Kernel-based Machine Learning for Virtual Screening

Size: px
Start display at page:

Download "Kernel-based Machine Learning for Virtual Screening"

Transcription

1 Kernel-based Machine Learning for Virtual Screening Dipl.-Inf. Matthias Rupp Beilstein Endowed Chair for Chemoinformatics Johann Wolfgang Goethe-University Frankfurt am Main, Germany , Helmholtz Center, Munich

2 2 Outline Virtual screening Representation Methods Application Setting, definition, aspects Descriptors, graphs, shape, densities Gaussian process regression, novelty detection Virtual screening for PPARγ agonists

3 3 Virtual screening: Drug development Disease Target Screening Optimization Preclinical Clinical Phases I, II, III Market authorization Clinical Phase IV

4 4 Virtual screening: Drug development Disease Systematic testing of compounds for activity Target Biochemical assay High-throughput screening Screening Virtual screening Optimization Receptor-based versus ligand-based Preclinical Clinical Phases I, II, III Market authorization Clinical Phase IV COX-2 Celecoxib

5 5 Virtual screening: Ligand-based approach Input: Known ligands (training samples) Compound library (test samples) Output: Molecules with best predicted activity Particularities Small training sets (10 1 to 10 3 ) Large test sets (10 5 to 10 6 ) False positives worse than false negatives Only top predictions are of interest Available binding activity information varies Key questions How to represent (and compare) molecules? How to learn from the training data?

6 Representation: Descriptors Computable properties in vector form Most frequently used representation Comparison by metric, inner product or similarity coefficient 1-pentyl acetate Bonds in longest chain: 7 Rotatable bonds: 4 Negative partial charge surface fraction: 0.13 Hydrogen bond acceptors: 1... Figure courtesy Dr. Michael Schmuker M. Rupp, G. Schneider, P. Schneider: Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches, in preparation,

7 Representation: Descriptors Computable properties in vector form Most frequently used representation Comparison by metric, inner product or similarity coefficient Alternatives: Structured data representations Graph models (structure graph) Surface models (molecular shape) Density models (spatial distribution)... M. Rupp, G. Schneider, P. Schneider: Distance phenomena in high-dimensional chemical descriptor spaces: consequences for similarity-based approaches, in preparation,

8 Representation: ISOAK Iterative similarity optimal assignment graph kernel Iterative graph similarity V V matrix X of pairwise vertex similarities Two vertices are similar if their neighbours are similar Recursive definition; iterative computation X i,j = (1 α)k v (v i, v j 1 )+α max π v j v n(v i ) X v,π(v) k e ( {vi, v}, {v j, π(v)} ) Optimal assignment Find assignment ρ : V V such that V i=1 X i,ρ(i) is maximal M. Rupp, E. Proschak, G. Schneider: Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity, Journal of Chemical Information and Modeling 47(6): ,

9 Representation: ISOAK example ISOAK with α = 1 2, Dirac vertex kernel using element types and Dirac edge kernel using bond types. Overall similarity is 4.64/ 5 7 = X ij Pairwise atom similarities Glycine Serine M. Rupp, E. Proschak, G. Schneider: Kernel Approach to Molecular Similarity Based on Iterative Graph Similarity, Journal of Chemical Information and Modeling 47(6): ,

10 10 Methods: Kernel-based machine learning Linear algorithms and the kernel trick 1. Transformation into higher-dimensional space x not linearly separable 2. Implicit computation of inner products 3. Rewrite linear algorithms using only inner products

11 11 Methods: Kernel-based machine learning Linear algorithms and the kernel trick 1. Transformation into higher-dimensional space x x ( x, sin(x) ) not linearly separable linearly separable 2. Implicit computation of inner products 3. Rewrite linear algorithms using only inner products

12 Methods: Kernel-based machine learning Linear algorithms and the kernel trick 1. Transformation into higher-dimensional space 2. Implicit computation of inner products kernel k : X X R, k(x, x ) = Φ(x), Φ(x ) Example: Quadratic kernel Φ : R n R n2, x (x i x j ) n i,j=1 k(x, x ) = Φ(x), Φ(x ) n n n = x i x j x i x j = x i x i x j x j = x, x 2 i,j=1 i=1 j=1 3. Rewrite linear algorithms using only inner products 12

13 13 Methods: Kernel-based machine learning Linear algorithms and the kernel trick 1. Transformation into higher-dimensional space 2. Implicit computation of inner products 3. Rewrite linear algorithms using only inner products Example: Centering in feature space H k (x, x ) = Φ(x) 1 n n Φ(x i ), Φ(x ) 1 n i=1 = Φ(x), Φ(x ) 1 n 1 n i=1 = k(x, x ) 1 n n Φ(x i ) i=1 n Φ(x i ), Φ(x ) i=1 n Φ(x), Φ(x i ) + 1 n 2 n k(x i, x ) 1 n i=1 n i,j=1 Φ(x i ), Φ(x j ) n k(x, x i ) + 1 n 2 i=1 n i,j=1 k(x i, x j )

14 14 Methods: Gaussian process regression Gaussian process as data model Generalization of multivariate normal distribution to functions Determined by mean and covariance Kernel matrix as covariance matrix Conditioning of prior on training data yields posterior distribution Variance as confidence estimates for predictions target input target input

15 15 Methods: Principle component analysis novelty detection Orthogonal directions of maximum variance Dimensionality reduction Descriptive statistic

16 16 Methods: Principle component analysis novelty detection Orthogonal directions of maximum variance Dimensionality reduction Descriptive statistic

17 17 Methods: Principle component analysis novelty detection Orthogonal directions of maximum variance Dimensionality reduction Descriptive statistic Non-linear variants recover underlying Riemannian manifolds

18 18 Methods: Principle component analysis novelty detection Orthogonal directions of maximum variance Dimensionality reduction Descriptive statistic Non-linear variants recover underlying Riemannian manifolds

19 19 Methods: Principle component analysis novelty detection Orthogonal directions of maximum variance Dimensionality reduction Descriptive statistic Non-linear variants recover underlying Riemannian manifolds Novelty detection via projection error

20 20 Application: Material and methods Target: PPARγ (peroxisome proliferator-activated receptor γ) Dataset: 144 published ligands with pk i values Screening library: Asinex Gold and Platinum ( cpds.) Representation: Vectorial (CATS2D, MOE 2D, Ghose-Crippen fragments) ISOAK molecular graph kernel Method: Gaussian process regression Multiple kernel learning Leave-one-cluster-out cross-validation Fraction of actives (FA20 ) as success measure T. Schroeter, M. Rupp, K. Hansen, E. Proschak, K.-R. Müller, G. Schneider: Virtual screening for PPARγ ligands using ISOAK molecular graph kernel and Gaussian processes, 4th German Conference on Chemoinformatics, 2008.

21 Application: Results Top 30 of three best performing models 16 cherry-picked compounds with novel scaffolds PPARγ selective activator (EC ± 0.3 µm), natural product related 3 dual PPARα/γ activators (µm range, two 10µM) 4 selective PPARα activators (µm range, one 10µM) 8 out of 16 compounds are active 4 out of 16 compounds with EC 50 10µM Results preliminary since testing is still on-going M. Rupp, T. Schroeter, R. Steri, E. Proschak, K. Hansen, O. Rau, M. Schubert- Zsilavecz, K.-R. Müller, G. Schneider, in preparation,

22 22 Summary Virtual screening as a machine learning problem Importance of molecular representation Virtual screening using only positive samples

23 23 Acknowledgements Prof. Dr. Gisbert Schneider and modlab team (molecular design laboratory, Prof. Dr. Klaus Robert-Müller, Timon Schroeter, Katja Hansen (TU Berlin and Fraunhofer FIRST) Prof. Dr. Manfred Schubert-Zsilavecz, Ramona Steri (University of Frankfurt) Beilstein-Institute for the advancement of chemical sciences FIRST (Frankfurt international research graduate school on translational biomedicine) Thank you for your attention

Introduction to Chemoinformatics and Drug Discovery

Introduction to Chemoinformatics and Drug Discovery Introduction to Chemoinformatics and Drug Discovery Irene Kouskoumvekaki Associate Professor February 15 th, 2013 The Chemical Space There are atoms and space. Everything else is opinion. Democritus (ca.

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Kernel Methods for Virtual Screening. Matthias Rupp

Kernel Methods for Virtual Screening. Matthias Rupp Kernel Methods for Virtual Screening Matthias Rupp Kernel Methods for Virtual Screening Matthias Rupp A dissertation submitted to the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany, in

More information

Statistical concepts in QSAR.

Statistical concepts in QSAR. Statistical concepts in QSAR. Computational chemistry represents molecular structures as a numerical models and simulates their behavior with the equations of quantum and classical physics. Available programs

More information

Machine learning for ligand-based virtual screening and chemogenomics!

Machine learning for ligand-based virtual screening and chemogenomics! Machine learning for ligand-based virtual screening and chemogenomics! Jean-Philippe Vert Institut Curie - INSERM U900 - Mines ParisTech In silico discovery of molecular probes and drug-like compounds:

More information

Kernel methods, kernel SVM and ridge regression

Kernel methods, kernel SVM and ridge regression Kernel methods, kernel SVM and ridge regression Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Collaborative Filtering 2 Collaborative Filtering R: rating matrix; U: user factor;

More information

Plan. Lecture: What is Chemoinformatics and Drug Design? Description of Support Vector Machine (SVM) and its used in Chemoinformatics.

Plan. Lecture: What is Chemoinformatics and Drug Design? Description of Support Vector Machine (SVM) and its used in Chemoinformatics. Plan Lecture: What is Chemoinformatics and Drug Design? Description of Support Vector Machine (SVM) and its used in Chemoinformatics. Exercise: Example and exercise with herg potassium channel: Use of

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Structure-Activity Modeling - QSAR. Uwe Koch

Structure-Activity Modeling - QSAR. Uwe Koch Structure-Activity Modeling - QSAR Uwe Koch QSAR Assumption: QSAR attempts to quantify the relationship between activity and molecular strcucture by correlating descriptors with properties Biological activity

More information

Supervised Machine Learning: Learning SVMs and Deep Learning. Klaus-Robert Müller!!et al.!!

Supervised Machine Learning: Learning SVMs and Deep Learning. Klaus-Robert Müller!!et al.!! Supervised Machine Learning: Learning SVMs and Deep Learning Klaus-Robert Müller!!et al.!! Today s Tutorial Machine Learning introduction: ingredients for ML Kernel Methods and Deep networks with explaining

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Machine Learning Concepts in Chemoinformatics

Machine Learning Concepts in Chemoinformatics Machine Learning Concepts in Chemoinformatics Martin Vogt B-IT Life Science Informatics Rheinische Friedrich-Wilhelms-Universität Bonn BigChem Winter School 2017 25. October Data Mining in Chemoinformatics

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space to The The A s s in to Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 2, 2009 to The The A s s in 1 Motivation Outline 2 The Mapping the

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 29 April, SoSe 2015 Support Vector Machines (SVMs) 1. One of

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

Interaction Potentials in Molecules and Non-Local Information in Chemical Space

Interaction Potentials in Molecules and Non-Local Information in Chemical Space Interaction Potentials in Molecules and Non-Local Information in Chemical Space Katja Hansen 1, Franziska Biegler 2, O. Anatole von Lilienfeld 3,4, Klaus-Robert Müller 2,5, and Alexandre Tkatchenko 1 1

More information

Kernels and the Kernel Trick. Machine Learning Fall 2017

Kernels and the Kernel Trick. Machine Learning Fall 2017 Kernels and the Kernel Trick Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem Support vectors, duals and kernels

More information

Canonical Correlation Analysis with Kernels

Canonical Correlation Analysis with Kernels Canonical Correlation Analysis with Kernels Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Computational Diagnostics Group Seminar 2003 Mar 10 1 Overview

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/3/5/e1603015/dc1 Supplementary Materials for Machine learning of accurate energy-conserving molecular force fields This PDF file includes: Stefan Chmiela, Alexandre

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Gaussian Processes Barnabás Póczos http://www.gaussianprocess.org/ 2 Some of these slides in the intro are taken from D. Lizotte, R. Parr, C. Guesterin

More information

9.2 Support Vector Machines 159

9.2 Support Vector Machines 159 9.2 Support Vector Machines 159 9.2.3 Kernel Methods We have all the tools together now to make an exciting step. Let us summarize our findings. We are interested in regularized estimation problems of

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan Support'Vector'Machines Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan kasthuri.kannan@nyumc.org Overview Support Vector Machines for Classification Linear Discrimination Nonlinear Discrimination

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

CS 7140: Advanced Machine Learning

CS 7140: Advanced Machine Learning Instructor CS 714: Advanced Machine Learning Lecture 3: Gaussian Processes (17 Jan, 218) Jan-Willem van de Meent (j.vandemeent@northeastern.edu) Scribes Mo Han (han.m@husky.neu.edu) Guillem Reus Muns (reusmuns.g@husky.neu.edu)

More information

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22

Outline. Basic concepts: SVM and kernels SVM primal/dual problems. Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels SVM primal/dual problems Chih-Jen Lin (National Taiwan Univ.) 1 / 22 Outline Basic concepts: SVM and kernels Basic concepts: SVM and kernels SVM primal/dual problems

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2016 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Notes of Dr. Anil Mishra at 1

Notes of Dr. Anil Mishra at   1 Introduction Quantitative Structure-Activity Relationships QSPR Quantitative Structure-Property Relationships What is? is a mathematical relationship between a biological activity of a molecular system

More information

With the establishment of the endowed chair, the Beilstein-Institut supported Frank Schulz in his research into new strategies for the synthesis and

With the establishment of the endowed chair, the Beilstein-Institut supported Frank Schulz in his research into new strategies for the synthesis and Beilstein-Institut RESEARCH, TEACHING AND PUBLICATION ACTIVITIES The universities and their research facilities get new impulses: our endowed chairs are a modern form of science funding providing further

More information

Lecture Notes on Support Vector Machine

Lecture Notes on Support Vector Machine Lecture Notes on Support Vector Machine Feng Li fli@sdu.edu.cn Shandong University, China 1 Hyperplane and Margin In a n-dimensional space, a hyper plane is defined by ω T x + b = 0 (1) where ω R n is

More information

Introduction to SVM and RVM

Introduction to SVM and RVM Introduction to SVM and RVM Machine Learning Seminar HUS HVL UIB Yushu Li, UIB Overview Support vector machine SVM First introduced by Vapnik, et al. 1992 Several literature and wide applications Relevance

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2015 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Support Vector Machine (SVM) & Kernel CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Linear classifier Which classifier? x 2 x 1 2 Linear classifier Margin concept x 2

More information

Introduction to Chemoinformatics

Introduction to Chemoinformatics Introduction to Chemoinformatics Dr. Igor V. Tetko Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH) Institute of Bioinformatics & Systems Biology (HMGU) Kyiv, 10 August

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Hypothesis Space variable size deterministic continuous parameters Learning Algorithm linear and quadratic programming eager batch SVMs combine three important ideas Apply optimization

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Supervised Learning Coursework

Supervised Learning Coursework Supervised Learning Coursework John Shawe-Taylor Tom Diethe Dorota Glowacka November 30, 2009; submission date: noon December 18, 2009 Abstract Using a series of synthetic examples, in this exercise session

More information

Receptor Based Drug Design (1)

Receptor Based Drug Design (1) Induced Fit Model For more than 100 years, the behaviour of enzymes had been explained by the "lock-and-key" mechanism developed by pioneering German chemist Emil Fischer. Fischer thought that the chemicals

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot, we get creative in two

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Kernel: Kernel is defined as a function returning the inner product between the images of the two arguments k(x 1, x 2 ) = ϕ(x 1 ), ϕ(x 2 ) k(x 1, x 2 ) = k(x 2, x 1 ) modularity-

More information

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop Music and Machine Learning (IFT68 Winter 8) Prof. Douglas Eck, Université de Montréal These slides follow closely the (English) course textbook Pattern Recognition and Machine Learning by Christopher Bishop

More information

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington

Support Vector Machines. CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington Support Vector Machines CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 A Linearly Separable Problem Consider the binary classification

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Short Course Robust Optimization and Machine Learning. 3. Optimization in Supervised Learning

Short Course Robust Optimization and Machine Learning. 3. Optimization in Supervised Learning Short Course Robust Optimization and 3. Optimization in Supervised EECS and IEOR Departments UC Berkeley Spring seminar TRANSP-OR, Zinal, Jan. 16-19, 2012 Outline Overview of Supervised models and variants

More information

Machine learning methods to infer drug-target interaction network

Machine learning methods to infer drug-target interaction network Machine learning methods to infer drug-target interaction network Yoshihiro Yamanishi Medical Institute of Bioregulation Kyushu University Outline n Background Drug-target interaction network Chemical,

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.)

Computer Vision Group Prof. Daniel Cremers. 2. Regression (cont.) Prof. Daniel Cremers 2. Regression (cont.) Regression with MLE (Rep.) Assume that y is affected by Gaussian noise : t = f(x, w)+ where Thus, we have p(t x, w, )=N (t; f(x, w), 2 ) 2 Maximum A-Posteriori

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Fragment-based de novo Design

Fragment-based de novo Design ragment-based de novo Design Gisbert Schneider & Uli echner gisbert.schneider@modlab.de www.modlab.de Beilstein Endowed Chair for Cheminformatics Institute of rganic Chemistry & Chemical Biology Johann

More information

Kernel Methods. Foundations of Data Analysis. Torsten Möller. Möller/Mori 1

Kernel Methods. Foundations of Data Analysis. Torsten Möller. Möller/Mori 1 Kernel Methods Foundations of Data Analysis Torsten Möller Möller/Mori 1 Reading Chapter 6 of Pattern Recognition and Machine Learning by Bishop Chapter 12 of The Elements of Statistical Learning by Hastie,

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 5: Vector Data: Support Vector Machine Instructor: Yizhou Sun yzsun@cs.ucla.edu October 18, 2017 Homework 1 Announcements Due end of the day of this Thursday (11:59pm)

More information

Support Vector Machines

Support Vector Machines Support Vector Machines INFO-4604, Applied Machine Learning University of Colorado Boulder September 28, 2017 Prof. Michael Paul Today Two important concepts: Margins Kernels Large Margin Classification

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask Machine Learning and Data Mining Support Vector Machines Kalev Kask Linear classifiers Which decision boundary is better? Both have zero training error (perfect training accuracy) But, one of them seems

More information

Structure-Based Drug Discovery An Overview

Structure-Based Drug Discovery An Overview Structure-Based Drug Discovery An Overview Edited by Roderick E. Hubbard University of York, Heslington, York, UK and Vernalis (R&D) Ltd, Abington, Cambridge, UK RSC Publishing Contents Chapter 1 3D Structure

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

bcl::cheminfo Suite Enables Machine Learning-Based Drug Discovery Using GPUs Edward W. Lowe, Jr. Nils Woetzel May 17, 2012

bcl::cheminfo Suite Enables Machine Learning-Based Drug Discovery Using GPUs Edward W. Lowe, Jr. Nils Woetzel May 17, 2012 bcl::cheminfo Suite Enables Machine Learning-Based Drug Discovery Using GPUs Edward W. Lowe, Jr. Nils Woetzel May 17, 2012 Outline Machine Learning Cheminformatics Framework QSPR logp QSAR mglur 5 CYP

More information

Machine learning for crystal structure prediction

Machine learning for crystal structure prediction Machine learning for crystal structure prediction Fei Qi fred.qi@ieee.org Computational Material Design Laboratory Moscow Institute of Physics and Technology Dolgoprudny, Moscow December 12, 2014 Motivation

More information

Statistical Methods for SVM

Statistical Methods for SVM Statistical Methods for SVM Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot,

More information

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN ,

ESANN'2001 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2001, D-Facto public., ISBN , Sparse Kernel Canonical Correlation Analysis Lili Tan and Colin Fyfe 2, Λ. Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong. 2. School of Information and Communication

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Drug Design 2. Oliver Kohlbacher. Winter 2009/ QSAR Part 4: Selected Chapters

Drug Design 2. Oliver Kohlbacher. Winter 2009/ QSAR Part 4: Selected Chapters Drug Design 2 Oliver Kohlbacher Winter 2009/2010 11. QSAR Part 4: Selected Chapters Abt. Simulation biologischer Systeme WSI/ZBIT, Eberhard-Karls-Universität Tübingen Overview GRIND GRid-INDependent Descriptors

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Machine Learning Linear Regression. Prof. Matteo Matteucci

Machine Learning Linear Regression. Prof. Matteo Matteucci Machine Learning Linear Regression Prof. Matteo Matteucci Outline 2 o Simple Linear Regression Model Least Squares Fit Measures of Fit Inference in Regression o Multi Variate Regession Model Least Squares

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

Review: Support vector machines. Machine learning techniques and image analysis

Review: Support vector machines. Machine learning techniques and image analysis Review: Support vector machines Review: Support vector machines Margin optimization min (w,w 0 ) 1 2 w 2 subject to y i (w 0 + w T x i ) 1 0, i = 1,..., n. Review: Support vector machines Margin optimization

More information

Support Vector Machine for Classification and Regression

Support Vector Machine for Classification and Regression Support Vector Machine for Classification and Regression Ahlame Douzal AMA-LIG, Université Joseph Fourier Master 2R - MOSIG (2013) November 25, 2013 Loss function, Separating Hyperplanes, Canonical Hyperplan

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

GWAS V: Gaussian processes

GWAS V: Gaussian processes GWAS V: Gaussian processes Dr. Oliver Stegle Christoh Lippert Prof. Dr. Karsten Borgwardt Max-Planck-Institutes Tübingen, Germany Tübingen Summer 2011 Oliver Stegle GWAS V: Gaussian processes Summer 2011

More information

Linear Models for Classification

Linear Models for Classification Linear Models for Classification Oliver Schulte - CMPT 726 Bishop PRML Ch. 4 Classification: Hand-written Digit Recognition CHINE INTELLIGENCE, VOL. 24, NO. 24, APRIL 2002 x i = t i = (0, 0, 0, 1, 0, 0,

More information

c 4, < y 2, 1 0, otherwise,

c 4, < y 2, 1 0, otherwise, Fundamentals of Big Data Analytics Univ.-Prof. Dr. rer. nat. Rudolf Mathar Problem. Probability theory: The outcome of an experiment is described by three events A, B and C. The probabilities Pr(A) =,

More information

Machine Learning. Lecture 6: Support Vector Machine. Feng Li.

Machine Learning. Lecture 6: Support Vector Machine. Feng Li. Machine Learning Lecture 6: Support Vector Machine Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Warm Up 2 / 80 Warm Up (Contd.)

More information

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families

Topics we covered. Machine Learning. Statistics. Optimization. Systems! Basics of probability Tail bounds Density Estimation Exponential Families Midterm Review Topics we covered Machine Learning Optimization Basics of optimization Convexity Unconstrained: GD, SGD Constrained: Lagrange, KKT Duality Linear Methods Perceptrons Support Vector Machines

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information

Support Vector Machine

Support Vector Machine Support Vector Machine Fabrice Rossi SAMM Université Paris 1 Panthéon Sorbonne 2018 Outline Linear Support Vector Machine Kernelized SVM Kernels 2 From ERM to RLM Empirical Risk Minimization in the binary

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Some material on these is slides borrowed from Andrew Moore's excellent machine learning tutorials located at: http://www.cs.cmu.edu/~awm/tutorials/ Where Should We Draw the Line????

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

SVMs: nonlinearity through kernels

SVMs: nonlinearity through kernels Non-separable data e-8. Support Vector Machines 8.. The Optimal Hyperplane Consider the following two datasets: SVMs: nonlinearity through kernels ER Chapter 3.4, e-8 (a) Few noisy data. (b) Nonlinearly

More information

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers

10/05/2016. Computational Methods for Data Analysis. Massimo Poesio SUPPORT VECTOR MACHINES. Support Vector Machines Linear classifiers Computational Methods for Data Analysis Massimo Poesio SUPPORT VECTOR MACHINES Support Vector Machines Linear classifiers 1 Linear Classifiers denotes +1 denotes -1 w x + b>0 f(x,w,b) = sign(w x + b) How

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

DD Advanced Machine Learning

DD Advanced Machine Learning Modelling Carl Henrik {chek}@csc.kth.se Royal Institute of Technology November 4, 2015 Who do I think you are? Mathematically competent linear algebra multivariate calculus Ok programmers Able to extend

More information

Interactive Feature Selection with

Interactive Feature Selection with Chapter 6 Interactive Feature Selection with TotalBoost g ν We saw in the experimental section that the generalization performance of the corrective and totally corrective boosting algorithms is comparable.

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

Machine learning for automated theorem proving: the story so far. Sean Holden

Machine learning for automated theorem proving: the story so far. Sean Holden Machine learning for automated theorem proving: the story so far Sean Holden University of Cambridge Computer Laboratory William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD, UK sbh11@cl.cam.ac.uk

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University

Chapter 9. Support Vector Machine. Yongdai Kim Seoul National University Chapter 9. Support Vector Machine Yongdai Kim Seoul National University 1. Introduction Support Vector Machine (SVM) is a classification method developed by Vapnik (1996). It is thought that SVM improved

More information