Light signals, phytochromes and cross-talk with other environmental cues

Size: px
Start display at page:

Download "Light signals, phytochromes and cross-talk with other environmental cues"

Transcription

1 Advance Access published December 12, 2003 Journal of Experimental Botany, Vol. 55, No. 395, Cross-talk in Plant Signal Transduction Special Issue, Page 1 of 6, January 2004 DOI: /jxb/erh026 Light signals, phytochromes and cross-talk with other environmental cues Keara A. Franklin and Garry C. Whitelam* Department of Biology, University of Leicester, Leicester LE1 7RH, UK Received 29 April 2003; Accepted 8 October 2003 Abstract Plants have evolved highly complex sensory mechanisms to monitor their surroundings and adapt their growth and development to the prevailing environmental conditions. The integration of information from multiple environmental cues enables the coordination of development with favourable seasonal conditions and, ultimately, determines plant form. Light signals, perceived via the phytochrome, cryptochrome and phototropin photoreceptor families, are especially important environmental signals. Redundancy of function among phytochromes and their interaction with blue light photoreceptors enhance sensitivity to light signals, facilitating the accurate detection of, and response to, environmental uctuations. In this review, current understanding of Arabidopsis phytochrome functions will be summarized, in particular, the interactions among the phytochromes and the integration of light signals with directional and temperature sensing mechanisms. Key words: Arabidopsis, environmental cues, light signals, photoreceptors, temperature sensing mechanisms. Introduction As sessile organisms that cannot choose their surroundings, plants need to modify their growth and development to suit their ambient environment. Such developmental plasticity involves the integration of multiple environmental signals, enabling plants to synchronize their growth with seasonal changes and compete effectively with neighbours for essential resources. Light signals are amongst the most important environmental cues regulating plant development. In addition to light quantity, plants monitor the quality, periodicity and direction of light and use the information to modulate multiple physiological responses, from seed germination and seedling establishment through to mature plant architecture and the onset of reproductive development. In higher plants there are three principal families of signal-transducing photoreceptors; the red/far-red (R/FR) light-absorbing phytochromes and the UV-A/blue light-absorbing cryptochromes and phototropins (reviewed in Quail, 2002). The phytochromes are reversibly photochromic biliproteins that absorb maximally in the red (R) and far-red (FR) regions of the spectrum. In Arabidopsis thaliana, ve discrete apophytochrome-encoding genes, PHYA±PHYE, have been isolated and sequenced. These can be clustered by protein similarity into three subfamilies: A/C, B/D and E (Clack et al., 1994; Mathews and Sharrock, 1997). Phytochrome is synthesized in its inactive R-absorbing (Pr) form and activity is acquired upon phototransformation to the FR-absorbing (Pfr) isomer (Kendrick and Kronenberg, 1994). The photoconversion of phytochrome from its Pr to Pfr form has been demonstrated, at least for phya and phyb, to trigger translocation of a proportion of the photoreceptor from the cytoplasm to the nucleus (Sakamoto and Nagatani, 1996; Kircher et al., 1999; Yamaguchi et al., 1999). In the nucleus, for phyb at least, Pfr can interact with PIF3, a transcriptional regulator to control expression of a number of target genes (Ni et al., 1999; Martinez-Garcia et al., 2000). Elucidation of the roles of individual phytochromes in mediating plant growth is often confounded by their redundant and overlapping mechanisms of action. The isolation of mutants de cient in individual phytochromes and the subsequent creation of multiple mutant combinations have, therefore, been essential in the determination of individual phytochrome functions and the dissection of * To whom correspondence should be addressed. Fax: +44 (0) gcw1@le.ac.uk Journal of Experimental Botany, Vol. 55, No. 395, ã Society for Experimental Biology 2004; all rights reserved

2 Page 2 of 6 Franklin and Whitelam functional interactions between family members. In addition to providing insights into individual phytochrome functions, the use of multiple mutant combinations has also enabled progress in the understanding of how light signals integrate with other environmental cues. The focus here is on the use of Arabidopsis mutants, de cient in multiple phytochromes, in order to elucidate the complex overlapping roles of individual family members during photomorphogenesis. The role of these mutants in dissecting cross-talk between light-, gravity- and temperaturesensing mechanisms is also discussed. Photoreceptor interactions Seedling establishment The light environment in which a seedling develops can in uence not only the timing of seed germination but the ensuing developmental strategy of a plant. Induction of Arabidopsis seed germination by R involves both phya and phyb (Shinomura et al., 1994, 1996). Germination responses displaying R/FR reversibility are characteristic of the low uence response (LFR) mode of phytochrome action and enables buried seeds to detect proximity to the soil surface and exposed seeds to identify canopy gaps. The retention of R/FR reversible germination responses in phyaphyb double mutants implicated the participation of another phytochrome in this response, a role subsequently assigned to phye (Hennig et al., 2002). Many seeds that have been imbibed in darkness acquire extreme sensitivity to light that is typical of the phyamediated very low uence response (VLFR) mode of phytochrome action. It is estimated that these sensitized seeds would be induced to germinate following exposure to only a few milliseconds of daylight, thus enabling the opportunistic exploitation of very brief soil disturbances (Smith, 1982). Inhibition of germination following prolonged exposure to FR, most likely represents the phyamediated high irradiance response (FR-HIR) mode of phytochrome action and may be ecologically relevant as a means of delaying the germination of seeds situated under chlorophyllous vegetation or leaf litter (Smith and Whitelam, 1990). Following the induction of germination, light signals act to constrain hypocotyl extension while initiating the expansion of cotyledons and the concomitant synthesis of chlorophyll. Despite showing no obvious mutant phenotype following growth under white light or R, mutants de cient in phya have revealed a unique role for this photoreceptor in mediating the inhibition of hypocotyl elongation growth under FR and FR-enriched light environments (Nagatani et al., 1993; Parks and Quail, 1993; Whitelam et al., 1993). By contrast, phyb-de ciency confers no aberrant phenotype under FR, but leads to a marked loss of seedling sensitivity to R for a wide range of de-etiolation responses (Koornneef et al., 1980; Somers et al., 1991; Reed et al., 1993). Seedlings de cient in both phya and phyb display a greater insensitivity to R than monogenic phyb seedlings (Reed et al., 1994). Thus, although phyb plays the major role in inhibition of hypocotyl elongation in red light, phya can also contribute to this response. An additional minor role is performed by phyd (Aukerman et al., 1997) whereas the contribution of phye to seedling de-etiolation appears negligible (Devlin et al., 1998). The recent identi cation of mutants at the PHYC locus has revealed a role for this phytochrome in the R-mediated inhibition of hypocotyl elongation (Franklin et al., 2003a; Monte et al., 2003). The combined loss of phya and phyc in the Ws ecotype (phyc-1) resulted in a signi cant increase in hypocotyl length, an effect greater than that observed in phyc-1 plants. Since loss of phya alone has no effect on sensitivity to R, the possibility exists that phya and phyc act redundantly to regulate the R-control of hypocotyl growth (Franklin et al., 2003a). The role of phyc in this response was most pronounced at low uence rates and not observable in the phyb mutant background, suggesting a possible role for phyc in modulating phyb function (Franklin et al., 2003a). No role for phyc was identi ed in the inhibition of hypocotyl elongation in FR (Franklin et al., 2003a; Monte et al., 2003). The isolation and characterization of mutants de cient in cryptochromes 1 and 2 (cry1 and cry2) have de ned roles for these photoreceptors throughout seedling development (Lin et al., 1996, 1998). Despite uncertainty over the exact nature of co-action, it is accepted that B-mediated de-etiolation involves the interaction of both phytochrome and cryptochrome signalling (Yanovsky et al., 1995; Ahmad and Cashmore, 1997; Casal and Mazzella, 1998). A physical interaction between CRY1 and PHYA proteins has been demonstrated (Ahmad et al., 1998; Ahmad, 1999) in addition to a functional interaction between cry2 and phyb (MaÂs et al., 2000). Mutant combinations de cient in phyc displayed elongated hypocotyls in B, an effect most evident at low uence rates (Franklin et al., 2003a). Under these conditions, it has been shown that the cry2 function predominates in the regulation of hypocotyl elongation (Lin et al., 1998). The hyposensitivity of phyc mutants to low uence rate of B may therefore indicate a possible functional interaction between phyc and cry2. There is also evidence of functional redundancy between phytochromes and cryptochromes. For example, the inhibition of hypocotyl growth by a R pulse in phyb seedlings that have been pretreated with white light, requires the presence of either phyd or cry1 (Hennig et al., 1999). Mature plant development In Arabidopsis and many other plant species, de ciency of phyb has a marked effect on the architecture of the mature light-grown plant. Phytochrome B-de cient plants display

3 an elongated growth habit, retarded leaf development, increased apical dominance, and early owering (Robson et al., 1993; Halliday et al., 1994; Devlin et al., 1996). This pleiotropic phenotype resembles the shade avoidance syndrome shown by wild-type plants following the perception of low R:FR ratio and suggests a predominant role for phyb in suppressing this response under natural conditions (Whitelam and Devlin, 1997). The ability to respond to the perceived threat of shading, and therefore to execute architectural changes before canopy closure, provides a crucial competitive strategy to plants growing in dense stands (Ballare et al., 1990). The retention of shade avoidance responses in phyb null mutants indicated the involvement of additional phytochromes (Whitelam and Smith, 1991; Robson et al., 1993; Halliday et al., 1994). Multiple mutant analyses have since revealed that the perception of low R:FR in Arabidopsis is mediated solely by phyb, D and E, acting in a functionally redundant manner (Devlin et al., 1996, 1998, 1999; Franklin et al., 2003b). These represent the most recently evolved members of the phytochrome family and form a distinct subgroup (Mathews and Sharrock, 1997). It is therefore possible that competition for light may have provided the selective pressure for their evolution (Devlin et al., 1998). Adult Arabidopsis plants structure their leaves in a compact rosette phenotype. The elongated internodes observed in phyaphybphye-triple mutant plants was the basis on which the phye mutation was isolated and led to the proposal that maintenance of the rosette phenotype is regulated, redundantly, by phya, B and E (Devlin et al., 1998). The elongated appearance of phyaphybphydphyequadruple mutants grown under white light, a phenotype not displayed in phybphydphye-triple mutants has supported such a proposal (Franklin et al., 2003b). Physiological comparison of these genotypes also revealed a signi cant role for phya in the modulation of rosette leaf expansion and petiole elongation in high R:FR (Franklin et al., 2003b). Analysis of mutants de cient in phyc revealed this phytochrome to play a similar role to phya in regulating rosette leaf elongation in high R:FR (Franklin et al., 2003b; Monte et al., 2003). Interaction of light and directional sensing systems Gravity provides plants with a continuous and unidirectional signal, enabling emerging seedlings to orientate themselves within the soil. Correct spatial orientation ensures that primary roots grow downwards to nd water and essential minerals (positive gravitropism) while primary shoots grow upwards towards light at the soil surface (negative gravitropism). Multiple plant organs are also subject to reorientation and can change their growth angle in response to gravitational signals (Hangarter, Sensory mechanisms of environmental monitoring Page 3 of ). The angle from the vertical at which an organ shows no gravity-induced differential growth is termed the gravitational set-point angle (GSA) (Digby and Firn, 1995). Gravitropism responses are, however, not independent from other environmental stimuli and are often modulated by light signals perceived through phytochromes. Exposure of dark-grown maize roots to R can alter the GSA from perpendicular to the gravity vector to a positively gravitropic orientation (Lu et al., 1996). The gravitropism of stems is also modulated by light. In etiolated Arabidopsis seedlings, R and FR, acting through either phya or phyb, lead to agravitropism of the hypocotyl (Liscum and Hangarter, 1993; Poppe et al., 1996; Robson and Smith, 1996). It is possible that this phenomenon is of ecological signi cance, effectively leading to `enhancement' of phototropic curvature via elimination of gravitropic compensation which can occur when phototropically-stimulated plant organs bend in relation to the gravitational vector. In the lazy-2 mutant of tomato, R was shown to reverse the GSA of hypocotyls, resulting in positive gravitropism (Gaiser and Lomax, 1993). In addition to effects on primary roots and shoots, light can also regulate gravitropism in apical hooks and secondary stems (Myers et al., 1994). The phytochromes are also known to interact more directly with phototropism. For example, R, acting predominantly through phya is known to lead to enhancement of subsequent phototropic curvature (Parks et al., 1996; Janoudi et al., 1997a). This appears to be a discrete response, not related to phytochrome-mediated agravitropism, mediated by both phya and phyb. It has also been established that manifestation of rst positive phototropic curvature is abolished in Arabidopsis seedlings which are doubly null for phya and phyb, indicating a speci c requirement for phytochrome action for the display of this archetypal blue light response (Janoudi et al., 1997b). Interaction of light and temperature sensing Alterations in the ambient growth temperature can dramatically affect plant physiology. In many species, exposure to a period of cold treatment provides seasonal information, enabling plants to germinate (strati cation) or initiate reproduction (vernalization) under more favourable conditions. The ability to anticipate and, consequently, prevent the adverse effects of a particular seasonal environment is selectively advantageous to plants through reducing competition for resources and increasing the chances of outbreeding and genetic recombination. Such information is often integrated with other environmental stimuli, such as daylength. Extended periods of cold temperature and reduced daylength provide plants with a reliable indication of seasonal progression and are amongst the most important environmental factors governing the

4 Page 4 of 6 Franklin and Whitelam timing of oral transition (Samach and Coupland, 2000; Simpson and Dean, 2002). Sensitivity to the timing of light and darkness, termed photoperiodism, involves the integration of temporal information, provided by the circadian oscillator, with light/dark discrimination provided by speci c photoreceptors. In the long-day plant (LDP) Arabidopsis, owering is accelerated under photoperiods exceeding a critical daylength. Here, the presence of light is perceived through the action of either cry2 or phya (Yanovsky and Kay, 2002). Genetic and physiological analyses have grouped mutations that delay owering into independent promotory pathways. These include the long-day pathway, the autonomous pathway and the gibberellic acid (GA)- dependent pathway (Koornneef et al., 1998). The vernalization response acts separately, but similarly, to the autonomous pathway to repress transcript levels of the oral repressor FLC (Michaels and Amasino, 1999). The stable repression of FLC levels requires a nuclear localized protein, VRN2, although this is not required for the initial reduction in transcript levels (Gendall et al., 2001). The requirement of vernalization is conferred by dominant alleles of the FRI gene, the product of which promotes FLC accumulation (Johanson et al., 2000). Downstream targets of FLC include the oral integrators FT and SOC1/ AGL20 (Lee et al., 2000; Rouse et al., 2002). In addition to photoperiod and vernalization, ambient growth temperature can have profound effects on owering (BlaÂzquez et al., 2003; Halliday et al., 2003). Growth of Arabidopsis plants at reduced temperatures has revealed a novel thermosensory pathway controlling oral initiation (BlaÂzquez et al., 2003). Delayed owering was observed in wild-type plants grown at 16 C, a response absent in the autonomous pathway mutants, fca-1 and fve-1 (BlaÂzquez et al., 2003). The authors propose a dual role for these proteins in owering control: a temperature-dependent mechanism, where they act jointly and a temperatureindependent mechanism where they act redundantly. Both FCA and FVE are believed to down-regulate the oral repressor FLC (Sheldon et al., 2000; Michaels and Amasino, 2001). The modest increases in FLC levels observed at lower temperatures suggest that the temperature-dependent control of owering time by FCA and FVE operates through an FLC-independent pathway (BlaÂzquez et al., 2003). This information is believed to be integrated with other environmental signals, such as daylength, through the oral promoter FT (Kardailsky et al., 1999; Kobayashi et al., 1999). Observations revealing temperature-dependency in the owering responses of photoreceptor mutants have provided insight into the interaction between light and temperature signalling (BlaÂzquez et al., 2003; Halliday et al., 2003). Mutants de cient in the B-photoreceptor cry2 (fha) displayed an exaggerated owering response to change in ambient temperature, with a signi cant delay at 16 C. The combined de ciency of cry2 and phya revealed synergism between these photoreceptors, with the double mutant owering as late at 23 C as the fha/cry2 mutant at 16 C (BlaÂzquez et al., 2003). Growth at 16 C also abolished the early owering phenotypes of phyb and phyaphybphyd-triple mutants, despite plants retaining elongation responses characteristic of the shade avoidance syndrome (Halliday et al., 2003). The early owering response of plants at 23 C was shown to correlate with elevated levels of the oral promoter FT and provides evidence of discrete pathways controlling the owering and elongation components of low R:FR perception (Halliday et al., 2003). Repression of owering in the phyaphybphyd-triple mutant at 16 C was relieved by the additional loss of phye, suggesting a novel and important role for this phytochrome in repressing oral induction at lower temperatures. Conclusions Light signals are amongst the most important environmental factors that regulate the growth and development of plants. The phenotypic plasticity awarded by effective monitoring of the ambient light environment confers considerable advantage to plants growing in natural communities. The capacity to respond to the perceived threat of shading promotes survival by enabling plants to overtop competing vegetation and precociously initiate reproduction. The integration of gravitropic and phototropic signalling are of adaptive signi cance in orientating plant organs within their environment. Such adaptations enhance photosynthetic ef ciency by enabling plants to grow towards sunlight and position their lateral organs for optimum light capture and gas exchange. Synchronization of owering time to environmental cues, such as photoperiod and temperature, enhance survival through promoting seed set during optimal seasonal conditions and increasing the chance of out-breeding and genetic recombination. The multiplicity of responses available to plants in response to environmental light signals results from functional divergence within the phytochrome family of photoreceptors. Redundancy between family members and co-actions with blue light-sensing mechanisms increase sensitivity to environmental uctuations and permit an array of developmental responses. Phylogenetic studies in Arabidopsis have revealed common evolutionary ancestry between phytochromes B, D and E. These form a distinct subgroup that act redundantly to control responses to perceived vegetational shade in addition to their own, individual, functions. Phytochrome A shares a common ancestry with phyc and performs regulatory roles in plant architecture, owering and FR sensing. Until recently, the absence of a phyc mutant has precluded functional analysis of this phytochrome. Mutant analyses have since

5 revealed phyc to be a weak R sensor with no role in FR sensing (Franklin et al., 2003a; Monte et al., 2003). Preliminary evidence suggests that phyc acts as a modulator of phyb in R and performs a role in B-sensing, possibly through interaction with cry2 (Franklin et al., 2003a). The future creation and characterization of mutants, de cient in multiple phytochrome combinations, should provide further insight into the integration of light signalling with other environmental stimuli and ultimately broaden understanding of adaptive plasticity in natural light environments. References Ahmad M Seeing the world in red and blue: insight into plant vision and photoreceptors. Current Opinion in Plant Biology 2, 230±235. Ahmad M, Cashmore AR The blue light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. The Plant Journal 11, 421±427. Ahmad M, Jarillo J, Smirnova O, and Cashmore AR The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro. Molecular Cell 1, 939±948. Aukerman MJ, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino RM, Sharrock RA A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype de nes a role for phytochrome D in red/far-red light sensing. The Plant Cell 9, 1317±1326. Ballare CL, Scopel AL, SaÂnchez RA Far-red radiation re ected from adjacent leaves: an early signal of competition in plant canopies. Science 247, 329±332. BlaÂzquez MA, Ahn JH, Weigel D A thermosensory pathway controlling owering time in Arabidopsis thaliana. Nature Genetics 33, 168±171. Casal JJ, Mazzella MA Conditional synergism between cryptochrome 1 and phytochrome B is shown by analysis of phya, phyb, hy4 simple, double and triple mutants in Arabidopsis. Plant Physiology 118, 19±25. Clack T, Mathews S, Sharrock RA The phytochrome apoprotein family in Arabidopsis is encoded by ve genes: the sequences and expression of PHYD and PHYE. Plant Molecular Biology 25, 413±427. Devlin PF, Halliday KJ, Harberd NP, Whitelam GC The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and owering time. The Plant Journal 10, 1127±1134. Devlin PF, Patel SR, Whitelam GC Phytochrome E in uences internode elongation and owering time in Arabidopsis. The Plant Cell 10, 1479±1487. Devlin PF, Robson PRH, Patel SR, Goosey L, Sharrock RA, Whitelam GC Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation and owering time. Plant Physiology 119, 909±915. Digby J, Firn R The gravitropic set-point angle (GSA): the identi cation of an important developmentally controlled variable governing plant architecture. Plant, Cell and Environment 18, 1434±1440. Franklin KA, Davis SJ, Stoddart WM, Vierstra RD and Whitelam GC. 2003a. Mutant analyses de ne multiple roles for phytochrome C in Arabidopsis thaliana photomorphogenesis. The Plant Cell 15, 1981±1989. Franklin KA, Praekelt U, Stoddart WM, Billingham OE, Sensory mechanisms of environmental monitoring Page 5 of 6 Halliday KJ, Whitelam GC. 2003b. Phytochromes B, D and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiology 131, 1340±1346. Gaiser JC, Lomax TL The altered gravitropic response of the lazy-2 mutant of tomato is phytochrome regulated. Plant Physiology 102, 339±344. Gendall AR, Levy YY, Wilson A, Dean C The VERNALIZATION 2 gene mediates the epigenic regulation of vernalization in Arabidopsis. Cell 107, 525±535. Halliday KJ, Koorneef M, Whitelam GC Phytochrome B and at least one other phytochrome mediate the accelerated owering response of Arabidopsis thaliana L. to low red/far-red ratio. Plant Physiology 104, 1311±1315. Halliday KJ, Salter MG, Thingnaes MG, Whitelam GC The phyb-controlled owering pathway is temperature sensitive and is mediated by the oral integrator FT. The Plant Journal 33, 875±885. Hangarter RP Gravity, light and plant form. Plant, Cell and Environment 20, 796±800. Hennig L, Funk M, Whitelam GC, SchaÈfer E Functional interaction of cryptochrome 1 and phytochrome D. The Plant Journal 20, 289±294. Hennig L, Stoddart WM, Dieterle M, Whitelam GC, SchaÈfer E Phytochrome E controls light-induced germination of Arabidopsis. Plant Physiology 128, 194±200. Janoudi AK, Gordon WR, Wagner D, Quail P, Poff KL. 1997a. Multiple phytochromes are involved in red-light induced enhancement of rst positive phototropism in Arabidopsis thaliana. Plant Physiology 113, 975±979. Janoudi AK, Konjevic R, Whitelam GC, Gordon W, Poff KL. 1997b. Both phytochrome A and phytochrome B are required for the normal expression of phototropism in Arabidopsis thaliana seedlings. Physiologia Plantarum 101, 278±282. Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis owering time. Science 290, 344±347. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D Activation tagging of the oral inducer FT. Science 286, 1962±1965. Kendrick RE, Kronenberg GHM Photomorphogenesis in plants, 2nd edn. Dordrecht, The Netherlands: Kluwer Academic Publishers. Kircher S, Kozma-Bognor L, Adam E, Harter K, SchaÈfer E, Nagy F Light quality-dependent nuclear import of the plant photoreceptors A and B. The Plant Cell 11, 1445±1456. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T A pair of related genes with antagonistic roles in mediating owering signals. Science 286, 1960±1962. Koornneef M, Alonso-Blanco C, Blankestijn-de Vries H, Hanhart CJ, Peeters AJM Genetic interactions among late owering mutants of Arabidopsis. Genetics 148, 885±892. Koornneef M, Rolff E, Spruitt CJP Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana L. Heynh. Zeitschrift fuèr P anzenphysiologie 100, 147±160. Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I The AGAMOUS-LIKE 20 MADS domain protein integrates oral inductive pathways in Arabidopsis. Genes and Development 14, 2366±2376. Lin C, Ahmad M, Cashmore AR Arabidopsis cryptochrome 1 is a soluble protein mediating blue lightdependent regulation of plant growth and development. The Plant Journal 10, 893±902. Lin C, Yang H, Guo H, Mocker T, Chen J, Cashmore AR Enhancement of blue light sensitivity of Arabidopsis seedlings by

6 Page 6 of 6 Franklin and Whitelam a blue light receptor cryptochrome 2. Proceedings of the National Academy of Sciences, USA 95, 7686±7699. Liscum E, Hangarter RP Genetic evidence that the Pr form of phytochrome B plays a role in Arabidopsis thaliana gravitropism. Plant Physiology 103, 15±19. Lu YT, Hidaka H, Feldman LJ Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta 199, 18±24. Martinez-Garcia JF, Huq E, Quail PH Direct targeting of light signals to a promoter element±bound transcription factor. Science 288, 859±863. MaÂs P, Devlin P, Panda S, Kay SA Functional interaction of phytochrome B and crytochrome 2. Nature 408, 207±211. Mathews S, Sharrock RA Phytochrome gene diversity. Plant, Cell and Environment 20, 666±671. Michaels SD, Amasino RM Loss of FLOWERING LOCUS C activity eliminates the late- owering time phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell 13, 935±941. Michaels SD, Amasino RM FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of owering. The Plant Cell 11, 949±956. Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH Isolation and characterization of phyc mutants in Arabidopsis reveals complex crosstalk between phytochrome signalling pathways. The Plant Cell 15, 1962±1980. Myers AB, Firn RD, Digby J Gravitropic sign reversal: a fundamental feature of the gravitropic perception or response mechanisms in some plant organs. Journal of Experimental Botany 45, 77±83. Nagatani A, Reed JW, Chory J Isolation and initial characterisation of Arabidopsis mutants that are de cient in functional phytochrome A. Plant Physiology 102, 269±277. Ni M, Tepperman JM, Quail PH Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400, 781±784. Parks BM, Quail PH, Hangarter RP Phytochrome A regulates red light induction of phototropic enhancement in Arabidopsis. Plant Physiology 110, 155±162. Parks BM, Quail PH hy8, a new class of Arabidopsis long hypocotyl mutants de cient in functional phytochrome A. The Plant Cell 3, 39±48. Poppe C, Hangarter RP, Sharrock RA, Nagy F, SchaÈfer E The light-induced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L.) Heynh. is a photomorphogenic response mediated synergistically by the farred absorbing forms of phytochromes A and B. Planta 119, 511± 514. Quail PH Photosensory perception and signalling in plant cells: new paradigms? Current Opinions in Plant Biology 14, 180±188. Reed JW, Nagatani A, Elich T, Fagan M, Chory J Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiology 104, 1139±1149. Reed JW, Nagpal P, Poole DS, Furuya M, Chory J Mutations in the gene for red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. The Plant Cell 5, 147±157. Robson PRH, Smith H Genetic and transgenic evidence that phytochromes A and B act to modulate the gravitropic orientation of Arabidopsis thaliana hypocotyls. Plant Physiology 110, 211± 216. Robson PRH, Whitelam GC, Smith H Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa de cient in phytochrome B. Plant Physiology 102, 1179± Rouse DT, Sheldon CC, Bagnall DJ, Peacock WJ, Dennis ES FLC, a repressor of owering, is regulated by genes in different inductive pathways. The Plant Journal 29, 183±191. Sakamoto K, Nagatani A Nuclear localisation activity of phytochrome B. The Plant Journal 10, 859±868. Samach A, Coupland G Time measurement and the control of owering in plants. Bioessays 22, 38±47. Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences, USA 97, 3753±3758. Shinomura T, Nagatani A, Chory J, Furuya M The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiology 104, 363±371. Shinomura T, Nagatani A, Manzawa H, KubotaM, Watanabe M, Furuya M Action spectra for phytochrome A and B- speci c photoinduction of seed germination in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA 93, 8129±8133. Simpson GG, Dean C Arabidopsis, the Rosetta stone of owering time? Science 296, 285±289. Smith H Light quality, photoperception and plant strategy. Annual Review of Plant Physiology 33, 481±518. Smith H, Whitelam GC Phytochrome, a family of photoreceptors with multiple physiological roles. Plant, Cell and Environment 13, 695±707. Somers DE, Sharrock RA, Tepperman JM, Quail PH The hy3 long hypocotyl mutant of Arabidopsis is de cient in phytochrome B. The Plant Cell 3, 1263±1274. Whitelam GC, Devlin PF Roles for different phytochromes in Arabidopsis photomorphogenesis. Plant, Cell and Environment 20, 752±758. Whitelam GC, Johnson E, Peng J, Carol P, Anderson MC, Cowl JS, Harberd NP Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. The Plant Cell 5, 757±768. Whitelam GC, Smith H Retention of phytochromemediated shade avoidance responses in phytochrome-de cient mutants of Arabidopsis, cucumber and tomato. Journal of Plant Physiology 139, 119±125. Yamaguchi R, Nakamura M, Mochizuki N, Kay S, Nagatani A Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus of transgenic Arabidopsis. Journal of Cell Biology 145, 437±445. Yanovsky MJ, Casal JJ, Whitelam GC Phytochrome A, phytochrome B and HY4 are involved in hypocotyl growth responses to natural radiation in Arabidopsis: weak de-etiolation of the phya mutant under dense canopies. Plant, Cell and Environment 18, 788±794. Yanovsky MJ, Kay SA Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308±312.

Analysis of regulatory function of circadian clock. on photoreceptor gene expression

Analysis of regulatory function of circadian clock. on photoreceptor gene expression Thesis of Ph.D. dissertation Analysis of regulatory function of circadian clock on photoreceptor gene expression Tóth Réka Supervisor: Dr. Ferenc Nagy Biological Research Center of the Hungarian Academy

More information

Phytochromes and Shade-avoidance Responses in Plants

Phytochromes and Shade-avoidance Responses in Plants Annals of Botany 96: 169 175, 2005 doi:10.1093/aob/mci165, available online at www.aob.oupjournals.org BOTANICAL BRIEFING Phytochromes and Shade-avoidance Responses in Plants KEARA A. FRANKLIN and GARRY

More information

The signal transducing photoreceptors of plants

The signal transducing photoreceptors of plants Int. J. Dev. Biol. 49: 653-664 (2005) doi: 10.1387/ijdb.051989kf The signal transducing photoreceptors of plants KEARA A. FRANKLIN*, VICTORIA S. LARNER and GARRY C. WHITELAM Department of Biology, University

More information

Light Regulation of Flowering Time in Arabidopsis

Light Regulation of Flowering Time in Arabidopsis Chapter 38 Light Regulation of Flowering Time in Arabidopsis Xuhong Yu and Chentao Lin Introduction Plant development is dependent on not only endogenous conditions but also environmental factors. One

More information

Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyd and phye

Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyd and phye Edinburgh Research Explorer Changes in photoperiod or temperature alter the functional relationships between phytochromes and reveal roles for phyd and phye Citation for published version: Halliday, KJ

More information

Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis

Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis The Plant Cell, Vol. 10, 1479 1487, September 1998, www.plantcell.org 1998 American Society of Plant Physiologists Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis Paul F.

More information

Electromagenetic spectrum

Electromagenetic spectrum Light Controls of Plant Development 1 Electromagenetic spectrum 2 Light It is vital for photosynthesis and is also necessary to direct plant growth and development. It acts as a signal to initiate and

More information

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE 1 CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE Photomorphogenesis and Light Signaling Photoregulation 1. Light Quantity 2. Light Quality 3. Light Duration 4. Light

More information

Flower Development Pathways

Flower Development Pathways Developmental Leading to Flowering Flower Development s meristem Inflorescence meristem meristems organ identity genes Flower development s to Flowering Multiple pathways ensures flowering will take place

More information

Phytochrome A is an irradiance-dependent red light sensor

Phytochrome A is an irradiance-dependent red light sensor The Plant Journal (007) 50, 108 117 doi: 10.1111/j.165-1X.007.006.x Phytochrome A is an irradiance-dependent red light sensor Keara A. Franklin *, Trudie Allen and Garry C. Whitelam Department of Biology,

More information

The shade avoidance syndrome: multiple responses mediated by multiple phytochromes

The shade avoidance syndrome: multiple responses mediated by multiple phytochromes Plant, Cell and Environment (1997) 20, 840 844 TECHNICAL REPORT (white this line if not required) The shade avoidance syndrome: multiple responses mediated by multiple phytochromes H. SMITH & G. C. WHITELAM

More information

Photoperiodic flowering in plants was the first photoperiodism

Photoperiodic flowering in plants was the first photoperiodism Regulation of photoperiodic flowering by Arabidopsis photoreceptors Todd Mockler*, Hongyun Yang, XuHong Yu, Dhavan Parikh, Ying-chia Cheng, Sarah Dolan, and Chentao Lin Department of Molecular, Cell, and

More information

Supplementary Table 2. Plant phytochrome mutant alleles

Supplementary Table 2. Plant phytochrome mutant alleles Supplemental Material: Annu.Rev.Plant Biol. 2006. 57:837-58 doi: 10.1146/annurev.arplant.56.032604.144208 Phytochrome Structure and Signaling Mechanisms Rockwell, Su, and Lagarias Supplementary Table 2.

More information

Figure 18.1 Blue-light stimulated phototropism Blue light Inhibits seedling hypocotyl elongation

Figure 18.1 Blue-light stimulated phototropism Blue light Inhibits seedling hypocotyl elongation Blue Light and Photomorphogenesis Q: Figure 18.3 Blue light responses - phototropsim of growing Corn Coleoptile 1. How do we know plants respond to blue light? 2. What are the functions of multiple BL

More information

Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana

Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana Int. J. Mol. Sci. 2015, 16, 12199-12212; doi:10.3390/ijms160612199 Article OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Synergistic and Antagonistic

More information

THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING. AnitaHajdu. Thesis of the Ph.D.

THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING. AnitaHajdu. Thesis of the Ph.D. THE ROLE OF THE PHYTOCHROME B PHOTORECEPTOR IN THE REGULATION OF PHOTOPERIODIC FLOWERING AnitaHajdu Thesis of the Ph.D. dissertation Supervisor: Dr. LászlóKozma-Bognár - senior research associate Doctoral

More information

Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction

Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction Development 126, 73-82 (1999) Printed in Great Britain The Company of Biologists Limited 1999 DEV214 73 Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction

More information

Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes

Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes seminars in CELL & DEVELOPMENTAL BIOLOGY, Vol. 11, 2000: pp. 505 510 doi: 10.1006/scdb.2000.0202, available online at http://www.idealibrary.com on Nucleo-cytoplasmic partitioning of the plant photoreceptors

More information

Plant Growth and Development

Plant Growth and Development Plant Growth and Development Concept 26.1 Plants Develop in Response to the Environment Factors involved in regulating plant growth and development: 1. Environmental cues (e.g., day length) 2. Receptors

More information

Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity

Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for Rhythmicity The Plant Cell, Vol. 12, 2499 2509, December 2000, www.plantcell.org 2000 American Society of Plant Physiologists Cryptochromes Are Required for Phytochrome Signaling to the Circadian Clock but Not for

More information

Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development

Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development Development 128, 2291-2299 (21) Printed in Great Britain The Company of Biologists Limited 21 DEV361 2291 Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation

More information

The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception

The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception The role of the N-terminal NTE domain of PHYTOCHROMEs in red and far red light perception Theses of the Ph.D. dissertation János Bindics Supervisor: Dr. Ferenc Nagy Hungarian Academy of Sciences Biological

More information

Response of plant development to environment: control of flowering by daylength and temperature Paul H Reeves* and George Coupland

Response of plant development to environment: control of flowering by daylength and temperature Paul H Reeves* and George Coupland 37 Response of plant development to environment: control of flowering by daylength and temperature Paul H Reeves* and George Coupland The transition from vegetative growth to flowering is often controlled

More information

Summary. Introduction

Summary. Introduction The Plant Journal (1998) 15(1), 69 77 Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis

More information

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering

Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering Photoreceptor Regulation of Constans Protein in Photoperiodic Flowering by Valverde et. Al Published in Science 2004 Presented by Boyana Grigorova CBMG 688R Feb. 12, 2007 Circadian Rhythms: The Clock Within

More information

Plants are sessile. 10d-17/giraffe-grazing.jpg

Plants are sessile.   10d-17/giraffe-grazing.jpg Plants are sessile www.mccullagh.org/db9/ 10d-17/giraffe-grazing.jpg Plants have distinct requirements because of their sessile nature Organism-level requirements Must adjust to environment at given location

More information

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E The development of a plant the series of progressive changes that take place throughout its life is regulated in complex ways. Factors take part

More information

OVEREXPRESSION OF RICE PHYTOCHROME A IN ARABIDOPSIS: DIVERSE ROLE IN MULTIPLE PHYSIOLOGICAL RESPONSES

OVEREXPRESSION OF RICE PHYTOCHROME A IN ARABIDOPSIS: DIVERSE ROLE IN MULTIPLE PHYSIOLOGICAL RESPONSES Pak. J. Bot., 43(6): 2835-2844, 2011. OVEREXPRESSION OF RICE PHYTOCHROME A IN ARABIDOPSIS: DIVERSE ROLE IN MULTIPLE PHYSIOLOGICAL RESPONSES CHUNFENG CHEN 1, 2, YOU CHEN 1, QING ZHANG 1, BENWEN CHEN 3,

More information

Time measurement and the control of flowering in plants

Time measurement and the control of flowering in plants Time measurement and the control of flowering in plants Alon Samach and George Coupland* Summary Many plants are adapted to flower at particular times of year, to ensure optimal pollination and seed maturation.

More information

Epigenetics and Flowering Any potentially stable and heritable change in gene expression that occurs without a change in DNA sequence

Epigenetics and Flowering Any potentially stable and heritable change in gene expression that occurs without a change in DNA sequence Epigenetics and Flowering Any potentially stable and heritable change in gene expression that occurs without a change in DNA sequence www.plantcell.org/cgi/doi/10.1105/tpc.110.tt0110 Epigenetics Usually

More information

Intracellular trafficking of photoreceptors during lightinduced signal transduction in plants

Intracellular trafficking of photoreceptors during lightinduced signal transduction in plants COMMENTARY 475 Intracellular trafficking of photoreceptors during lightinduced signal transduction in plants Ferenc Nagy 1,2, Stefan Kircher 3 and Eberhard Schäfer 3, * 1 Plant Biology Institute, Biological

More information

Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of Arabidopsis Phytochromes in Transgenic Plants W OA

Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of Arabidopsis Phytochromes in Transgenic Plants W OA The Plant Cell, Vol. 19: 2124 2139, July 2007, www.plantcell.org ª 2007 American Society of Plant Biologists Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of

More information

LECTURE 4: PHOTOTROPISM

LECTURE 4: PHOTOTROPISM http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ LECTURE 4: PHOTOTROPISM LECTURE FLOW 1. 2. 3. 4. 5. INTRODUCTION DEFINITION INITIAL STUDY PHOTROPISM MECHANISM PHOTORECEPTORS

More information

Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturationpce_

Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturationpce_ Plant, Cell and Environment (29) 32, 1297 139 doi:.1111/j.1365-34.29.1998.x Phytochromes differentially regulate seed germination responses to light quality and temperature cues during seed maturationpce_1998

More information

Phytochrome Evolution in Green and Nongreen Plants

Phytochrome Evolution in Green and Nongreen Plants Journal of Heredity 2005:96(3):1 8 doi:10.1093/jhered/esi032 Phytochrome Evolution in Green and Nongreen Plants S. MATHEWS Journal of Heredity Advance Access published February 4, 2005 From the Arnold

More information

Engineering light response pathways in crop plants for improved performance under high planting density

Engineering light response pathways in crop plants for improved performance under high planting density Engineering light response pathways in crop plants for improved performance under high planting density Tom Brutnell Boyce Thompson Institute for Plant Research Cornell University, Ithaca NY 6000 years

More information

Maternal effects alter natural selection on phytochromes through seed germination

Maternal effects alter natural selection on phytochromes through seed germination Journal of Ecology 2012, 100, 750 757 doi: 10.1111/j.1365-2745.2012.01954.x Maternal effects alter natural selection on phytochromes through seed germination Kathleen Donohue 1,2,, Deepak Barua 2,3, Colleen

More information

23-. Shoot and root development depend on ratio of IAA/CK

23-. Shoot and root development depend on ratio of IAA/CK Balance of Hormones regulate growth and development Environmental factors regulate hormone levels light- e.g. phototropism gravity- e.g. gravitropism temperature Mode of action of each hormone 1. Signal

More information

The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana

The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana Development 126, 4763-477 (1999) Printed in Great Britain The Company of Biologists Limited 1999 DEV248 4763 The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis

More information

Marcelo J. Yanovsky and Steve A. Kay

Marcelo J. Yanovsky and Steve A. Kay LIVING BY THE CALENDAR: HOW PLANTS KNOW WHEN TO FLOWER Marcelo J. Yanovsky and Steve A. Kay Reproductive processes in plants and animals are usually synchronized with favourable seasons of the year. It

More information

Light perception. phytochromes, cryptochromes, phototropins.

Light perception. phytochromes, cryptochromes, phototropins. Light perception phytochromes, cryptochromes, phototropins. all photoreceptors consist of proteins bound to light absorbing pigments i.e. chromophores. the spectral sensitivity of each photoreceptor depends

More information

Phytochrome Signaling Mechanisms

Phytochrome Signaling Mechanisms Phytochrome Signaling Mechanisms Authors: Jigang Li, Gang Li, Haiyang Wang, and Xing Wang Deng Source: The Arabidopsis Book, 2011(9) Published By: American Society of Plant Biologists URL: https://doi.org/10.1199/tab.0148

More information

Gravity, light and plant form

Gravity, light and plant form Plant, Cell and Environment {^997) 20, 796-800 Gravity, light and plant form R. P. HANGARTER Department of Biology, Indiana University, Bloomington, IN 47405, USA ABSTRACT Plants have evolved highly sensitive

More information

Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance between FLOWERING LOCUS C-Mediated Repression and Photoperiodic Induction of Flowering 1[W][OA] Amanda C. Wollenberg,

More information

Seeing without eyes-how plants learn from light

Seeing without eyes-how plants learn from light Seeing without eyes-how plants learn from light by STEPHEN DAY 1. INTRODUCTION Plants detect the intensity, direction, colour, and duration of light and use this information to regulate their growth and

More information

Light signals and the growth and development of plants a gentle introduction

Light signals and the growth and development of plants a gentle introduction The Plant Photobiology Notes 1 Light signals and the growth and development of plants a gentle introduction Pedro J. Aphalo Draft of May 21, 2001 Department of Biology and Faculty of Forestry University

More information

early in short days 4, a mutation in Arabidopsis that causes early flowering

early in short days 4, a mutation in Arabidopsis that causes early flowering Development 129, 5349-5361 2002 The Company of Biologists Ltd doi:10.1242/dev.00113 5349 early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mrna abundance of the

More information

Blue light affects many aspects of plant growth and development.

Blue light affects many aspects of plant growth and development. Plant blue-light receptors Chentao Lin Plants have several blue-light receptors, which regulate different aspects of growth and development. Recent studies have identified three such receptors: cryptochrome

More information

GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS

GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998. 49:345 70 Copyright c 1998 by Annual Reviews. All rights reserved GENETIC CONTROL OF FLOWERING TIME IN ARABIDOPSIS Maarten Koornneef, Carlos Alonso-Blanco,

More information

Elementary Processes of Photoperception by Phytochrome A for High-Irradiance Response of Hypocotyl Elongation in Arabidopsis 1,2

Elementary Processes of Photoperception by Phytochrome A for High-Irradiance Response of Hypocotyl Elongation in Arabidopsis 1,2 Plant Physiology, January 2000, Vol. 122, pp. 147 156, www.plantphysiol.org 2000 American Society of Plant Physiologists Elementary Processes of Photoperception by Phytochrome A for High-Irradiance Response

More information

Distinct regulation of CAB and PHYB gene expression by similar circadian clocks

Distinct regulation of CAB and PHYB gene expression by similar circadian clocks The Plant Journal (2002) 32, 529 537 Distinct regulation of CAB and PHYB gene expression by similar circadian clocks Anthony Hall 1,László Kozma-Bognár 2, Ruth M. Bastow 1,y, Ferenc Nagy 2 and Andrew J.

More information

Genetics: Published Articles Ahead of Print, published on March 6, 2009 as /genetics

Genetics: Published Articles Ahead of Print, published on March 6, 2009 as /genetics Genetics: Published Articles Ahead of Print, published on March 6, 2009 as 10.1534/genetics.108.099887 Blue light induces degradation of the negative regulator Phytochrome Interacting Factor 1 to promote

More information

Phytochrome A Regulates the Intracellular Distribution of Phototropin 1 Green Fluorescent Protein in Arabidopsis thaliana W

Phytochrome A Regulates the Intracellular Distribution of Phototropin 1 Green Fluorescent Protein in Arabidopsis thaliana W The Plant Cell, Vol. 20: 2835 2847, October 2008, www.plantcell.org ã 2008 American Society of Plant Biologists Phytochrome A Regulates the Intracellular Distribution of Phototropin 1 Green Fluorescent

More information

Chapter 39. Plant Response. AP Biology

Chapter 39. Plant Response. AP Biology Chapter 39. Plant Response 1 Plant Reactions Stimuli & a Stationary Life u animals respond to stimuli by changing behavior move toward positive stimuli move away from negative stimuli u plants respond

More information

Multiple inductive pathways control the timing of flowering. Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway

Multiple inductive pathways control the timing of flowering. Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway Multiple inductive pathways control the timing of flowering Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway Induction of flowering Multiple cues Photoperiodism Duration of the Light

More information

Functions of Phytochrome in Rice Growth and Development

Functions of Phytochrome in Rice Growth and Development Rice Science, 2011, 18(3): 231 237 Copyright 2011, China National Rice Research Institute Published by Elsevier BV. All rights reserved Functions of Phytochrome in Rice Growth and Development GU Jian-wei

More information

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry substances in Rice Seedlings

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry substances in Rice Seedlings Rice Science, 2013, 20(1): Copyright 2012, China National Rice Research Institute Published by Elsevier BV. All rights reserved Phytochromes are Involved in Elongation of Seminal Roots and Accumulation

More information

Matthew Hudson Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801

Matthew Hudson Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801 Photoreceptor Biotechnology Matthew Hudson Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801 I. Introduction and Background Plant photoreceptors influence or control almost all

More information

AP Biology Plant Control and Coordination

AP Biology Plant Control and Coordination AP Biology Plant Control and Coordination 1. What is the effect of the plant hormone ethylene on fruit ripening? 2. How does fruit change as it ripens? 3. What is the mechanism behind ripening? 4. Why

More information

Positive Regulation of Phytochrome B on Chlorophyll Biosynthesis and Chloroplast Development in Rice

Positive Regulation of Phytochrome B on Chlorophyll Biosynthesis and Chloroplast Development in Rice Rice Science, 2013, 20(4): 243 248 Copyright 2013, China National Rice Research Institute Published by Elsevier BV. All rights reserved DOI: 10.1016/S1672-6308(13)60133-X Positive Regulation of Phytochrome

More information

IN THE GARDEN PEA (Pisum sativum L.) James L. Weller. B. Sc. (Hans) Submitted in fulfilment of the requirements. for the degree of

IN THE GARDEN PEA (Pisum sativum L.) James L. Weller. B. Sc. (Hans) Submitted in fulfilment of the requirements. for the degree of CONTROL OF DEVELOPMENT BY PHITOCHROME IN THE GARDEN PEA (Pisum sativum L.) by James L. Weller B. Sc. (Hans) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Department

More information

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark

Cytokinin. Fig Cytokinin needed for growth of shoot apical meristem. F Cytokinin stimulates chloroplast development in the dark Cytokinin Abundant in young, dividing cells Shoot apical meristem Root apical meristem Synthesized in root tip, developing embryos, young leaves, fruits Transported passively via xylem into shoots from

More information

ANALYSIS OF PHYTOCHROME FUNCTION IN THE GENUS NICOTIANA USING MUTANT AND TRANSGENIC PLANTS. Thesis submitted for the degree of. Doctor of Philosophy

ANALYSIS OF PHYTOCHROME FUNCTION IN THE GENUS NICOTIANA USING MUTANT AND TRANSGENIC PLANTS. Thesis submitted for the degree of. Doctor of Philosophy ANALYSIS OF PHYTOCHROME FUNCTION IN THE GENUS NICOTIANA USING MUTANT AND TRANSGENIC PLANTS Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester by Matthew Eric Hudson,

More information

Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family

Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family GENES & DEVELOPMENT (2000) 14: 108 117 INTRODUCTION Flower Diagram INTRODUCTION Abscission In plant, the process by which a plant

More information

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry Substances in Rice Seedlings

Phytochromes are Involved in Elongation of Seminal Roots and Accumulation of Dry Substances in Rice Seedlings Rice Science, 2013, 20(2): 88 94 Copyright 2013, China National Rice Research Institute Published by Elsevier BV. All rights reserved DOI: 10.1016/S1672-6308(13)60115-8 Phytochromes are Involved in Elongation

More information

Title. Author(s)Kurata, Tetsuya; Yamamoto, Kotaro T. CitationJournal of Plant Physiology, 151(3): Issue Date Doc URL.

Title. Author(s)Kurata, Tetsuya; Yamamoto, Kotaro T. CitationJournal of Plant Physiology, 151(3): Issue Date Doc URL. Title Light-stimulated root elongation in Arabidopsis thal Author(s)Kurata, Tetsuya; Yamamoto, Kotaro T. CitationJournal of Plant Physiology, 151(3): 346-351 Issue Date 1997 Doc URL http://hdl.handle.net/2115/44841

More information

EMBO. Phytochrome-mediated photoperception and signal transduction in higher plants. reports. Eberhard Schäfer & Chris Bowler 1,+ Introduction

EMBO. Phytochrome-mediated photoperception and signal transduction in higher plants. reports. Eberhard Schäfer & Chris Bowler 1,+ Introduction EMBO reports Phytochrome-mediated photoperception and signal transduction in higher plants Eberhard Schäfer & Chris Bowler 1,+ Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1,

More information

Plant plant signalling, the shade-avoidance response and competition

Plant plant signalling, the shade-avoidance response and competition Journal of Experimental Botany, Vol. 50, No. 340, pp. 1629 1634, November 1999 Plant plant signalling, the shade-avoidance response and competition Pedro J. Aphalo1,3, Carlos L. Ballaré2 and Ana L. Scopel2

More information

Photomorphogenesis in Plants and Bacteria 3rd Edition

Photomorphogenesis in Plants and Bacteria 3rd Edition Photomorphogenesis in Plants and Bacteria 3rd Edition Function and Signal Transduction Mechanisms Eberhard Schäfer and Ferenc Nagy (Eds.) PHOTOMORPHOGENESIS IN PLANTS AND BACTERIA 3RD EDITION Photomorphogenesis

More information

PLANTS modulate their growth and development in

PLANTS modulate their growth and development in Copyright Ó 29 by the Genetics Society of America DOI: 1.1534/genetics.18.99887 Blue Light Induces Degradation of the Negative Regulator Phytochrome Interacting Factor 1 to Promote Photomorphogenic Development

More information

Phytochrome Signaling Mechanisms

Phytochrome Signaling Mechanisms Phytochrome Signaling Mechanisms Author(s) :Jigang Li, Gang Li, Haiyang Wang and Xing Wang Deng Source: The Arabidopsis Book, Number 9 2011. Published By: The American Society of Plant Biologists URL:

More information

Light perception and signalling by phytochrome A

Light perception and signalling by phytochrome A Journal of Experimental Botany, Vol. 65, No. 11, pp. 2835 2845, 2014 doi:10.1093/jxb/ert379 Advance Access publication 12 November, 2013 REVIEW PAPER Light perception and signalling by phytochrome A J.

More information

Diurnal Dependence of Growth Responses to Shade in Arabidopsis: Role of Hormone, Clock, and Light Signaling

Diurnal Dependence of Growth Responses to Shade in Arabidopsis: Role of Hormone, Clock, and Light Signaling RESEARCH ARTICLE Diurnal Dependence of Growth Responses to Shade in Arabidopsis: Role of Hormone, Clock, and Light Signaling Romina Sellaro, Manuel Pacín and Jorge J. Casal 1 IFEVA, Facultad de Agronomía,

More information

15. PHOTOPERIODISM. 1. Short day plants

15. PHOTOPERIODISM. 1. Short day plants 15. PHOTOPERIODISM Photoperiodism is the phenomenon of physiological changes that occur in plants in response to relative length of day and night (i.e. photoperiod). The response of the plants to the photoperiod,

More information

Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation

Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation The Plant Journal (1999) 17(3), 231 239 Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation Tania Page 1,, Richard Macknight 1,, Chang-Hsien Yang 2

More information

Said Saleh Hindi Husaineid. Genetic modification of shade-avoidance: overexpression of homologous phytochrome genes in tomato

Said Saleh Hindi Husaineid. Genetic modification of shade-avoidance: overexpression of homologous phytochrome genes in tomato Said Saleh Hindi Husaineid Genetic modification of shade-avoidance: overexpression of homologous phytochrome genes in tomato Proefschrift ter verkrijging van de graad van doctor op gezag van de rector

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts Effects of & Duration Review of Light Concepts Effects of and Duration on Greenhouse Crops Roberto Lopez Light is a form of energy referred to as electromagnetic radiation. The amount of energy of each

More information

Flowering Time Control in Plants -How plants know the time to flower?

Flowering Time Control in Plants -How plants know the time to flower? Advanced Molecular and Cell Biology II, 2015/12/04 Flowering Time Control in Plants -How plants know the time to flower? Masaki NIWA Grad. Sch. Biostudies, Kyoto Univ. Why can plants bloom every year in

More information

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model Chapter 39 Plants Response Plant Reactions Stimuli & a Stationary life Animals respond to stimuli by changing behavior Move toward positive stimuli Move away from negative stimuli Plants respond to stimuli

More information

Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-a expressed in different tissues

Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-a expressed in different tissues Research Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-a expressed in different tissues Daniel Kirchenbauer 1 *, Andras Viczian 2 *, Eva Adam 2, Zoltan

More information

Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in Arabidopsis W

Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in Arabidopsis W The Plant Cell, Vol. 21: 2624 2641, September 2009, www.plantcell.org ã 2009 American Society of Plant Biologists Cryptochromes, Phytochromes, and COP1 Regulate Light-Controlled Stomatal Development in

More information

Utilizing Illumina high-throughput sequencing technology to gain insights into small RNA biogenesis and function

Utilizing Illumina high-throughput sequencing technology to gain insights into small RNA biogenesis and function Utilizing Illumina high-throughput sequencing technology to gain insights into small RNA biogenesis and function Brian D. Gregory Department of Biology Penn Genome Frontiers Institute University of Pennsylvania

More information

LIGHT SIGNAL TRANSDUCTION IN HIGHER PLANTS

LIGHT SIGNAL TRANSDUCTION IN HIGHER PLANTS Annu. Rev. Genet. 2004. 38:87 117 doi: 10.1146/annurev.genet.38.072902.092259 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on June 11, 2004 LIGHT

More information

Light-regulated nucleo-cytoplasmic partitioning of phytochromes

Light-regulated nucleo-cytoplasmic partitioning of phytochromes Journal of Experimental Botany, Vol. 58, No. 12, pp. 3113 3124, 2007 doi:10.1093/jxb/erm145 Advance Access publication 27 September, 2007 FOCUS PAPER Light-regulated nucleo-cytoplasmic partitioning of

More information

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING.

16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. 16. TRANSMISSION OF STIMULUS - THEORIES OF FLOWERING. Photoperiodic Induction The influence of the length of day and night on the initiation of flowering is called photoperiodic induction or photo induction.

More information

The phytochromes, a family of red/far-red absorbing photoreceptors

The phytochromes, a family of red/far-red absorbing photoreceptors JBC Papers in Press. Published on February 16, 2001 as Manuscript R100006200 The phytochromes, a family of red/far-red absorbing photoreceptors Christian Fankhauser Department of Molecular Biology University

More information

LECTURE 04: PHYTOCHROME

LECTURE 04: PHYTOCHROME http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ Password: LECTURE 04: PHYTOCHROME Photoreversibility is the most distinctive property of phytochrome 9/19/2017 1 LECTURE OUTCOMES

More information

Responses to Light. Responses to Light

Responses to Light. Responses to Light Sensory Systems in Plants Chapter 41 Pigments other than those used in photosynthesis can detect light and mediate the plant s response to it Photomorphogenesis refers to nondirectional, light-triggered

More information

Biological Rhythms and Photoperiodism in Plants

Biological Rhythms and Photoperiodism in Plants P.J. LUMSDEN Department ofapplied Biology, University of Central Lancashire, Preston PRl 2HE, UK AJ. MILLAR Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK Biological Rhythms

More information

Plant Responses to Internal and External Signals

Plant Responses to Internal and External Signals LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 39 Plant Responses to Internal

More information

Blue Light Receptors and Signal Transduction

Blue Light Receptors and Signal Transduction The Plant Cell, S207 S225, Supplement 2002, www.plantcell.org 2002 American Society of Plant Biologists Blue Light Receptors and Signal Transduction Chentao Lin 1 Department of Molecular, Cell and Developmental

More information

The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling

The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling The Plant Journal (2003) 34, 161±171 The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling Don Ha Park y, Pyung Ok Lim y, Jeong Sik Kim, Dae

More information

Molecular mechanisms for mediating light-dependent nucleo/ cytoplasmic partitioning of phytochrome photoreceptors

Molecular mechanisms for mediating light-dependent nucleo/ cytoplasmic partitioning of phytochrome photoreceptors Review Molecular mechanisms for mediating light-dependent nucleo/ cytoplasmic partitioning of phytochrome photoreceptors Author for correspondence: Ferenc Nagy Tel: +36 62599718 Email: nagy.ferenc@brc.mta.hu

More information

Chapter 39 Plant Responses to Internal and External Signals

Chapter 39 Plant Responses to Internal and External Signals Chapter 39 Plant Responses to Internal and External Signals Overview: Stimuli and a Stationary Life Plants, being rooted to the ground, must respond to whatever environmental change comes their way For

More information

The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana

The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana The Circadian Clock Regulates the Photoperiodic Response of Hypocotyl Elongation through a Coincidence Mechanism in Arabidopsis thaliana Yusuke Niwa, Takafumi Yamashino * and Takeshi Mizuno Laboratory

More information

Review Article Fluorescence and Photochemical Investigations of Phytochrome in Higher Plants

Review Article Fluorescence and Photochemical Investigations of Phytochrome in Higher Plants Journal of Botany Volume, Article ID 587, 5 pages doi:.55//587 Review Article Fluorescence and Photochemical Investigations of Phytochrome in Higher Plants Vitaly A. Sineshchekov Physico-Chemical Biology,

More information

From seed germination to flowering, light controls plant development via the pigment phytochrome

From seed germination to flowering, light controls plant development via the pigment phytochrome Proc. Natl. Acad. Sci. USA Vol. 93, pp. 12066-12071, October 1996 Symposium Paper This paper was presented at a symposium entitled "Frontiers in Plant Biology: How Plants Communicate" organized by Hans

More information

A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis

A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time Control in Arabidopsis The Plant Cell, Vol. 14, 3043 3056, December 2002, www.plantcell.org 2002 American Society of Plant Biologists A Phytochrome-Associated Protein Phosphatase 2A Modulates Light Signals in Flowering Time

More information

Sensory Systems in Plants

Sensory Systems in Plants Sensory Systems in Plants 1. If temperatures suddenly rise 5 to 10º C, proteins are produced to help stabilize other proteins. 2. Rapid turgor pressure changes in specialized multicellular swellings called

More information