Machine learning methods to infer drug-target interaction network

Size: px
Start display at page:

Download "Machine learning methods to infer drug-target interaction network"

Transcription

1 Machine learning methods to infer drug-target interaction network Yoshihiro Yamanishi Medical Institute of Bioregulation Kyushu University

2 Outline n Background Drug-target interaction network Chemical, genomic, and pharmacological spaces n Methods to predict drug-target interactions Chemogenomic approach Pharmacogenomic approach Algorithm n Results n Concluding remarks

3 Drug-target interaction Phenotypic effect Drug interaction Primary target protein Off-target protein Efficacy Side-effect Phenotypic scale Identification of interactions between drugs and target proteins is crucial in the drug development

4 Possible data sources Genomic space etc. Target proteins etc. Drug chemical structures Chemical space etc. Phenotypic effects Pharmacological space

5 Objective n Prediction of unknown drug-target interactions on a large scale from chemical, genomic and pharmacological data Known interactions Drug Target protein Unknown interactions (to be predicted)

6 Chemogenomic approach Genomic space etc. Target proteins Chemogenomics Pharmacogenomics etc. Drug chemical structures Chemical space etc. Phenotypic effects Pharmacological space

7 Examples of the data structures Drug Target protein MAHAAQVGLQDATSPIMEELITFHDHALMIIFLICFLVLYA LFLTLTTKLTNTNISDAQEMETVWTILPAIILVLIALPSLRIL YMTDEVNDPSLTIKSIGHQWYWTYEYTDYGGLIFNSYML PPLFLEPGDLRLLDVDNRVVLPIEAPIRMMITSQDVLHSW AVPTLGLKTDAIPGRLNQTTFTATRPGVYYGQCSEICGAN HSFMPIVLELIPLKIFEMGPVFTL Chemical graph structure Amino acid sequence

8 Chemogenomic approach Strategy: Chemically similar drugs are predicted to interact with simlar target proteins (Yamanishi et al, Bioifnormatics, 2008; Faulon et al., Bioinformatics, 2008; Jacob et al, Bioinformatics, 2008, Yabuuchi et al, Mol Sys Bio, 2011) Chemical structure similarity for drugs is evaluated by a graph kernel: (K x ) ij = k x (x i, x j ) for i, j =1, 2,..., n x (Mahe et al, J Chem Inf Model, 2005) Genomic sequence similarity for target proteins is evaluated by a string kernel: (K z ) ij = k x (z i, z j ) for i, j =1, 2,..., n z (Saigo et al, Bioinformatics, 2004)

9 Binary classification approach n Classification of drug-target pairs into the interaction class or non-interaction class Support Vector Machine (SVM) with pairwise kernels Faulon et al., Bioinformatics, 24: , 2008 Jacob and Vert, Bioinformatics, 24: , 2008 Yabuuchi et al, Mol Sys Bio, 2011

10 SVM with pairwise kernels (pairwise SVM) ordinary SVM : n i=1 f (x) = a i k(x i, x ") + b where x : an object pairwise SVM : n x n z i=1 f (x,z) = a i k((x,z) i,( x ", z ")) + b where (x,z) : a compound protein pair

11 Supervised bipartie graph inference Chemical space Interaction space Genomic space known drug Compounds with similar structures are close to each other known interaction Interacting drugs and targets are connected on the graph known target Proteins with similar sequences are close to each other

12 Step 1: embedding drugs and targets on the known graph into a unified feature space R d Chemical space Interaction space Genomic space known drug Compounds with similar structures are close to each other known interaction Interacting drugs and targets are close to each other known target Proteins with similar sequences are close to each other

13 Step 2. Learning a model between the chemical/ genomic space and the interaction space Chemical space Interaction space Genomic space f x f z known drug Compounds with similar structures are close to each other known interaction Interacting drugs and targets are close to each other known target Proteins with similar sequences are close to each other

14 Step 3. Predicting unknown interactions involving new compounds/proteins after the projection Chemical space Interaction space Genomic space f x f z new compound New compounds are mapped with fx new protein New proteins are mapped with fz

15 Step 3. Predicting unknown interactions involving new compounds/proteins after the projection Chemical space Interaction space Genomic space f x f z new compound New compounds are mapped with fx predicted interaction Connect compound-protein pairs which are closer than a threshold new protein New proteins are mapped with fz

16 Mappting to a unified space Let us consider two functions to map each compound x and each protein z onto a unified Euclidian space f x (x) = ( f (1) (d % x (x),, f ) x (x)) T R d f z (z) = ( f (1) (d % z (z),, f ) z (z)) T R d We find f x and f z which minimize R( f x, f z ) = ( f x (x i ) f z (z j )) 2 + λ 1 f x 2 +λ 2 f z 2 (x i,z j ) E (xi,z j ) V x V z ( f x (x i ) f z (z j )) 2 where V x (resp. V z ) is a set of drugs (resp. target proteins), E is a set of interactions, and λ 1 and λ 2 are regularization parameters (Yamanishi, Adv Neural Inf Process Syst 21, 2009)

17 Extraction of multiple features Succesive features f x (q) and f z (q ) (q =1,2,,d) are obtained by " f x (q) f z (q) % ' = argmin (x i,z j ) E (x i,z j ) V x V z ( f x (x i ) f z (z j )) 2 + λ 1 f x 2 +λ 2 f z 2 ( f x (x i ) f z (z j )) 2 under the following orthogonality constraints: f x f x (1),, f x (q 1), f z f z (1),, f z (q 1) Prediction score for a given pair of compound x " and protein z " : g( x ", " d q =1 z ) = f (q) (q x ( x ") f ) z ( z ")

18 Algorithm By the representer theorem, features can be expanded as n x f x (x) = α j k x (x j, x), f z (z) = β j k z (z j, z) j=1 Kernel Gram matrices: n z j=1 (K x ) ij = k x (x i, x j ), i, j =1, 2,, n x (K z ) ij = k z (z i, z j ), i, j =1, 2,, n z Norms of features: f x 2 = α T K x α, f z 2 = β T K z β, where α = (α 1,,α nx ) T R n x, β = (β 1,, β n z ) T R n z

19 It is reduced to the generalized eigenvalue problem: K x D x K x + λ 1 K x K x AK z K x A T K x K z D z K z + λ 2 K z " % ' ' α β " % ' ' = ρ K x K z 2 " % ' ' α β " % ' ' The solution can be obtained by finding α q and β q which minimizes R(α, β) = α β! " % T K x D x K x K x AK z K z A T K x K z D z K z! " % α β! " % + λ 1α T K x α + λ 2 β T K z β α β! " % T K x K z 2! " % α β! " % under the following constraints: α T K x α 1 = = α T K x α q 1 = 0, β T K z β 1 = = β T K z β q 1 = 0 where D x (resp. D z ) : degree matrix of drugs (resp. target proteins), A : adjacency matrix of drug-target interactions

20 Drug-target interaction data for human: Gold standard data Statistics Number of drugs 1874 Number of target proteins (Total in human genome) Number of drug-target interactions 436 (23196) 6769 KEGG DRUG (December, 2011)

21 Cross-validation (CV) i) Pairwise CV (Missing interaction detection) ii) Blockwise CV I (new drug identification) Target protein i)????? D???? r??? u? g??????? ii) D r u g Target protein Training set? Test set iii) Blockwise CV II (new target identification) iii) D r u g Target protein Training set? Test set

22 Pharmacogenomic approach Genomic space etc. Target proteins Chemogenomics Pharmacogenomics etc. Drug chemical structures Chemical space etc. Phenotypic effects Pharmacological space

23 Pharmacogenomic approach Strategy: Phenotypically similar drugs are predicted to interact with simialr target proteins. (Campillos et al, Science, 2008; Yamamishi et al, Bioinformatics (ISMB2010), 2010; Atilas et al, J Comp Bio (RECOMB2010), 2011) Drug phenotypes can be represented by a profile of side-effects such as headache, hypertention, astriction, aortic stenosis, impotence, cardiac infarction, dyspnea, and many more.

24 Pharmacological similarity Each drug is represented by a profile y = (y 1, y 2,, y S ) T in which side-effect terms in the JAPIC database are coded as 1 or 0, respectively (S=17109). Pharmacological similarity: k phar (y i, y j ) = S w k y ik y k=1 jk S 2 w k y k=1 ik where w k = exp( d k 2 /σ 2 ), S 2 w k y k=1 jk, for i, j =1, 2,..., n y d k : frequency of the k-th side-effect

25 Chemical similarity vs. Pharmacological similarity Pharmacological effect similarity 1.0 Drugs targeting enzymes Chemical structure similarity

26 Chemical similarity vs Pharmacological similarity Chemical similarity Pharmacological similarity Chemical structure similarity Pharmacological effect similarity Interaction Not-interaction Interaction Not-interaction Interaction: drug pairs share the same target Non-interaction: drug pairs do not share the same target

27 Limitation of pharmacogenomic approach Problem: It is applicable only to marketed drugs for which side-effect information is available Proposed procedure: 1. Predict unknown pharmacological similarity from chemical structure similarity 2. Apply a bipartite graph inference method with pharmacological similarity for compounds and genomic sequence similarity for proteins

28 Step 1: Prediction of unknown pharmacological similarity from chemical structure similarity! Chemical similarity matrix: C = " A varient of regression model to predict missing parts: k y (y, y!) = f (k x (x, x!))+ε = u(x) T u( x!)+ε where u(x) = (u (1) (x),...,u (m) (x)) T : the underlying features C tt C pt! Pharmacological similarity matrix: P = " T C pt C pp where t : drugs with side-effect information, % P tt??? p : drugs with no side-effect information %

29 Step 2: Bipartite graph inference to predict unknown interactions A predictive model is learned based on pharmacological similarity for drugs genomic sequence similarity for targets proteins Prediction score for a given pair of compound y " and protein z " : g( y ", " d q =1 z ) = f (q) (q y ( y ") f ) z ( z ")

30 Comprehensive prediction of unknown drug-target interactions n Test drugs: all compounds in KEGG LIGAND and all drugs in KEGG DRUG n Test target proteins: all human proteins in KEGG GENES n All gold standard interaction data are used in the training Chemogenomic approach: 140 out of top 1000 predictions were confirmed in the literature Pharmacogenomic approach: 223 out of top 1000 predictions were confirmed in the literature

31 Conclusion n Drug-target interactions are more correlated with pharmacological similarity than with chemical structure similarity n The proposed method can predict unknown drugtarget interactions on a large scale the lack of need for 3D structure information of the target proteins the use of chemical, genomic, and pharmacological data in an integrated framework

32 Machine learning in chemoinformatics Lodhi, H. and Yamanishi, Y., Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computational Methods and Collaborative Techniques, IGI Global, 2010.

33 Acknowledgements n Curie Institute, Inserm U900, Mines ParisTech Jean-Philippe Vert Véronique Stoven Kevin Bleakley Edouard Pauwels n Kyoto University Minoru Kanehisa Susumu Goto Michihiro Araki Masaaki Kotera

Machine learning for ligand-based virtual screening and chemogenomics!

Machine learning for ligand-based virtual screening and chemogenomics! Machine learning for ligand-based virtual screening and chemogenomics! Jean-Philippe Vert Institut Curie - INSERM U900 - Mines ParisTech In silico discovery of molecular probes and drug-like compounds:

More information

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM 1 Support Vector Machines (SVM) in bioinformatics Day 1: Introduction to SVM Jean-Philippe Vert Bioinformatics Center, Kyoto University, Japan Jean-Philippe.Vert@mines.org Human Genome Center, University

More information

Support Vector Machines: Kernels

Support Vector Machines: Kernels Support Vector Machines: Kernels CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 14.1, 14.2, 14.4 Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Non-Linear Problems

More information

Drug-Target Interaction Prediction by Learning From Local Information and Neighbors

Drug-Target Interaction Prediction by Learning From Local Information and Neighbors Bioinformatics Advance Access published November 7, 22 Drug-Target Interaction Prediction by Learning From Local Information and Neighbors Jian-Ping Mei, Chee-Keong Kwoh, Peng Yang, Xiao-Li Li,2, Jie Zheng

More information

CISC 636 Computational Biology & Bioinformatics (Fall 2016)

CISC 636 Computational Biology & Bioinformatics (Fall 2016) CISC 636 Computational Biology & Bioinformatics (Fall 2016) Predicting Protein-Protein Interactions CISC636, F16, Lec22, Liao 1 Background Proteins do not function as isolated entities. Protein-Protein

More information

Support vector machines, Kernel methods, and Applications in bioinformatics

Support vector machines, Kernel methods, and Applications in bioinformatics 1 Support vector machines, Kernel methods, and Applications in bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group Machine Learning in Bioinformatics conference,

More information

Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a Chemogenomics Approach

Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a Chemogenomics Approach Link Mining for Kernel-based Compound-Protein Interaction Predictions Using a Chemogenomics Approach Masahito Ohue 1,2,3,4*, akuro Yamazaki 3, omohiro Ban 4, and Yutaka Akiyama 1,2,3,4* 1 Department of

More information

Flaws in evaluation schemes for pair-input computational predictions

Flaws in evaluation schemes for pair-input computational predictions Supplementary Information Flaws in evaluation schemes for pair-input computational predictions Yungki Park 1 & Edward M. Marcotte 1 1 Center for Systems and Synthetic Biology, Institute of Cellular and

More information

On learning with kernels for unordered pairs

On learning with kernels for unordered pairs Martial Hue MartialHue@mines-paristechfr Jean-Philippe Vert Jean-PhilippeVert@mines-paristechfr Mines ParisTech, Centre for Computational Biology, 35 rue Saint Honoré, F-77300 Fontainebleau, France Institut

More information

Statistical learning theory, Support vector machines, and Bioinformatics

Statistical learning theory, Support vector machines, and Bioinformatics 1 Statistical learning theory, Support vector machines, and Bioinformatics Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group ENS Paris, november 25, 2003. 2 Overview 1.

More information

Metabolic networks: Activity detection and Inference

Metabolic networks: Activity detection and Inference 1 Metabolic networks: Activity detection and Inference Jean-Philippe.Vert@mines.org Ecole des Mines de Paris Computational Biology group Advanced microarray analysis course, Elsinore, Denmark, May 21th,

More information

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference

hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference CS 229 Project Report (TR# MSB2010) Submitted 12/10/2010 hsnim: Hyper Scalable Network Inference Machine for Scale-Free Protein-Protein Interaction Networks Inference Muhammad Shoaib Sehgal Computer Science

More information

Statistical learning on graphs

Statistical learning on graphs Statistical learning on graphs Jean-Philippe Vert Jean-Philippe.Vert@ensmp.fr ParisTech, Ecole des Mines de Paris Institut Curie INSERM U900 Seminar of probabilities, Institut Joseph Fourier, Grenoble,

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

Abstract. 1 Introduction 1 INTRODUCTION 1

Abstract. 1 Introduction 1 INTRODUCTION 1 1 INTRODUCTION 1 Predicting drug-target interactions for new drug compounds using a weighted nearest neighbor profile Twan van Laarhoven 1, Elena Marchiori 1, 1 Institute for Computing and Information

More information

Xia Ning,*, Huzefa Rangwala, and George Karypis

Xia Ning,*, Huzefa Rangwala, and George Karypis J. Chem. Inf. Model. XXXX, xxx, 000 A Multi-Assay-Based Structure-Activity Relationship Models: Improving Structure-Activity Relationship Models by Incorporating Activity Information from Related Targets

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up!

Each new feature uses a pair of the original features. Problem: Mapping usually leads to the number of features blow up! Feature Mapping Consider the following mapping φ for an example x = {x 1,...,x D } φ : x {x1,x 2 2,...,x 2 D,,x 2 1 x 2,x 1 x 2,...,x 1 x D,...,x D 1 x D } It s an example of a quadratic mapping Each new

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

CIS 520: Machine Learning Oct 09, Kernel Methods

CIS 520: Machine Learning Oct 09, Kernel Methods CIS 520: Machine Learning Oct 09, 207 Kernel Methods Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture They may or may not cover all the material discussed

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Machine Learning Linear Models

Machine Learning Linear Models Machine Learning Linear Models Outline II - Linear Models 1. Linear Regression (a) Linear regression: History (b) Linear regression with Least Squares (c) Matrix representation and Normal Equation Method

More information

Explainable AI that Can be Used for Judgment with Responsibility

Explainable AI that Can be Used for Judgment with Responsibility Explain AI@Imperial Workshop Explainable AI that Can be Used for Judgment with Responsibility FUJITSU LABORATORIES LTD. 5th April 08 About me Name: Hajime Morita Research interests: Natural Language Processing

More information

Prediction and Classif ication of Human G-protein Coupled Receptors Based on Support Vector Machines

Prediction and Classif ication of Human G-protein Coupled Receptors Based on Support Vector Machines Article Prediction and Classif ication of Human G-protein Coupled Receptors Based on Support Vector Machines Yun-Fei Wang, Huan Chen, and Yan-Hong Zhou* Hubei Bioinformatics and Molecular Imaging Key Laboratory,

More information

Kernel-based Machine Learning for Virtual Screening

Kernel-based Machine Learning for Virtual Screening Kernel-based Machine Learning for Virtual Screening Dipl.-Inf. Matthias Rupp Beilstein Endowed Chair for Chemoinformatics Johann Wolfgang Goethe-University Frankfurt am Main, Germany 2008-04-11, Helmholtz

More information

Kernels for small molecules

Kernels for small molecules Kernels for small molecules Günter Klambauer June 23, 2015 Contents 1 Citation and Reference 1 2 Graph kernels 2 2.1 Implementation............................ 2 2.2 The Spectrum Kernel........................

More information

Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition

Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition Bayesian Data Fusion with Gaussian Process Priors : An Application to Protein Fold Recognition Mar Girolami 1 Department of Computing Science University of Glasgow girolami@dcs.gla.ac.u 1 Introduction

More information

Package Rchemcpp. August 14, 2018

Package Rchemcpp. August 14, 2018 Type Package Title Similarity measures for chemical compounds Version 2.19.0 Date 2015-06-23 Author Michael Mahr, Guenter Klambauer Package Rchemcpp August 14, 2018 Maintainer Guenter Klambauer

More information

Efficient Complex Output Prediction

Efficient Complex Output Prediction Efficient Complex Output Prediction Florence d Alché-Buc Joint work with Romain Brault, Alex Lambert, Maxime Sangnier October 12, 2017 LTCI, Télécom ParisTech, Institut-Mines Télécom, Université Paris-Saclay

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

Kernels and the Kernel Trick. Machine Learning Fall 2017

Kernels and the Kernel Trick. Machine Learning Fall 2017 Kernels and the Kernel Trick Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem Support vectors, duals and kernels

More information

Statistical Methods for SVM

Statistical Methods for SVM Statistical Methods for SVM Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot,

More information

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017 The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

More information

Kernel Methods. Outline

Kernel Methods. Outline Kernel Methods Quang Nguyen University of Pittsburgh CS 3750, Fall 2011 Outline Motivation Examples Kernels Definitions Kernel trick Basic properties Mercer condition Constructing feature space Hilbert

More information

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.2 Dimensionality Reduction. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.2 Dimensionality Reduction Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University

More information

Universal Learning Technology: Support Vector Machines

Universal Learning Technology: Support Vector Machines Special Issue on Information Utilizing Technologies for Value Creation Universal Learning Technology: Support Vector Machines By Vladimir VAPNIK* This paper describes the Support Vector Machine (SVM) technology,

More information

Kaggle.

Kaggle. Administrivia Mini-project 2 due April 7, in class implement multi-class reductions, naive bayes, kernel perceptron, multi-class logistic regression and two layer neural networks training set: Project

More information

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan

Support'Vector'Machines. Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan Support'Vector'Machines Machine(Learning(Spring(2018 March(5(2018 Kasthuri Kannan kasthuri.kannan@nyumc.org Overview Support Vector Machines for Classification Linear Discrimination Nonlinear Discrimination

More information

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels

SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels SVMs: Non-Separable Data, Convex Surrogate Loss, Multi-Class Classification, Kernels Karl Stratos June 21, 2018 1 / 33 Tangent: Some Loose Ends in Logistic Regression Polynomial feature expansion in logistic

More information

Canonical Correlation Analysis with Kernels

Canonical Correlation Analysis with Kernels Canonical Correlation Analysis with Kernels Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Computational Diagnostics Group Seminar 2003 Mar 10 1 Overview

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space

Outline. Motivation. Mapping the input space to the feature space Calculating the dot product in the feature space to The The A s s in to Fabio A. González Ph.D. Depto. de Ing. de Sistemas e Industrial Universidad Nacional de Colombia, Bogotá April 2, 2009 to The The A s s in 1 Motivation Outline 2 The Mapping the

More information

Feature gene selection method based on logistic and correlation information entropy

Feature gene selection method based on logistic and correlation information entropy Bio-Medical Materials and Engineering 26 (2015) S1953 S1959 DOI 10.3233/BME-151498 IOS Press S1953 Feature gene selection method based on logistic and correlation information entropy Jiucheng Xu a,b,,

More information

Kernel Methods. Machine Learning A W VO

Kernel Methods. Machine Learning A W VO Kernel Methods Machine Learning A 708.063 07W VO Outline 1. Dual representation 2. The kernel concept 3. Properties of kernels 4. Examples of kernel machines Kernel PCA Support vector regression (Relevance

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Perceptron Revisited: Linear Separators. Support Vector Machines

Perceptron Revisited: Linear Separators. Support Vector Machines Support Vector Machines Perceptron Revisited: Linear Separators Binary classification can be viewed as the task of separating classes in feature space: w T x + b > 0 w T x + b = 0 w T x + b < 0 Department

More information

Analysis of N-terminal Acetylation data with Kernel-Based Clustering

Analysis of N-terminal Acetylation data with Kernel-Based Clustering Analysis of N-terminal Acetylation data with Kernel-Based Clustering Ying Liu Department of Computational Biology, School of Medicine University of Pittsburgh yil43@pitt.edu 1 Introduction N-terminal acetylation

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Reading: Ben-Hur & Weston, A User s Guide to Support Vector Machines (linked from class web page) Notation Assume a binary classification problem. Instances are represented by vector

More information

Learning SVM Classifiers with Indefinite Kernels

Learning SVM Classifiers with Indefinite Kernels Learning SVM Classifiers with Indefinite Kernels Suicheng Gu and Yuhong Guo Dept. of Computer and Information Sciences Temple University Support Vector Machines (SVMs) (Kernel) SVMs are widely used in

More information

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller

Chemogenomic: Approaches to Rational Drug Design. Jonas Skjødt Møller Chemogenomic: Approaches to Rational Drug Design Jonas Skjødt Møller Chemogenomic Chemistry Biology Chemical biology Medical chemistry Chemical genetics Chemoinformatics Bioinformatics Chemoproteomics

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2018 CS 551, Fall

More information

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han

Math for Machine Learning Open Doors to Data Science and Artificial Intelligence. Richard Han Math for Machine Learning Open Doors to Data Science and Artificial Intelligence Richard Han Copyright 05 Richard Han All rights reserved. CONTENTS PREFACE... - INTRODUCTION... LINEAR REGRESSION... 4 LINEAR

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1394 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1394 1 / 34 Table

More information

We choose parameter values that will minimize the difference between the model outputs & the true function values.

We choose parameter values that will minimize the difference between the model outputs & the true function values. CSE 4502/5717 Big Data Analytics Lecture #16, 4/2/2018 with Dr Sanguthevar Rajasekaran Notes from Yenhsiang Lai Machine learning is the task of inferring a function, eg, f : R " R This inference has to

More information

Motif Extraction and Protein Classification

Motif Extraction and Protein Classification Motif Extraction and Protein Classification Vered Kunik 1 Zach Solan 2 Shimon Edelman 3 Eytan Ruppin 1 David Horn 2 1 School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel {kunikver,ruppin}@tau.ac.il

More information

Graph Wavelets to Analyze Genomic Data with Biological Networks

Graph Wavelets to Analyze Genomic Data with Biological Networks Graph Wavelets to Analyze Genomic Data with Biological Networks Yunlong Jiao and Jean-Philippe Vert "Emerging Topics in Biological Networks and Systems Biology" symposium, Swedish Collegium for Advanced

More information

Learning with kernels and SVM

Learning with kernels and SVM Learning with kernels and SVM Šámalova chata, 23. května, 2006 Petra Kudová Outline Introduction Binary classification Learning with Kernels Support Vector Machines Demo Conclusion Learning from data find

More information

CSC2545 Topics in Machine Learning: Kernel Methods and Support Vector Machines

CSC2545 Topics in Machine Learning: Kernel Methods and Support Vector Machines CSC2545 Topics in Machine Learning: Kernel Methods and Support Vector Machines A comprehensive introduc@on to SVMs and other kernel methods, including theory, algorithms and applica@ons. Instructor: Anthony

More information

Multiple Kernel Learning

Multiple Kernel Learning CS 678A Course Project Vivek Gupta, 1 Anurendra Kumar 2 Sup: Prof. Harish Karnick 1 1 Department of Computer Science and Engineering 2 Department of Electrical Engineering Indian Institute of Technology,

More information

Kernel Methods in Machine Learning

Kernel Methods in Machine Learning Kernel Methods in Machine Learning Autumn 2015 Lecture 1: Introduction Juho Rousu ICS-E4030 Kernel Methods in Machine Learning 9. September, 2015 uho Rousu (ICS-E4030 Kernel Methods in Machine Learning)

More information

8.1 Concentration inequality for Gaussian random matrix (cont d)

8.1 Concentration inequality for Gaussian random matrix (cont d) MGMT 69: Topics in High-dimensional Data Analysis Falll 26 Lecture 8: Spectral clustering and Laplacian matrices Lecturer: Jiaming Xu Scribe: Hyun-Ju Oh and Taotao He, October 4, 26 Outline Concentration

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

Gene Expression Data Classification with Revised Kernel Partial Least Squares Algorithm

Gene Expression Data Classification with Revised Kernel Partial Least Squares Algorithm Gene Expression Data Classification with Revised Kernel Partial Least Squares Algorithm Zhenqiu Liu, Dechang Chen 2 Department of Computer Science Wayne State University, Market Street, Frederick, MD 273,

More information

10-701/ Recitation : Kernels

10-701/ Recitation : Kernels 10-701/15-781 Recitation : Kernels Manojit Nandi February 27, 2014 Outline Mathematical Theory Banach Space and Hilbert Spaces Kernels Commonly Used Kernels Kernel Theory One Weird Kernel Trick Representer

More information

Computational Biology From The Perspective Of A Physical Scientist

Computational Biology From The Perspective Of A Physical Scientist Computational Biology From The Perspective Of A Physical Scientist Dr. Arthur Dong PP1@TUM 26 November 2013 Bioinformatics Education Curriculum Math, Physics, Computer Science (Statistics and Programming)

More information

FACTORIZATION MACHINES AS A TOOL FOR HEALTHCARE CASE STUDY ON TYPE 2 DIABETES DETECTION

FACTORIZATION MACHINES AS A TOOL FOR HEALTHCARE CASE STUDY ON TYPE 2 DIABETES DETECTION SunLab Enlighten the World FACTORIZATION MACHINES AS A TOOL FOR HEALTHCARE CASE STUDY ON TYPE 2 DIABETES DETECTION Ioakeim (Kimis) Perros and Jimeng Sun perros@gatech.edu, jsun@cc.gatech.edu COMPUTATIONAL

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines Kernel Methods & Support Vector Machines Mahdi pakdaman Naeini PhD Candidate, University of Tehran Senior Researcher, TOSAN Intelligent Data Miners Outline Motivation Introduction to pattern recognition

More information

i=1 cosn (x 2 i y2 i ) over RN R N. cos y sin x

i=1 cosn (x 2 i y2 i ) over RN R N. cos y sin x Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 3 November 16, 017 Due: Dec 01, 017 A. Kernels Show that the following kernels K are PDS: 1.

More information

Learning Binary Classifiers for Multi-Class Problem

Learning Binary Classifiers for Multi-Class Problem Research Memorandum No. 1010 September 28, 2006 Learning Binary Classifiers for Multi-Class Problem Shiro Ikeda The Institute of Statistical Mathematics 4-6-7 Minami-Azabu, Minato-ku, Tokyo, 106-8569,

More information

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH

HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH HYPERGRAPH BASED SEMI-SUPERVISED LEARNING ALGORITHMS APPLIED TO SPEECH RECOGNITION PROBLEM: A NOVEL APPROACH Hoang Trang 1, Tran Hoang Loc 1 1 Ho Chi Minh City University of Technology-VNU HCM, Ho Chi

More information

Support Vector Machines: Maximum Margin Classifiers

Support Vector Machines: Maximum Margin Classifiers Support Vector Machines: Maximum Margin Classifiers Machine Learning and Pattern Recognition: September 16, 2008 Piotr Mirowski Based on slides by Sumit Chopra and Fu-Jie Huang 1 Outline What is behind

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

A GENERAL FORMULATION FOR SUPPORT VECTOR MACHINES. Wei Chu, S. Sathiya Keerthi, Chong Jin Ong

A GENERAL FORMULATION FOR SUPPORT VECTOR MACHINES. Wei Chu, S. Sathiya Keerthi, Chong Jin Ong A GENERAL FORMULATION FOR SUPPORT VECTOR MACHINES Wei Chu, S. Sathiya Keerthi, Chong Jin Ong Control Division, Department of Mechanical Engineering, National University of Singapore 0 Kent Ridge Crescent,

More information

SVMs: nonlinearity through kernels

SVMs: nonlinearity through kernels Non-separable data e-8. Support Vector Machines 8.. The Optimal Hyperplane Consider the following two datasets: SVMs: nonlinearity through kernels ER Chapter 3.4, e-8 (a) Few noisy data. (b) Nonlinearly

More information

Designing Kernel Functions Using the Karhunen-Loève Expansion

Designing Kernel Functions Using the Karhunen-Loève Expansion July 7, 2004. Designing Kernel Functions Using the Karhunen-Loève Expansion 2 1 Fraunhofer FIRST, Germany Tokyo Institute of Technology, Japan 1,2 2 Masashi Sugiyama and Hidemitsu Ogawa Learning with Kernels

More information

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht

Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Learning Classification with Auxiliary Probabilistic Information Quang Nguyen Hamed Valizadegan Milos Hauskrecht Computer Science Department University of Pittsburgh Outline Introduction Learning with

More information

Rchemcpp Similarity measures for chemical compounds. Michael Mahr and Günter Klambauer. Institute of Bioinformatics, Johannes Kepler University Linz

Rchemcpp Similarity measures for chemical compounds. Michael Mahr and Günter Klambauer. Institute of Bioinformatics, Johannes Kepler University Linz Software Manual Institute of Bioinformatics, Johannes Kepler University Linz Rchemcpp Similarity measures for chemical compounds Michael Mahr and Günter Klambauer Institute of Bioinformatics, Johannes

More information

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species

Computational Genomics. Reconstructing dynamic regulatory networks in multiple species 02-710 Computational Genomics Reconstructing dynamic regulatory networks in multiple species Methods for reconstructing networks in cells CRH1 SLT2 SLR3 YPS3 YPS1 Amit et al Science 2009 Pe er et al Recomb

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot, we get creative in two

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Predicting Protein Functions and Domain Interactions from Protein Interactions

Predicting Protein Functions and Domain Interactions from Protein Interactions Predicting Protein Functions and Domain Interactions from Protein Interactions Fengzhu Sun, PhD Center for Computational and Experimental Genomics University of Southern California Outline High-throughput

More information

arxiv: v1 [q-bio.qm] 21 Nov 2018

arxiv: v1 [q-bio.qm] 21 Nov 2018 Structure-Based Networks for Drug Validation Cătălina Cangea 1, Arturas Grauslys 2, Pietro Liò 1 and Francesco Falciani 2 1 University of Cambridge 2 University of Liverpool arxiv:1811.09714v1 [q-bio.qm]

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Feature Extraction Hamid R. Rabiee Jafar Muhammadi, Alireza Ghasemi, Payam Siyari Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Agenda Dimensionality Reduction

More information

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie

A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie A short introduction to supervised learning, with applications to cancer pathway analysis Dr. Christina Leslie Computational Biology Program Memorial Sloan-Kettering Cancer Center http://cbio.mskcc.org/leslielab

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines www.cs.wisc.edu/~dpage 1 Goals for the lecture you should understand the following concepts the margin slack variables the linear support vector machine nonlinear SVMs the kernel

More information

species, if their corresponding mrnas share similar expression patterns, or if the proteins interact with one another. It seems natural that, while al

species, if their corresponding mrnas share similar expression patterns, or if the proteins interact with one another. It seems natural that, while al KERNEL-BASED DATA FUSION AND ITS APPLICATION TO PROTEIN FUNCTION PREDICTION IN YEAST GERT R. G. LANCKRIET Division of Electrical Engineering, University of California, Berkeley MINGHUA DENG Department

More information

Structural interpretation of QSAR models a universal approach

Structural interpretation of QSAR models a universal approach Methods and Applications of Computational Chemistry - 5 Kharkiv, Ukraine, 1 5 July 2013 Structural interpretation of QSAR models a universal approach Victor Kuz min, Pavel Polishchuk, Anatoly Artemenko,

More information

Predicting Unknown Interactions Between Known Drugs and Targets via Matrix Completion

Predicting Unknown Interactions Between Known Drugs and Targets via Matrix Completion Predicting Unknown Interactions Between Known Drugs and Targets via Matrix Completion Qing Liao 1(B), Naiyang Guan 2, Chengkun Wu 2, and Qian Zhang 1 1 Department of Computer Science and Engineering, Hong

More information

A Linear Programming Approach for Molecular QSAR analysis

A Linear Programming Approach for Molecular QSAR analysis Linear Programming pproach for Molecular QSR analysis Hiroto Saigo 1, Tadashi Kadowaki 2, and Koji Tsuda 1 1 Max Planck Institute for iological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany {hiroto.saigo,koji.tsuda}@tuebingen.mpg.de,

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask

Machine Learning and Data Mining. Support Vector Machines. Kalev Kask Machine Learning and Data Mining Support Vector Machines Kalev Kask Linear classifiers Which decision boundary is better? Both have zero training error (perfect training accuracy) But, one of them seems

More information

Prediction in kernelized output spaces: output kernel trees and ensemble methods

Prediction in kernelized output spaces: output kernel trees and ensemble methods Prediction in kernelized output spaces: output kernel trees and ensemble methods Pierre Geurts Florence d Alché Buc IBISC CNRS, Université d Evry, GENOPOLE, Evry, France Department of EE and CS, University

More information

Logistic Regression. COMP 527 Danushka Bollegala

Logistic Regression. COMP 527 Danushka Bollegala Logistic Regression COMP 527 Danushka Bollegala Binary Classification Given an instance x we must classify it to either positive (1) or negative (0) class We can use {1,-1} instead of {1,0} but we will

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Overview Motivation

More information