1- Types of Mixtures Solutions are homogeneous mixtures of two or more substances in a single phase. Soluble describes a substance as capable of being dissolved.

More information

SOLVENT EXTRACTION OF RARE EARTH METAL BY A CONTINUOUS STIRRED VESSEL

SOLVENT EXTRACTION OF RARE EARTH METAL BY A CONTINUOUS STIRRED VESSEL Journal of Engineering Science and Technology Special Issue on SOMCHE 2014 & RSCE 2014 Conference, January (2015) 87-96 School of Engineering, Taylor s University SOLVENT EXTRACTION OF RARE EARTH METAL

More information

Experiment: 8. Determining the Solubility of Aspirin at Different Temperatures and Calculating the Heat of Solution. Theory

Experiment: 8. Determining the Solubility of Aspirin at Different Temperatures and Calculating the Heat of Solution. Theory Experiment: 8 Determining the olubility of Aspirin at Different Temperatures and Calculating the Heat of olution Theory One of the most common forms of a homogeneous mixture is a solution. The one component

More information

Chapter 12 & 13 Test Review. Bond, Ionic Bond

Chapter 12 & 13 Test Review. Bond, Ionic Bond Chapter 12 & 13 Test Review A solid solute dissolved in a solid solvent is an Alloy What is happening in a solution at equilibrium? The Ionic rate of Bond dissolving is equal to the rate of crystallization.

More information

Take Home Semester 2 Practice Test for Acc Chem MM 15-16

Take Home Semester 2 Practice Test for Acc Chem MM 15-16 Take Home Semester 2 Practice Test for Acc Chem MM 15-16 Thermochemistry 1. Determine ΔHrxn. 2SO2(g) + O2(g) 2SO3(g) a) 98.9 b) 98.9 c) 197.8 d) 197.8 ΔHf o SO2(g) 296.8 kj/mol SO3(g) 395.7 kj/mol O2(g)

More information

Recovery of Copper Renee Y. Becker Manatee Community College

Recovery of Copper Renee Y. Becker Manatee Community College Recovery of Copper Renee Y. Becker Manatee Community College Introduction In this lab we are going to start with a sample of copper wire. We will then use a sequence of reactions to chemically transform

More information

NITRATION OF 8-HYDROXYQUINOLINE WITH DILUTE NITRIC ACID AND NITROUS ACID

NITRATION OF 8-HYDROXYQUINOLINE WITH DILUTE NITRIC ACID AND NITROUS ACID NITRATION OF 8-HYDROXYQUINOLINE WITH DILUTE NITRIC ACID AND NITROUS ACID T. URBANSKI and W. KUTKIEWICZ Institute of Technology, Warszawa, Poland Abstract It was found that 8-hydroxyquinoline and 8-hydroxy-5-nitroquinoline

More information

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

Specific Heat Measurement of High Temperature Thermal Insulations by Drop Calorimeter Method

Specific Heat Measurement of High Temperature Thermal Insulations by Drop Calorimeter Method International Journal of Thermophysics, Vol 24, No 2, March 23 ( 23) Specific Heat Measurement of High Temperature Thermal Insulations by Drop Calorimeter Method T Ohmura, 1,2 M Tsuboi, 1 M Onodera, 1

More information

Checking the Kinetics of Acetic Acid Production by Measuring the Conductivity

Checking the Kinetics of Acetic Acid Production by Measuring the Conductivity J. Ind. Eng. Chem., Vol. 13, No. 4, (2007) 631-636 Checking the Kinetics of Acetic Acid Production by Measuring the Conductivity Anita Kovač Kralj Faculty of Chemistry and Chemical Engineering, University

More information

An equation for the decomposition of hydrogen peroxide is shown below.

An equation for the decomposition of hydrogen peroxide is shown below. An equation for the decomposition of hydrogen peroxide is shown below. 2H 2 O 2 2H 2 O + O 2 State the measurements you would take in order to investigate the rate of this reaction............. (Total

More information

Thermodynamics of Borax Dissolution

Thermodynamics of Borax Dissolution Thermodynamics of Borax Dissolution Introduction In this experiment, you will determine the values of H, G and S for the reaction which occurs when borax (sodium tetraborate octahydrate) dissolves in water.

More information

Aqueous Solutions (When water is the solvent)

Aqueous Solutions (When water is the solvent) Aqueous Solutions (When water is the solvent) Solvent= the dissolving medium (what the particles are put in ) Solute= dissolved portion (what we put in the solvent to make a solution) Because water is

More information

Author(s) Ishibashi, Masayoshi; Yamamoto, Yur.

Author(s) Ishibashi, Masayoshi; Yamamoto, Yur. Title Ultraviolet Spectrophotometric Dete Dioxide in Sulfuric Acid Author(s) Ishibashi, Masayoshi; Yamamoto, Yur Citation Bulletin of the Institute for Chemi University (1959), 37(1): 1-7 Issue Date 1959-03-25

More information

Unit 11: Chapters 15 and 16

Unit 11: Chapters 15 and 16 Unit 11: Chapters 15 and 16 Water and Solution Chemistry What makes Water Special? Extensive Hydrogen Bonding!! Unusually... high surface tension low vapor pressure high specific heat capacity high molar

More information

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders Objectives Part 1: To determine the limiting reagent and percent yield of CuCO

More information

Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization

Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization Effect of Carrier Gas Flow Behavior on Performance of Separation by Using Ultrasonic Atomization Yoshiyuki Bando 1, Keiji Yasuda 1, Akira Matsuoka 1 and Yasuhito Kawase 2 1. Department of Chemical Engineering,

More information

H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point

H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point Unit 9: Solutions H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point Water is a polar molecule. It experiences hydrogen

More information

Title Application to the Analysis of Sea- Author(s) Ishibashi, Masayoshi; Hara,

Title Application to the Analysis of Sea- Author(s) Ishibashi, Masayoshi; Hara, Title On the Determination of Potassium i Application to the Analysis of Sea- Author(s) Ishibashi, Masayoshi; Hara, Tadashi Citation Bulletin of the Institute for Chemi University (1959), 37(3): 167-171

More information

Rates. Specification points. Year 10 - Rates of Reaction

Rates. Specification points. Year 10 - Rates of Reaction Rates Specification points Year 10 - Rates of Reaction Calculating rates of reactions The rate of a chemical reaction can be found by measuring the quantity of a reactant used or the quantity of product

More information

3 Mixtures. How do mixtures differ from elements and compounds? How can mixtures be separated? What are solutions, and how are they characterized?

3 Mixtures. How do mixtures differ from elements and compounds? How can mixtures be separated? What are solutions, and how are they characterized? CHAPTER 5 3 Mixtures SECTION Elements, Compounds, and Mixtures BEFORE YOU READ After you read this section, you should be able to answer these questions: How do mixtures differ from elements and compounds?

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B01D 9/00 ( )

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: B01D 9/00 ( ) (19) (12) EUROPEAN PATENT APPLICATION (11) EP 2 505 243 A1 (43) Date of publication: 03.10.2012 Bulletin 2012/40 (51) Int Cl.: B01D 9/00 (2006.01) (21) Application number: 12162017.3 (22) Date of filing:

More information

Development of an organometallic flow chemistry. reaction at pilot plant scale for the manufacture of

Development of an organometallic flow chemistry. reaction at pilot plant scale for the manufacture of Supporting Information Development of an organometallic flow chemistry reaction at pilot plant scale for the manufacture of verubecestat David A. Thaisrivongs*, John R. Naber*, Nicholas J. Rogus, and Glenn

More information

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions

Functional Genomics Research Stream. Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Functional Genomics Research Stream Lecture: February 17, 2009 Masses, Volumes, Solutions & Dilutions Agenda Lab Work: Last Week New Equipment Solution Preparation: Fundamentals Solution Preparation: How

More information

CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W. Reaction Kinetics Saponification of Isopropyl Acetate with Sodium Hydroxide

CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W. Reaction Kinetics Saponification of Isopropyl Acetate with Sodium Hydroxide CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W Reaction Kinetics Saponification of Isopropyl Acetate with Sodium Hydroxide Objective: The purpose of this experiment is to examine and determine the reaction

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

Study on the Performance of a Sirocco Fan (Flow Around the Runner Blade)

Study on the Performance of a Sirocco Fan (Flow Around the Runner Blade) Rotating Machinery, 10(5): 415 424, 2004 Copyright c Taylor & Francis Inc. ISSN: 1023-621X print / 1542-3034 online DOI: 10.1080/10236210490474629 Study on the Performance of a Sirocco Fan (Flow Around

More information

Name: Date: Period: Chm.3.1 & Chm.3.2 Review. 1) Define the following terms: a) Surface area - b) Catalyst - c) Concentration - d) Pressure -

Name: Date: Period: Chm.3.1 & Chm.3.2 Review. 1) Define the following terms: a) Surface area - b) Catalyst - c) Concentration - d) Pressure - Name: Chm.3.1 & Chm.3.2 Review Understand the factors affecting rate of reaction and chemical equilibrium. Key Topics: Reaction Rates (Unit 4) Equilibrium (Unit 4 & Unit 10) Le Chatelier s Principle (Unit

More information

CHAPTER FIVE REACTION ENGINEERING

CHAPTER FIVE REACTION ENGINEERING 1 CHAPTER FIVE REACTION ENGINEERING 5.1. Determination of Kinetic Parameters of the Saponification Reaction in a PFR 5.3. Experimental and Numerical Determination of Kinetic Parameters of the Saponification

More information

The Concept of Equilibrium

The Concept of Equilibrium Chemical Equilibrium The Concept of Equilibrium Sometimes you can visually observe a certain chemical reaction. A reaction may produce a gas or a color change and you can follow the progress of the reaction

More information

CHEMICAL KINETICS E + 2B 2C + D (1)

CHEMICAL KINETICS E + 2B 2C + D (1) CHEMICAL KINETICS Chemical kinetics is the branch of chemistry that is concerned with the study of the rates and mechanisms of chemical reactions. The rate of a reaction is a measure of its speed. Consider

More information

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions

Unit V: Solutions. A. Properties of Solutions. B. Concentration Terms of Solutions. C. Mass Percent Calculation. D. Molarity of Solutions Unit V: Solutions A. Properties of Solutions B. Concentration Terms of Solutions C. Mass Percent Calculation D. Molarity of Solutions E. Solution Stoichiometry F. Dilution Problems 5-A Properties of Solutions

More information

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s)

2nd- Here's another example of a reversible reaction - dissolving salt in a beaker of water, described by the following reaction: NaCl (s) CHEMICAL EQUILIBRIUM AP Chemistry (Notes) Most chemical processes are reversible. Reactants react to form products, but those products can also react to form reactants. Examples of reversible reactions:

More information

Chemistry 325 Instrumental Methods of Analysis March 13, Final Exam. Name

Chemistry 325 Instrumental Methods of Analysis March 13, Final Exam. Name Final Exam Name Instructions: This exam is worth 100 points. Some questions allow a choice as to which parts are answered. Only answer the number of parts requested. 1. (32 points) Circle the best answer

More information

Experiment 2: The Rate of an Iodine Clock Reaction

Experiment 2: The Rate of an Iodine Clock Reaction Experiment 2: The Rate of an Iodine Clock Reaction Introduction: Some reactions, including most of the ones that you have seen before, occur so rapidly that they are over as soon as the reactants are mixed.

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Determination of the Rate Constant for an Iodine Clock Reaction

Determination of the Rate Constant for an Iodine Clock Reaction CHEM 122L General Chemistry Laboratory Revision 1.3 Determination of the Rate Constant for an Iodine Clock Reaction To learn about Integrated Rate Laws. To learn how to measure a Rate Constant. To learn

More information

Effect of the ph and Basic Additives on the Precipitation of Calcium Carbonate during Carbonation Reaction

Effect of the ph and Basic Additives on the Precipitation of Calcium Carbonate during Carbonation Reaction Resources Processing 54 : 14 18 (2007) Original Paper RESOURCES PROCESSING Effect of the ph and Basic Additives on the Precipitation of Calcium Carbonate during Carbonation Reaction Mi Young RYU 1, Kwang

More information

Q1. A student investigated the rate of reaction between marble and hydrochloric acid.

Q1. A student investigated the rate of reaction between marble and hydrochloric acid. Q. A student investigated the rate of reaction between marble and hydrochloric acid. The student used an excess of marble. The reaction can be represented by this equation. CaCO 3 (s) + 2HC (aq) CaC 2

More information

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms

Warm UP. between carbonate and lithium. following elements have? 3) Name these compounds: 1) Write the neutral compound that forms Warm UP 1) Write the neutral compound that forms between carbonate and lithium 2) How many valence electrons do the following elements have? a) Chlorine b) Neon c) Potassium 3) Name these compounds: a)

More information

KEY for CHEM 116 EXAM #2 PRACTICE

KEY for CHEM 116 EXAM #2 PRACTICE Circle the correct answers ( points each) KEY for CHEM 6 EXAM # PRACTICE. If the half-life of a reaction depends on the concentration of the reactant, then the reaction cannot be order. a. second b. zero

More information

AP Chem Chapter 14 Study Questions

AP Chem Chapter 14 Study Questions Class: Date: AP Chem Chapter 14 Study Questions 1. A burning splint will burn more vigorously in pure oxygen than in air because a. oxygen is a reactant in combustion and concentration of oxygen is higher

More information

EXPERIMENT 23 Lab Report Guidelines

EXPERIMENT 23 Lab Report Guidelines EXPERIMENT 23 Listed below are some guidelines for completing the lab report for Experiment 23: For each part, follow the procedure outlined in the lab manual. Observe all safety rules, including wearing

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009 1. Materials: Styrene (St), methyl methacrylate (MMA) and acrylic acid (AA) (Lingfeng Chemical reagent Co. Ltd, Shanghai, China) were distilled and stored at 4 ºC if not used immediately, ammonium persulfate

More information

Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three of the methods shown below will increase the rate of this reaction.

Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three of the methods shown below will increase the rate of this reaction. Q. The picture shows a lump of phosphate rock. Rob Lavinsky, irocks.com CC-BY-SA-3.0 [CC-BY-SA-3.0], via Wikimedia Commons Phosphoric acid is made by reacting phosphate rock with sulfuric acid. Only three

More information

Use your time wisely. Do not get stuck on one question. WORK MUST BE SHOWN CAREFULLY, WITH UNITS AT EVERY STEP OF SETUP.

Use your time wisely. Do not get stuck on one question. WORK MUST BE SHOWN CAREFULLY, WITH UNITS AT EVERY STEP OF SETUP. Spring 2014 CCBC-Catonsville (Wed 3/12/14) Use your time wisely. Do not get stuck on one question. WORK MUST BE SHOWN CAREFULLY, WITH UNITS AT EVERY STEP OF SETUP. PAGE TOTAL SCORE POSSIBLE YOUR SCORE

More information

Preparation of Silver Iodide Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode

Preparation of Silver Iodide Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode Preparation of Silver Iodide Nanoparticles Using a Spinning Disk Reactor in a Continuous Mode Chin-Chan Li a, Yao Hsuan Wang a, and Clifford Y. Tai a * a Department, National Taiwan University, Taipei,

More information

Manufature and Uses(Sulfur)

Manufature and Uses(Sulfur) Manufature and Uses(Sulfur) Question Paper Level Subject Exam Board Topic Sub-Topic Paper Type Booklet IGCSE Chemistry CIE Sulfur Manufacture and uses (Includes Sulfur dioxide questions) Alternative to

More information

Cambridge International Examinations Cambridge Ordinary Level

Cambridge International Examinations Cambridge Ordinary Level Cambridge International Examinations Cambridge Ordinary Level *4822877046* CHEMISTRY 5070/41 Paper 4 Alternative to Practical October/November 2018 1 hour Candidates answer on the Question Paper. No Additional

More information

CHEMISTRY. Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A.

CHEMISTRY. Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A. CHEMISTRY Section II (Total time 95 minutes) Part A Time 55 minutes YOU MAY USE YOUR CALCULATOR FOR PART A. CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your

More information

An Overview of Impellers, Velocity Profile and Reactor Design

An Overview of Impellers, Velocity Profile and Reactor Design An Overview of s, Velocity Profile and Reactor Design Praveen Patel 1, Pranay Vaidya 1, Gurmeet Singh 2 1 Indian Institute of Technology Bombay, India 1 Indian Oil Corporation Limited, R&D Centre Faridabad

More information

METHANOLYSIS OF ACETAL

METHANOLYSIS OF ACETAL Chem 367-2/ Methanolysis of Acetal 25 METHANOLYSIS OF ACETAL 1. Purpose Diethyl acetal undergoes an acid-catalyzed reaction with methanol in two steps, as follows: k 1 CH 3 CH(OEt) 2 + MeOH CH 3 CHOEtOMe

More information