Towards a dynamic model of the Arabidopsis meristem

Size: px
Start display at page:

Download "Towards a dynamic model of the Arabidopsis meristem"

Transcription

1 F S P M 0 4 Towards a dynamic model of the Arabidopsis meristem Pierre Barbier de Reuille 1, Jan Traas 2, Christophe Godin 3 1 INRA, UMR AMAP Montpellier 2 INRA, Laboratoire de biologie cellulaire de Versailles 3 INRIA, UMR AMAP Montpellier Introduction Shoot apical meristems (SAMs) are populations of dividing, undifferentiated cells that generate organs at the tips of stems and branches throughout the life of the plant. As they define the number, type and position of lateral organs, meristems are the basis of plant architecture, allowing plants to adapt their development to their environment. In particular during the last decade, an impressive body of knowledge concerning shoot apical meristem function has been generated. This concerns information on the genes involved, their expression patterns, cell differentiation, cell division patterns, etc. The complexity of these data is such that an integrated view of meristem function is not yet possible. Therefore, adapted mathematical and informatics approaches are now required to integrate the knowledge in such a way that it can advance the level of understanding in the field. To formulate and test hypotheses on spatial and temporal aspects such as flows of signalling molecules between cells, strain within tissues, and the role of gene products in the spatial control of cell proliferation, we are creating a virtual meristem that will integrate as much spatial, dynamic and quantitative information as possible. Material and methods Meristems were observed using confocal microscopy. The protocol output is a series of 2D optical sections regularly spaced along the z axis. We typically obtain several stacks of 2D images taken during 2 to 4 days. The method hereafter describes how the 3D structure of these meristems can be reconstructed from these raw images. In this initial analysis, we focussed on the reconstruction of outer cell layer (L1) of the apical dome and disregarded the meristem internal cells. All computer tools needed at each stage of the meristem reconstruction and analysis were gathered into a software dedicated to virtual meristem analysis. Plant material and growth conditions Wild type plants of the WS ecotype were used in this study. As the meristem is usually hidden by the leaves and flowers, the plants were first grown on a medium with NPA (Naphtyl Phtalamic Acid) to inhibit organ production [14]. In the presence of the drug, these plants produce a naked stem, without flower primordia. When these treated plants are put on medium without NPA, they spontaneously reform new organ primordia. The regenerating meristems can then be easily viewed in the microscope. For this purpose, they are stained using a fluorescent membrane specific dye and subsequently observed in a confocal microscope for several days. The protocol and the plants are completely described in [11]. 3D meristem digitizing The experimental protocol produces a sequence of 3D meristem images of the same meristem at different dates, each 3D image consisting of a stack of 2D images. Each 2D image of a stack represents a picture of a slice of the meristem at some altitude z (the slices are 0.4µm thick and are taken every 2µm). On each image, the information coming exclusively from the meristem surface was extracted. To this end, we computed for each image a transparency mask (also called alpha mask), defining pixels that most probably belong to the surface. The intensity of pixels in the final image was computed as a combination of pixels from the different transparency masks. To determine the altitude of the pixels in the resulting image, we selected the altitude of the highest pixel in the stack with intensity close 4th International Workshop on Functional-Structural Plant Models, 7-11 june 2004 Montpellier, France Edited by C. Godin et al., pp

2 372 P. Barbier de Reuille et al. enough to the one in the final image. Figure 1 gives an example of a stack of images and the resulting reconstructed 2D image corresponding to a top view projection of the meristem. From this reconstructed image of the meristem surface, the cellular structure of layer L1 was extracted by vectorizing the cell walls. This digitizing operation was done by hand. The cell digitizing output is a graph of cells with the geometry and topology (adjacency relationships) of each cell in 3D. Reconstruction of dynamic sequences of meristems At each date, a graph representing the cells of layer L1 was obtained similarly. A sequence of meristem images typically contained 4 to 8 images, taken at 12 to 24 hours time intervals. The cell lineage between the successive graphs at each date was then reconstructed by defining manually the lineage relationships between cells of consecutive images. Since the analysis of a time sequence of meristem structures is particularly complex, we created movies of meristem growth by computing intermediate images based on a linear interpolation of each cell growth between consecutive dates. Data analysis and visualisation These virtual 4D reconstructions of observed meristems were analyzed using a software specially developed for this purpose. This software was intended to ease manual digitizing operations and to enable the analysis of meristem complex structures in space and time. Tools contained in the virtual meristem software (VIM) include: - Tools to analyse their geometry: surface (2D, 3D), curvature (3D), connectivity (2D, 3D) of the cells (example illustrated in Figure 3), etc. - Statistical analysis tools using the R module under the python language. - 2D visualisation tools: the Qt toolkit augmented by home-made functions and GnuPlot for the data analysis visualisation, depending on which is the easier to use. - 3D visualisation tools developed in our laboratory: PlantGL (formerly GEOM, see [2]). Currently, PlantGL is used as an external program: VIM generates PlantGL files which can be opened by the PlantGL viewer. Design of a virtual meristem Our general objective is to design a virtual meristem that would enable us to test in silico various hypotheses about the interaction between the physiological processes that drive the cell growth and division, and the emergence of a macroscopic form (apparition of primordia, phyllotaxy) were these physiological processes take place. In this paper, we describe two major problems that we had to address to achieve this goal : i) define a simplified representation of the meristem at cellular resolution, ii) find a formalism to express the physical and physiological interaction of the cells within the meristematic dome. Simplified representation of the virtual meristem The simulation of a meristem growth requires that simplifications are introduced in the meristem representation to express growth using simple rules. Our approach is based on a method initially tested by Hisao Honda on 2D representations of animal cells ([12],[13]). This approach uses Voronoi complexes (named Dirichlet domains in 2D). In this model, each cell is described by a single 3D point and the connectivity and dimensions of the cells are derived by the construction of the Voronoi complex (see [1] for the construction method and the properties of Voronoi complexes). This approach greatly simplifies the modelling problem, as the development of the meristematic tissue is reduced to the description of the development of a set of 3D points throughout time. Growth formalism Meristem structures represented as Voronoi complexes correspond to particular types of dynamical systems. In such systems, not only the value of the system state changes throughout time but also its structure. To emphasize this unusual property, Giavitto et al. [16] denoted this type of structure a dynamical system with dynamic structure (DS 2 ). The modelling of such systems requires special types of modelling paradigm. L-systems are an example of such a paradigm successfully applied to developing sequences or branching patterns [17]. To tackle the development of more complex SESSION 7 ORAL PRESENTATIONS

3 Towards a dynamic model of the Arabidopsis meristem 373 structures, Giavitto and Michel introduced a new type of rewriting system, that can be applied to the development of more general structures like arrays, Voronoi complexes or graphs, and designed a special language for it. This language is called MGS ([9], [10]). In this study, we considered the use of MGS to express the biological knowledge about the meristem growth. MGS allows us to express directly the time variation of a Delaunay graph 1 with simple expressions taking into account the topology of the meristem structure. The language for instance allows us to express cell growth, cell division and exchange of substances between cells using simple declarative rules. A first prototype of a simple virtual meristem (a moss-like meristem) using this approach was designed in order to assess the overall adequation of MGS to the modelling of developmental structures like meristems (see Figure 4). Based on these first encouraging results, we envisage to apply this modelling framework to Arabidopsis meristems, represented as Voronoi complexes. We thank Jean-Louis Giavitto and Olivier Michel for their help in the dynamical part of the study, especially with the modelling of the simple meristem shown in Figure 4. References [1] Jean-Daniel Boissonnat and Mariette Yvinec. Géométrie algorithmique. Ediscience international, [2] Frédéric Boudon, Christophe Nouguier, and Christophe Godin. GEOM Module manual: I User guide. GEOM Module manual: II Developper guide. CIRAD, March [3] Dorota Kwiatkowska and Jacques Dumais. Growth and morphogenesis at the vegetative shoot apex of Anagallis arvensis L.. Journal of Experimental Botany, Vol. 54, No. 387, pp. 1585±1595, June 2003 [4] Louis Bravais and Auguste Bravais. Essai sur la disposition des feuilles curvisériées. Annales des Sciences Naturelles, 7: , [5] Louis Bravais and Auguste Bravais. Essai sur la disposition symétrique des inflorescences. Annales des Sciences Naturelles, 8: 11 42, [6] Stéphane Douady and Yves Couder. Phyllotaxis as a dynamical self organizing process. part i: The spiral modes resulting from time-periodic iterations. Journal of theoretical Biology, (178): , [7] Stéphane Douady and Yves Couder. Phyllotaxis as a dynamical self organizing process. part ii: Tthe spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. Journal of theoretical Biology, (178): , [8] Stéphane Douady and Yves Couder. Phyllotaxis as a dynamical self organizing process. part iii: The simulation of the transient regimes of ontogeny. Journal of theoretical Biology, (178): , [9] Jean-Louis Giavitto and Olivier Michel. Mgs: a programming language for the transformations of topological collections. Technical report, LaMI, May [10] Jean-Louis Giavitto and Olivier Michel. Mgs: a ruled-based language for complex objects and collections. Electronic Notes in Theoretical Computer Science, 59(4), [11] Oliver Grandjean, Teva Vernoux, Patrick Laufs, Katia Belcram, Yuki Mizukami, and Jan Traas. In vivo analysis of cell division, cell growth and differentiation at the shoot apical meristem in arabidopsis. The Plant Cell, in press. [12] Hisao Honda. Descrption of cellular patterns by dirichlet domains: The two-dimensional case. Journal of theoretical Biology, (72): , [13] Hisao Honda. Geometrical models for cells in tissues. International review of cytology, 81: , [14] K. Okada, J. Ueda, M.K. Komaki, C.J. Bell, and Y. Shimura. Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation. Plant Cell, 3: , A Delaunay graph express the connectivity relationship in a Voronoi complex

4 374 P. Barbier de Reuille et al. [15] Luc Vincent and Pierre Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6): , June [16] Giavitto, J.L., Godin, C., Michel, O. et Prusinkiewicz, P., Computational models for integrative and developmental biology. In: Actes du Colloque Modélisation et simulation de processus biologiques dans le contexte de la génomique, Autrans, France 17-21/03/2002; pp. 43 [17] Prusinkiewicz, P., Modeling of spatial structure and development of plants: a review. Scientia Horticulturae, 74: Figure 1: Construction of the projection. The left-hand side mosaic shows the different optical sections as given by the confocal microscope. The top left image is the most apical one the bottom right image is the most basal one. The right-hand side image shows the reconstructed projection of the meristem surface. Figure 2: 3D reconstruction of the meristems. The colour varies with the position of the cell on the z axis, blue for the most basal positions, red for highest, green for median. Figure 3: Connexity visualisation on the 3D meristems. Red cells have a high number of neighbours when blue ones have very few neighbours. We see, in that meristem, disconnected highly connected cells. SESSION 7 ORAL PRESENTATIONS

5 Towards a dynamic model of the Arabidopsis meristem 375 Figure 4: Modelling principle of the growth of a 3D virtual meristem using the MGS language. In this simple system, the blue cell represents the only meristematic cell. It divides on one side then on the other regularly. Its daughters divide two more times so that each division gives 3 non-meristematic cells. The daughter cells grow continuously afterward. Rules are of the following form: c / dividing( c) left( c) child_left( c), child_center( c) c / dividing( c) right( c) child_center( c),child_right( c) c / dividing( c) grow( c)

From Genome to Phenotype: Modeling the interaction of physical and chemical signals in plant meristems. Meyerowitz Lab and many collaborators

From Genome to Phenotype: Modeling the interaction of physical and chemical signals in plant meristems. Meyerowitz Lab and many collaborators From Genome to Phenotype: Modeling the interaction of physical and chemical signals in plant meristems Meyerowitz Lab and many collaborators Needs to understand tissues, morphogenesis and development:

More information

Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot

Morphogenesis at the inflorescence shoot apex of Anagallis arvensis: surface geometry and growth in comparison with the vegetative shoot Journal of Experimental Botany, Vol. 60, No. 12, pp. 3407 3418, 2009 doi:10.1093/jxb/erp176 Advance Access publication 9 June, 2009 This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html

More information

The mode of development in animals and plants is different

The mode of development in animals and plants is different The mode of development in animals and plants is different Outcome of animal embryogenesis is a mini edition of the adult Outcome of plant embryogenesis is a simple structure with -root apical meristem

More information

Modelling the relationships between growth and assimilates partitioning from the organ to the whole plant

Modelling the relationships between growth and assimilates partitioning from the organ to the whole plant F S P M 0 4 Modelling the relationships between growth and assimilates partitioning from the organ to the whole plant Jean-Louis Drouet 1, Loïc Pagès 2, Valérie Serra 2 1 UMR INRA-INAPG Environnement et

More information

Integrating Markov Chain Models and L-systems to Simulate the Architectural Development of Apple Trees

Integrating Markov Chain Models and L-systems to Simulate the Architectural Development of Apple Trees Integrating Markov Chain Models and L-systems to Simulate the Architectural Development of Apple Trees M. Renton *, E. Costes *, Y. Guédon ** and C. Godin ** * UMR Unité Mixte de Recherche *UMR BEPC INRA/AgroM/CIRAD/IRD,

More information

The Geometric and Dynamic Essence of Phyllotaxis

The Geometric and Dynamic Essence of Phyllotaxis Math. Model. Nat. Phenom. Vol. 6, No. 2, 20, pp. 1 16 DOI:./mmnp/20620 The Geometric and Dynamic Essence of Phyllotaxis P. Atela Department of Mathematics, Smith College, Northampton, MA 06, USA Abstract.

More information

Supplemental Data. Wang et al. (2014). Plant Cell /tpc

Supplemental Data. Wang et al. (2014). Plant Cell /tpc Supplemental Figure1: Mock and NPA-treated tomato plants. (A) NPA treated tomato (cv. Moneymaker) developed a pin-like inflorescence (arrowhead). (B) Comparison of first and second leaves from mock and

More information

Molecular Genetics of. Plant Development STEPHEN H. HOWELL CAMBRIDGE UNIVERSITY PRESS

Molecular Genetics of. Plant Development STEPHEN H. HOWELL CAMBRIDGE UNIVERSITY PRESS Molecular Genetics of Plant Development STEPHEN H. HOWELL CAMBRIDGE UNIVERSITY PRESS Contents Preface A Word on Genetic Nomenclature page xiii xvii 1 Approaches to the Study of Plant Development 1 Pattern

More information

Computer simulations reveal novel properties of the cell-cell signaling network at the shoot apex in Arabidopsis.

Computer simulations reveal novel properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Computer simulations reveal novel properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Pierre Barbier de Reuille (1), Isabelle Bohn-Courseau (1), Karen Ljung, Halima Morin, Nicola

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature12791 Supplementary Figure 1 (1/3) WWW.NATURE.COM/NATURE 1 RESEARCH SUPPLEMENTARY INFORMATION Supplementary Figure 1 (2/3) 2 WWW.NATURE.COM/NATURE SUPPLEMENTARY

More information

Progress in modeling biological development as it bears on SBML

Progress in modeling biological development as it bears on SBML Progress in modeling biological development as it bears on SBML Eric Mjolsness UC Irvine representing the Computable Plant project www.computableplant.org Three relevant examples Meristem maintenance by

More information

Modelling meristem development in plants

Modelling meristem development in plants Modelling meristem development in plants Heisler, Marcus G.; Jönsson, Henrik Published in: Current Opinion in Plant Biology DOI: 10.1016/j.pbi.2006.11.005 2007 Link to publication Citation for published

More information

Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana

Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana Research article 4225 Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana G. Venugopala Reddy 1, Marcus G. Heisler 1, David

More information

Plants are sessile. 10d-17/giraffe-grazing.jpg

Plants are sessile.   10d-17/giraffe-grazing.jpg Plants are sessile www.mccullagh.org/db9/ 10d-17/giraffe-grazing.jpg Plants have distinct requirements because of their sessile nature Organism-level requirements Must adjust to environment at given location

More information

Actions of auxin. Hormones: communicating with chemicals History: Discovery of a growth substance (hormone- auxin)

Actions of auxin. Hormones: communicating with chemicals History: Discovery of a growth substance (hormone- auxin) Hormones: communicating with chemicals History- discovery of plant hormone. Auxin Concepts of hormones Auxin levels are regulated by synthesis/degradation, transport, compartmentation, conjugation. Polar

More information

Plant Structure, Growth, and Development

Plant Structure, Growth, and Development Plant Structure, Growth, and Development Plant hierarchy: Cells Tissue: group of similar cells with similar function: Dermal, Ground, Vascular Organs: multiple kinds of tissue, very diverse function Organ

More information

Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution.

Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution Frédéric Boudon, Jérôme Chopard, Olivier Ali, Benjamin Gilles, Olivier Hamant, Arezki Boudaoud, Jan

More information

BIO1PS 2012 Plant Science Lecture 4 Hormones Pt. I

BIO1PS 2012 Plant Science Lecture 4 Hormones Pt. I BIO1PS 2012 Plant Science Lecture 4 Hormones Pt. I Dr. Michael Emmerling Department of Botany Room 410 m.emmerling@latrobe.edu.au Hormones and Ghost gum Eucalyptus papuana Coordination ~3 Lectures Leaves

More information

Using fs-laser pulses to selectively kill specific cells inside tomato meristems Investigation of leaf patterning

Using fs-laser pulses to selectively kill specific cells inside tomato meristems Investigation of leaf patterning Using fs-laser pulses to selectively kill specific cells inside tomato meristems Investigation of leaf patterning Dominik Marti, Yamini Deb, Cris Kuhlemeier, Martin Frenz Institute of Applied Physics Institute

More information

Catherine Massonnet (1,*), Jean-Luc Regnard (1), Boris Adam (2), Hervé Sinoquet (2), Evelyne Costes (1)

Catherine Massonnet (1,*), Jean-Luc Regnard (1), Boris Adam (2), Hervé Sinoquet (2), Evelyne Costes (1) F S P M 4 Within-tree diurnal evolution of net photosynthesis and transpiration of fruiting branches in two apple cultivars : influence of branch structure, geometry and orientation - a structure-function

More information

Shoot Apex Development at Various Stages of Flowering in Sugarcane (Saccharum spp. hybrid)

Shoot Apex Development at Various Stages of Flowering in Sugarcane (Saccharum spp. hybrid) 2008 The Japan Mendel Society Cytologia 73(2): 173 177, 2008 Shoot Apex Development at Various Stages of Flowering in Sugarcane (Saccharum spp. hybrid) M. Swapna* and Praveen Kumer Singh Division of Crop

More information

Essential idea: Plants adapt their growth to environmental conditions.

Essential idea: Plants adapt their growth to environmental conditions. 9.3 Growth in plants AHL https://c1.staticflickr.com/3/2347/2573372542_a959ecfd4f_b.jpg Essential idea: Plants adapt their growth to environmental conditions. Boxwood, Pivet and Yew are plants commonly

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2/1/e1500989/dc1 Supplementary Materials for An epidermis-driven mechanism positions and scales stem cell niches in plants Jérémy Gruel, Benoit Landrein, Paul Tarr,

More information

Apical dominance models can generate basipetal patterns of bud activation

Apical dominance models can generate basipetal patterns of bud activation Apical dominance models can generate basipetal patterns of bud activation Przemyslaw Prusinkiewicz 1, Richard S. Smith 1 and Ottoline Leyser 2 1 Department of Computer Science, University of Calgary 2

More information

Phyllotaxis DEVELOPMENT. Jan Traas*

Phyllotaxis DEVELOPMENT. Jan Traas* AT A GLANCE 249 Development 140, 249-253 (2013) doi:10.1242/dev.074740 2013. Published by The Company of Biologists Ltd Phyllotaxis Jan Traas* Summary The precise arrangement of plant organs, also called

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT Root, stem leaves, flower, fruits and seeds arise in orderly manner in plants. The sequence of growth is as follows-

More information

Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley

Integrative Biology 200A PRINCIPLES OF PHYLOGENETICS Spring 2012 University of California, Berkeley Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley B.D. Mishler Feb. 7, 2012. Morphological data IV -- ontogeny & structure of plants The last frontier

More information

Phyllotaxis as a Dynamical Self Organizing Process Part III: The Simulation of the Transient Regimes of Ontogeny

Phyllotaxis as a Dynamical Self Organizing Process Part III: The Simulation of the Transient Regimes of Ontogeny J. theor. Biol. (1996) 178, 295 312 Phyllotaxis as a Dynamical Self Organizing Process Part III: The Simulation of the Transient Regimes of Ontogeny Laboratoire de Physique Statistique, 24 rue Lhomond,

More information

TOPIC 9.3 GROWTH IN PLANTS

TOPIC 9.3 GROWTH IN PLANTS TOPIC 9.3 GROWTH IN PLANTS 9.3 A Growth INTRO http://cdn2.hubspot.net/hubfs/18130/social-suggested-images/plant_growing.jpeg IB BIO 9.3 3 In general, plants are able to grow indeterminately. This means

More information

Primary Plant Body: Embryogenesis and the Seedling

Primary Plant Body: Embryogenesis and the Seedling BIOL 221 Concepts of Botany Primary Plant Body: Embryogenesis and the Seedling (Photo Atlas: Figures 1.29, 9.147, 9.148, 9.149, 9.150, 9.1, 9.2) A. Introduction Plants are composed of fewer cell types,

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

Plant Structure and Organization - 1

Plant Structure and Organization - 1 Plant Structure and Organization - 1 In our first unit of Biology 203 we will focus on the structure and function of the higher plants, in particular the angiosperms, or flowering plants. We will look

More information

Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family

Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family Leucine-rich repeat receptor-like kinases (LRR-RLKs), HAESA, ERECTA-family GENES & DEVELOPMENT (2000) 14: 108 117 INTRODUCTION Flower Diagram INTRODUCTION Abscission In plant, the process by which a plant

More information

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package COURSE INFORMATION Is this a new course or a proposed modification to an existing course? Please check the appropriate box.

More information

CONTROL SYSTEMS IN PLANTS

CONTROL SYSTEMS IN PLANTS AP BIOLOGY PLANTS FORM & FUNCTION ACTIVITY #5 NAME DATE HOUR CONTROL SYSTEMS IN PLANTS HORMONES MECHANISM FOR HORMONE ACTION Plant Form and Function Activity #5 page 1 CONTROL OF CELL ELONGATION Plant

More information

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS

UNIT 6 - STRUCTURES OF FLOWERING PLANTS & THEIR FUNCTIONS 6.1 Plant Tissues A tissue is a group of cells with common function, structures or both. In plants we can find 2 types of tissues: Meristem Permanent tissues Meristem is found in regions with continuous

More information

Animal Cell Organelles. Plant Cell. Organelle. Cell Wall. Chloroplasts. Vacuole

Animal Cell Organelles. Plant Cell. Organelle. Cell Wall. Chloroplasts. Vacuole Cell Biology Higher Electron vs Light Microscope Light use light and lenses to magnify specimen Electron use a beam of electrons to form an image Electron higher magnification and higher resolution Electron

More information

Cutting Propagation. Is the clonal multiplication of plants with propagules of stems, leaves or roots.

Cutting Propagation. Is the clonal multiplication of plants with propagules of stems, leaves or roots. Principles of Propagation by Cuttings Dr. Fred Davies Department of Horticultural Sciences Texas A&M University College Station, Texas Cutting Propagation Shoot Adventitious Buds & Shoots Bud Is the clonal

More information

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid

Major Plant Hormones 1.Auxins 2.Cytokinins 3.Gibberelins 4.Ethylene 5.Abscisic acid Plant Hormones Lecture 9: Control Systems in Plants What is a Plant Hormone? Compound produced by one part of an organism that is translocated to other parts where it triggers a response in target cells

More information

THE method of operating upon stem apices and leaf primordia which we have

THE method of operating upon stem apices and leaf primordia which we have THE DETERMINATION OF AXILLARY BUDS BY MARY SNOW AND R. SNOW (With 10 figures in the text) THE method of operating upon stem apices and leaf primordia which we have practised for other purposes (1931, 1935)

More information

An introduction to modelling flower primordium initiation

An introduction to modelling flower primordium initiation An introduction to modelling flower primordium initiation Christophe Godin, Eugenio Azpeitia, Etienne Farcot To cite this version: Christophe Godin, Eugenio Azpeitia, Etienne Farcot. An introduction to

More information

Outline. Leaf Development. Leaf Structure - Morphology. Leaf Structure - Morphology

Outline. Leaf Development. Leaf Structure - Morphology. Leaf Structure - Morphology Outline 1. Leaf Structure: Morphology & Anatomy 2. Leaf Development A. Anatomy B. Sector analysis C. Leaf Development Leaf Structure - Morphology Leaf Structure - Morphology 1 Leaf Structure - Morphology

More information

A developmental geneticist s guide to roots Find out about the hidden half of plants

A developmental geneticist s guide to roots Find out about the hidden half of plants the Centre for Plant Integrative Biology A developmental geneticist s guide to roots Find out about the hidden half of plants What do roots look like from the inside? How do roots form? Can we improve

More information

Lecture 4: Radial Patterning and Intercellular Communication.

Lecture 4: Radial Patterning and Intercellular Communication. Lecture 4: Radial Patterning and Intercellular Communication. Summary: Description of the structure of plasmodesmata, and the demonstration of selective movement of solutes and large molecules between

More information

Finding the Center of a Phyllotactic Pattern

Finding the Center of a Phyllotactic Pattern Finding the Center of a Phyllotactic Pattern Scott Hotton Department of Mathematics and Statistics, Miami University, Oxford, OH 45056 Abstract: The calculation of divergence angles between primordia in

More information

Developmental Biology Lecture Outlines

Developmental Biology Lecture Outlines Developmental Biology Lecture Outlines Lecture 01: Introduction Course content Developmental Biology Obsolete hypotheses Current theory Lecture 02: Gametogenesis Spermatozoa Spermatozoon function Spermatozoon

More information

The Shoot System: Primary Stem Structure - 1

The Shoot System: Primary Stem Structure - 1 The Shoot System: Primary Stem Structure - 1 Shoot System The shoot system comprises the leaves and stems of plants. Leaves are located at nodes on the stem; the distance along the stem between nodes is

More information

Apple bud histology: A tool to study floral bud development in relation to biennial bearing

Apple bud histology: A tool to study floral bud development in relation to biennial bearing Apple bud histology: A tool to study floral bud development in relation to biennial bearing Anton Milyaev, Julian Kofler, Henryk Flachowsky, Magda-Viola Hanke, Jens-Norbert Wünsche DGG-Proceedings, Vol.

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Botany Physiology Name C/By Due Date Code Period Earned Points Bot Phys 5N5 Stem Forms Bot Phys 5-05 Identify the major forms of stems in plants I. Identify the major forms of stems in plants A. internal

More information

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip Topic 14. The Root System Introduction. This is the first of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

There is strong evidence that active auxin transport, generated

There is strong evidence that active auxin transport, generated Computer simulations reveal properties of the cell cell signaling network at the shoot apex in Arabidopsis Pierre Barbier de Reuille*, Isabelle Bohn-Courseau, Karin Ljung, Halima Morin, Nicola Carraro,

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

7. Summary of avocado tree architecture.

7. Summary of avocado tree architecture. 53 7. Summary of avocado tree architecture. Architectural tree models, defined by F. Hallé, R.A.A. Oldeman and P.B. Tomlinson (1978), are relatively new concepts in plant morphology that have gained wide

More information

Lab Exercise 4: Primary Growth and Tissues in Stems

Lab Exercise 4: Primary Growth and Tissues in Stems Lab Exercise 4: Primary Growth and Tissues in Stems Tissues of the plant body can be classified in a variety of ways: functionally (based on the tissue function, e.g. vascular tissue ), morphologically

More information

8.1 Life is cellular

8.1 Life is cellular 8.1 Life is cellular Early Microscopes In 1665, Englishman Robert Hooke used a microscope to look at a slice of cork. Cork was made of tiny, empty chambers that Hooke called cells. Anton van Leeuwenhoek

More information

Roots and Soil Chapter 5

Roots and Soil Chapter 5 Roots and Soil Chapter 5 Plant Organs Plant organs are groups of several types of tissues that together perform a particular function. Vegetative organs roots, stems, leaves make and use food, absorb water

More information

TREES. Functions, structure, physiology

TREES. Functions, structure, physiology TREES Functions, structure, physiology Trees in Agroecosystems - 1 Microclimate effects lower soil temperature alter soil moisture reduce temperature fluctuations Maintain or increase soil fertility biological

More information

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , ,

Plant Tissues and Organs. Topic 13 Plant Science Subtopics , , Plant Tissues and Organs Topic 13 Plant Science Subtopics 13.1.2, 13.1.3, 13.1.4 Objectives: List and describe the major plant organs their structure and function List and describe the major types of plant

More information

Phyllotaxis dynamics: A study of transitions between plant patterns

Phyllotaxis dynamics: A study of transitions between plant patterns A Division III Thesis by Luke Grecki For the School of Natural Science Phyllotaxis dynamics: A study of transitions between plant patterns Chairperson: Ken Hoffman Member: Lee Spector Member: Christophe

More information

Fibonacci Patterns in Plants

Fibonacci Patterns in Plants Fibonacci Patterns in Plants Matt Pennybacker Alan Newell Zhiying Sun Patrick Shipman The University of Arizona 29 March 2010 Matt Pennybacker, The University of Arizona Fibonacci Patterns 1/12 An Example

More information

Foundation Cell Biology

Foundation Cell Biology Foundation Cell Biology Electron vs Light Microscope Light use light and lenses to magnify specimen Electron use a beam of electrons to form an image Electron higher magnification and higher resolution

More information

Modeling of Branching Patterns in Plants

Modeling of Branching Patterns in Plants Bulletin of Mathematical Biology (2008) 70: 868 893 DOI 10.1007/s11538-007-9282-1 ORIGINAL ARTICLE Modeling of Branching Patterns in Plants N. Bessonov a, N. Morozova b, V. Volpert c, a Institute of Mechanical

More information

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. 4.1 Cell biology Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism.

More information

Supplements to : Isotropic stress reduces cell proliferation in tumor spheroids

Supplements to : Isotropic stress reduces cell proliferation in tumor spheroids Supplements to : Isotropic stress reduces cell proliferation in tumor spheroids Fabien Montel 1, Morgan Delarue 1,4, Jens Elgeti 1, Danijela Vignjevic 2, Giovanni Cappello 1, Jacques Prost 1,3 1 UMR 168,

More information

An Auxin-Mediated Shift toward Growth Isotropy Promotes Organ Formation at the Shoot Meristem in Arabidopsis

An Auxin-Mediated Shift toward Growth Isotropy Promotes Organ Formation at the Shoot Meristem in Arabidopsis Current Biology, Volume 24 Supplemental Information An Auxin-Mediated Shift toward Growth Isotropy Promotes Organ Formation at the Shoot Meristem in Arabidopsis Massimiliano Sassi, Olivier Ali, Frédéric

More information

In the growing plant shoot, new leaf and flower primordia

In the growing plant shoot, new leaf and flower primordia An auxin-driven polarized transport model for phyllotaxis Henrik Jönsson*, Marcus G. Heisler, Bruce E. Shapiro, Elliot M. Meyerowitz, and Eric Mjolsness *Computational Biology and Biological Physics Group,

More information

Plant Structure. Lab Exercise 24. Objectives. Introduction

Plant Structure. Lab Exercise 24. Objectives. Introduction Lab Exercise Plant Structure Objectives - Be able to identify plant organs and give their functions. - Learn distinguishing characteristics between monocot and dicot plants. - Understand the anatomy of

More information

10/4/2017. Chapter 39

10/4/2017. Chapter 39 Chapter 39 1 Reception 1 Reception 2 Transduction CYTOPLASM CYTOPLASM Cell wall Plasma membrane Phytochrome activated by light Cell wall Plasma membrane Phytochrome activated by light cgmp Second messenger

More information

Auxin is not asymmetrically distributed in initiating Arabidopsis leaves. *Author for correspondence: Marcus G Heisler

Auxin is not asymmetrically distributed in initiating Arabidopsis leaves. *Author for correspondence: Marcus G Heisler 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Auxin is not asymmetrically distributed in initiating Arabidopsis leaves Neha Bhatia 1 and Marcus G. Heisler 1* Affiliations

More information

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, )

(Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, ) BIOL 221 Concepts of Botany Fall 2007 Topic 07: Primary Plant Body: The Root System (Photo Atlas: Figures 9.147, 9.148, 9.150, 9.1, 9.2, 9.5 9.23) A. Introduction The root has the primary functions of

More information

Received on January 15, 2005; accepted on March 27, 2005

Received on January 15, 2005; accepted on March 27, 2005 BIOINFORMATICS Vol. 21 Suppl. 1 2005, pages i232 i240 doi:10.1093/bioinformatics/bti1036 Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem Henrik Jönsson 1, Marcus

More information

APICAL DOMINANCE IN FUCUS VESICULOSUS

APICAL DOMINANCE IN FUCUS VESICULOSUS APICAL DOMINANCE IN FUCUS VESICULOSUS BY BETTY MOSS Department of Botany, University of Newcastle upon Tyne (Received 2 December 1964) SUMMARY Apical tips of Fucus vesiculosus L. were grown in sterile

More information

Basic Principles of Plant Science EXAMINING PLANT STRUCTURES AND FUNCTIONS

Basic Principles of Plant Science EXAMINING PLANT STRUCTURES AND FUNCTIONS Basic Principles of Plant Science EXAMINING PLANT STRUCTURES AND FUNCTIONS Cellular Structure of Plants Cells are the structural basis of all living organisms. A cell is a tiny structure that forms the

More information

Chapter 33 Plant Responses

Chapter 33 Plant Responses Chapter 33 Plant Responses R. Cummins 1 Chapter 33 Plant Responses External Factors Light, Day Length, Gravity, Temperature Internal Factors Hormones R. Cummins 2 Tropisms R. Cummins 3 Phototropism and

More information

How many lessons is it?

How many lessons is it? Science Unit Learning Summary Content Eukaryotes and Prokaryotes Cells are the basic unit of all life forms. A eukaryotic cell contains genetic material enclosed within a nucleus. Plant and animal cells

More information

DEVELOPMENTAL VARIATION OF FOUR SELECTED VETIVER ECOTYPES. Abstract

DEVELOPMENTAL VARIATION OF FOUR SELECTED VETIVER ECOTYPES. Abstract DEVELOPMENTAL VARIATION OF FOUR SELECTED VETIVER ECOTYPES Lily Kaveeta, Ratchanee Sopa /, Malee Na Nakorn, Rungsarid Kaveeta /, Weerachai Na Nakorn /, and Weenus Charoenrungrat 4/ Botany Department, Kasetsart

More information

Plant Juvenility Text Pages: 15 18,

Plant Juvenility Text Pages: 15 18, 45 Plant Juvenility Text Pages: 15 18, 613 619. Objectives: 1. Be able to describe and explain terms related to plant aging. 2. Be able to explain how a woody plant contains tissue of different ontogenetic

More information

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus.

Plant and animal cells (eukaryotic cells) have a cell membrane, cytoplasm and genetic material enclosed in a nucleus. 4.1 Cell biology Cells are the basic unit of all forms of life. In this section we explore how structural differences between types of cells enables them to perform specific functions within the organism.

More information

Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem

Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem Article Global Topological Order Emerges through Local Mechanical Control of Cell Divisions in the Arabidopsis Shoot Apical Meristem Graphical Abstract Authors Matthew D.B. Jackson, Salva Duran-Nebreda,

More information

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves

STEMS Anytime you use something made of wood, you re using something made from the stem of a plant. Stems are linear structures with attached leaves STEMS OUTLINE External Form of a Woody Twig Stem Origin and Development Stem Tissue Patterns Herbaceous Dicotyledonous Stems Woody Dicotyledonous Stems Monocotyledonous Stems Specialized Stems Wood and

More information

Chapter C3: Multicellular Organisms Plants

Chapter C3: Multicellular Organisms Plants Chapter C3: Multicellular Organisms Plants Multicellular Organisms Multicellular organisms have specialized cells of many different types that allow them to grow to a larger size than single-celled organisms.

More information

Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure

Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure Chapter 35: Plant Structure, Growth and Development - No two Plants Are Alike Plant structure Systems Root and Shoot system Organs Roots, Stems, Leaves Tissues Dermal, Vascular, Ground Cells parencyma,

More information

Characterizations of the uro Mutant Suggest that the URO Gene Is Involved in the Auxin Action in Arabidopsis

Characterizations of the uro Mutant Suggest that the URO Gene Is Involved in the Auxin Action in Arabidopsis Acta Botanica Sinica 2004, 46 (7): 846 853 http://www.chineseplantscience.com Characterizations of the uro Mutant Suggest that the URO Gene Is Involved in the Auxin Action in Arabidopsis GUO Ying-Li 1,

More information

Biology Homework Chapter 5: The Cell Pages Answer the questions with complete thoughts!

Biology Homework Chapter 5: The Cell Pages Answer the questions with complete thoughts! Name Biology Homework Chapter 5: The Cell Pages 115-133 Answer the questions with complete thoughts! Per. * Sections 5.1 through 5.3: Cells Are the Units of Life: Read pages 115 to 122 PART A: Define the

More information

PLANT HORMONES-Introduction

PLANT HORMONES-Introduction PLANT HORMONES-Introduction By convention hormone are said to be a substances whose site of synthesis and site of action are different; the two events are separated by space and time. Hormones are known

More information

Plant Stimuli pp Topic 3: Plant Behaviour Ch. 39. Plant Behavioural Responses. Plant Hormones. Plant Hormones pp

Plant Stimuli pp Topic 3: Plant Behaviour Ch. 39. Plant Behavioural Responses. Plant Hormones. Plant Hormones pp Topic 3: Plant Behaviour Ch. 39 Plants exist in environments that are constantly changing. Like animals, plants must be able to detect and react to stimuli in the environment. Unlike animals, plants can

More information

Interactions between jointless and Wild-Type Tomato Tissues during Development of the Pedicel Abscission Zone and the Inflorescence Meristem

Interactions between jointless and Wild-Type Tomato Tissues during Development of the Pedicel Abscission Zone and the Inflorescence Meristem The Plant Cell, Vol. 11, 159 175, February 1999, www.plantcell.org 1999 American Society of Plant Physiologists Interactions between jointless and Wild-Type Tomato Tissues during Development of the Pedicel

More information

Introduction to Botany. Lecture 25

Introduction to Botany. Lecture 25 Introduction to Botany. Lecture 25 Alexey Shipunov Minot State University November 2, 2015 Shipunov (MSU) Introduction to Botany. Lecture 25 November 2, 2015 1 / 33 Outline 1 Questions and answers 2 Stem

More information

11. Automata and languages, cellular automata, grammars, L-systems

11. Automata and languages, cellular automata, grammars, L-systems 11. Automata and languages, cellular automata, grammars, L-systems 11.1 Automata and languages Automaton (pl. automata): in computer science, a simple model of a machine or of other systems. ( a simplification

More information

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz.

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz. Single-Molecule Microscopy Group Nonlinear Optics Physical Optics 21-06-2017 Maria Dienerowitz maria.dienerowitz@med.uni-jena.de www.single-molecule-microscopy.uniklinikum-jena.de Contents Introduction

More information

arxiv: v1 [q-bio.cb] 13 Sep 2012

arxiv: v1 [q-bio.cb] 13 Sep 2012 Tessellations and Pattern Formation in Plant Growth and Development arxiv:1209.2937v1 [q-bio.cb] 13 Sep 2012 Bruce E. Shapiro 1, Henrik Jönsson 2, Patrik Sahlin 2, Marcus Heisler 3, Adrienne Roeder 3,

More information

COMPETITIVE CANALIZATION OF AUXIN IN PEA CAN BE INVOLVED IN INITIATION OF AXILLARY BUD OUTGROWTH

COMPETITIVE CANALIZATION OF AUXIN IN PEA CAN BE INVOLVED IN INITIATION OF AXILLARY BUD OUTGROWTH COMPETITIVE CANALIZATION OF AUXIN IN PEA CAN BE INVOLVED IN INITIATION OF AXILLARY BUD OUTGROWTH Medveďová Z. 1, Balla J. 1, 2, Procházka S. 1 1 CEITEC - Central European Institute of Technology, Mendel

More information

Title: The growth and development of some recent plant models: A viewpoint

Title: The growth and development of some recent plant models: A viewpoint Title: The growth and development of some recent plant models: A viewpoint Shortened title for page headings: Recent plant models: A viewpoint Author: Eric Mjolsness Institute for Genomics and Bioinformatics,

More information

23 1 Specialized Tissues in Plants Slide 1 of 34

23 1 Specialized Tissues in Plants Slide 1 of 34 23 1 Specialized Tissues in Plants 1 of 34 Seed Plant Structure The three principal organs of seed plants are roots, stems, and leaves. These organs perform functions such as the transport of nutrients,

More information

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz.

Nonlinear Optics. Single-Molecule Microscopy Group. Physical Optics Maria Dienerowitz. Single-Molecule Microscopy Group Nonlinear Optics Physical Optics 21-06-2017 Maria Dienerowitz maria.dienerowitz@med.uni-jena.de www.single-molecule-microscopy.uniklinikum-jena.de Contents Introduction

More information

ROOT STRUCTURE: EXTERNAL ROOT

ROOT STRUCTURE: EXTERNAL ROOT ROOT STRUCTURE: EXTERNAL ROOT Material: Botany I cards #9 - #12, #13 - #18, #19 - # 23 Presentation: 1. The external parts of the root have been introduced to the children: the root hairs, the root tips,

More information

A Proposal of a Botanical Tree Growth Control Method by Hormone Distribution Supplied from the Root

A Proposal of a Botanical Tree Growth Control Method by Hormone Distribution Supplied from the Root A Proposal of a Botanical Tree Growth Control Method by Hormone Distribution Supplied from the Root Ji-Joon Kim Nanzan University kim@it.nanzan-u.ac.jp Abstract In this paper I propose a growth control

More information

Measurements of quantitative characters yield continuous data (value ranges) (Ex: plant height),

Measurements of quantitative characters yield continuous data (value ranges) (Ex: plant height), Taxonomic Evidence- Vegetative Characteristics Character and Character States An aspect of a plant, such as leaf shape or petal color is a character. Each character can have a character state, such as

More information

Plants: From Cells to Systems

Plants: From Cells to Systems Plants: From Cells to Systems Key terms: Cell specialization Cell differentiation Tissue Organ Meristematic cell Transpiration Gall Cell specialization Cell specialization For many years, scientists wondered

More information