Challenges to barcoding an entire flora

Size: px
Start display at page:

Download "Challenges to barcoding an entire flora"

Transcription

1 Molecular Ecology Resources (2014) doi: / OPINION Challenges to barcoding an entire flora TAMMY L. ELLIOTT and T. JONATHAN DAVIES Department of Biology, McGill University, 1205 Docteur Penfield Avenue, Montreal, Quebec H3A 1B1 Canada Abstract DNA barcodes are species-specific genetic markers that allow taxonomic identification of biological samples. The promise of DNA barcoding as a rapid molecular tool for conducting biodiversity inventories has catalysed renewed efforts to document and catalogue the diversity of life, parallel to the large-scale sampling conducted by Victorian naturalists. The unique contribution of DNA barcode data is in its ability to identify biotic material that would be impossible to classify using traditional taxonomic keys. However, the utility of DNA barcoding relies upon the construction of accurate barcode libraries that provide a reference database to match to unidentified samples. Whilst there has been much debate in the literature over the choice and efficacy of barcode markers, there has been little consideration of the practicalities of generating comprehensive barcode reference libraries for species-rich floras. Here, we discuss several challenges to the generation of such libraries and present a case study from a regional biodiversity hotspot in southern Quebec. We suggest that the key challenges include (i) collection of specimens for rare or ephemeral species, (ii) limited access to taxonomic expertise necessary for reliable identification of reference specimens and (iii) molecular challenges in amplifying and matching barcode data. To be most effective, we recommend that sampling must be both flexible and opportunistic and conducted across the entire growing season by expert taxonomists. We emphasize that the success of the global barcoding initiative will depend upon the close collaboration of taxonomists, plant collectors, and molecular biologists. Keywords: barcode library, biodiversity survey, hotspot, incomplete sampling, regional flora, taxonomic impediment Received 5 September 2013; revision received 12 April 2014; accepted 20 April 2014 Introduction Correspondence: Tammy L. Elliott, Fax: ; tammy.elliott@mail.mcgill.ca For centuries, plant hunters have travelled the world in search of specimens. Early collectors, such as Henry Compton ( ), Hans Sloane ( ), Carl Linnaeus ( ), and the wave of Victorian naturalists that succeeded them, systematically documented the diversity of the natural world and populated the world s herbaria with their collections. In recent decades, planthunting expeditions have increasingly shifted focus to collecting specimens for use in medicinal and other scientific studies (Hepper 1989). Following the launch of the Consortium for the Barcode of Life (CBOL) in May 2004, the International Barcode of Life Project (ibol) was established to create a barcode library for all eukaryotic life (Schindel & Miller 2005; Frezal & Leblois 2008; Vernooy et al. 2010). This new effort more closely parallels the large-scale sampling conducted by the Victorian naturalists, but in addition to submitting plant species to herbaria, collectors now also submit genetic data generated using new molecular tools to digital repositories such as The Barcode of Life Data System (BOLD; www. barcodinglife.org) (Ratnasingham & Hebert 2007). The ibol initiative aims to produce biological inventories in the form of DNA barcode libraries that will provide a reference database to aid in the identification of unidentified or hard to identify taxa (Ratnasingham & Hebert 2007; Jinbo et al. 2011). Although there were initial fears that DNA barcoding might usurp the role of traditional taxonomists (e.g. Ebach & Holdrege 2005), it is now realized that successful barcoding efforts rely on strong collaborations between barcoders and taxonomists (Frezal & Leblois 2008). To create a barcode library, a site s flora must first be barcoded. These libraries can then be used as a cheap and quick method for biodiversity assessments (Krishnamurthy & Francis 2012). Comprehensive, accurate barcode libraries also allow for the identification of fragmentary samples or morphologically indistinct life stages (e.g. shoots, eggs or larvae), and the detection of species in environments when more comprehensive sampling is not practical, such as in biosecurity (Armstrong & Ball 2005) or for early detection of invasive

2 2 T. L. ELLIOTT and T.J. DAVIES species (Dejean et al. 2012). The wealth of molecular sequence data that is available in such libraries has provided researchers with the opportunity to generate large, well-resolved regional phylogenies, allowing for more accurate quantification of community structure and species interactions (e.g. Kress et al. 2009). In addition, barcode reference libraries have been used to identify ingredients in herbal medicines (e.g. Li et al. 2011b; Han et al. 2012; Kool et al. 2012) and teas (e.g. Stoeckle et al. 2011) as well as examine the belowground spatial structure of plant communities (e.g. Kesanakurti et al. 2011). The exact DNA sequences to be used as barcode markers in plants have been a source of heated debate. Key features for an effective DNA barcode include universality (loci that can be amplified across taxa with common primers), quality (loci that most likely produce bidirectional sequences with few or no ambiguous base calls), discrimination (loci that distinguish the highest number of species) and cost-effectiveness (Hollingsworth et al. 2009). The combination of rbcla (c. 599 base pairs at 5 0 end of gene) and matk (c. 846 base pairs at centre of gene) is now widely considered as the DNA barcode for land plants (Fazekas et al. 2008; Hollingsworth et al. 2011), although other markers (see Hollingsworth et al. 2011), such as the internal transcribed spacer (ITS), have also been proposed (Li et al. 2011a), and others have been used to discriminate species in some plant clades (e.g. Roy et al. 2010). Recent work has explored the efficacy of these markers in discriminating different species in regional floras (e.g. Burgess et al. 2011) and the resolution they provide in reconstructing phylogenetic trees of regional floras (e.g. Kress et al. 2009). As barcoding efforts have expanded, a major challenge has been to generate DNA barcode libraries for complete floras. However, to date, there have been few published studies on such efforts. We surveyed ISI Web of Science (WoS; accessed 28 March 2013) based on the following criteria: barcoding; plants; NOT alga; NOT fungi; NOT insects. This search returned 353 matching papers, only five of which focused on barcoding regional floras (Fig. 1), including all the vascular plants of Mt. Valerio, Italy (Bruni et al. 2012), Churchill, Canada (Kuzmina et al. 2012), and the Koffler Scientific Reserve, Canada (Burgess et al. 2011), as well as the angiosperms and conifers of Wales, United Kingdom (de Vere et al. 2012). Other notable studies, from more diverse regions, have focused on certain plant groups, for example, the woody trees, shrubs and palms on Barro Colorado Island, Panama (Kress et al. 2009). In part, the paucity of published studies reflects the relative youthfulness of the field; we therefore additionally surveyed contributors to the WG1.2 Land Plants ibol Working Group. Ten of the 17 respondents described projects focused on barcoding regional floras at taxonomic scales of angiosperms or Species discrimination (53%) Barcoding methods (15%) Sequence selection (5%) Barcoding utility (12%) Barcoding regional flora (2%) Review/ ideas (13%) Fig. 1 Web of Science search results of published papers on barcoding plants (n = 353). Papers were classified as Barcoding regional flora if they focused on the taxonomic scale of angiosperms or higher within a single region. Species discrimination papers focused on determining which gene sequences best differentiated plant species within various genera or families, whereas papers on Sequence selection examined the broader question of selecting the best barcode sequences for land plants. Barcoding methods papers either introduced novel methods that could be used in future barcoding research or presented methods to improve existing protocols. Barcoding utility papers provided ideas or examples of new plant barcoding applications. Review/idea papers were literature reviews or viewpoints on plant barcoding research. In addition, a request of information from contributors to the BOLD Land Plants campaign yielded 10 unpublished projects working on barcoding regional floras. higher (Table S1, Supporting information). This estimate likely represents only a fraction of ongoing projects as the release of information by BOLD contributors was voluntary, and it is possible that there are other barcoding studies that do not use BOLD. These large barcoding efforts pose many significant practical challenges, some of which have been largely ignored in the recent literature, including (i) difficulties in collecting specimens for rare or ephemeral species; (ii) paucity of or limited access to sufficient taxonomic expertise and resources to obtain reliable, up-to-date identifications of samples used to build the barcode reference library; and (iii) molecular challenges of barcoding (e.g. difficulties in amplification of samples spanning a wide taxonomic spectrum and distinguishing between closely related species). Even though many of these challenges are not novel, the first two have tended to be overlooked in barcoding literature in comparison with the emphasis that has been placed on the third challenge

3 BARCODING REGIONAL FLORAS 3 molecular methods and the performance of barcodes for species identification (e.g. Lahaye et al. 2008; Burgess et al. 2011). Here, we attempt to redress this balance and focus on the first two challenges. Specifically, we discuss the practicalities of generating DNA barcode libraries for complete floras. We illustrate these challenges using a case study of the flora of the Gault Nature Reserve on Mont Saint Hilaire (MSH), a biosphere reserve in the Monteregie region of southern Quebec. Barcoding a complete flora Mont St. Hilaire as a case study In 2012, we established an initiative to DNA barcode the entire flora of the Gault Nature Reserve, a small reserve approximately 30 km from the major urban centre of Montreal, Quebec, Canada. The flora of the Gault reserve is well-documented with a nearly complete list of vascular plants available for the site (see Maycock 1961; Table S2, Supporting information) as well as the presence of herbarium specimens for a majority of the reserve s species in either the McGill University Herbarium (MTMG) or the Marie-Victorin Herbarium (MT). The reserve is situated on Mont St. Hilaire, one of the eight Monteregian Hills of the St. Laurence Lowlands in southern Quebec (Maycock 1961). The old growth forest of the reserve is dominated by the deciduous tree species Acer saccharum, Fagus grandifolia and Quercus rubra (Gilbert & Lechowicz 2004). Protection of this 1000 ha reserve goes back until the 1600s, and it is now recognized as a UNESCO Biosphere Reserve (Maycock 1961; Francis 2004; White et al. 2011). The reserve contains approximately 650 vascular plant species (Maycock 1961; Table S2, Supporting information), several of which are considered rare. Barcoding this flora provides an illustration of the more general (and generally more extreme) challenges to barcoding complete floras. The reserve is relatively small and easily accessible, and although the area is a regional diversity hotspot, species richness is relatively low compared with, for example, tropical floras of similar areal extent(myers 1988). Over approximately 384 and 235 sampling hours during the 2012 and 2013 respective field seasons, 582 different terrestrial vascular species were collected with sampling focused on collecting one individual per species, except in cases where there were uncertainties in field identifications for which multiple samples were gathered. We found 111 species not previously reported in the reserve and suspect that changing distributions in response to climate change (Parmesan 2006; Kelly & Goulden 2008), exotic species moving in with disturbance (Gilbert & Lechowicz 2005) and differing taxonomic skill sets of the various surveyors (Oredsoon 2000; Chen et al. 2009) might all contribute to explaining this increase in number. We also think that the previously documented species that we did not find might have been extirpated because of the impacts of climate change and increased deer browsing (C^ote et al. 2004; Gilbert & Lechowicz 2005). In addition, we identified several discrepancies in the list used to guide collection efforts, leading to an inflated species total from past years (Fig. 2). Of the 787 vascular species previously recorded, 143 were removed from the list because they were synonyms and 21 species names were duplicated due to typographical errors. Thus, our sample represents an impressive 84% of the revised species list, contributing 133 rbcl and 126 matk new sequences for species not previously represented through the BOLD public data portal as of December Sampling in future years will target the remaining 16%, but it is impossible to verify how many of the species on this list were originally misidentified as only a handful have matching voucher specimens (e.g. Maycock 1961) that we can cross-check. The flora of Mont St. Hilaire is likely much smaller than that targeted by regional barcoding efforts in tropical or larger areas; nonetheless, our efforts identified a number of key challenges to creating a comprehensive DNA barcode library based on sampling one individual per vascular plant species that will apply more generally (and likely to a greater degree). Many of these challenges arise from the time constraints imposed by the shortterm nature of most research projects, which are often determined by funding cycles and the demands of Synonyms (17%) Not collected (16%) Typographical errors (2%) New species to list (12%) Collected (52%) Fig. 2 Results of 2012 and 2013 sampling efforts of the vascular plant species on the Gault Nature Reserve, Quebec, based on a pre-existing species list of the reserve (Gault Nature Reserve, unpublished data). The original species list contained several typographical errors and synonyms. New species to list were taxa not included in the original 2012 list. Of the remaining taxa on the list, collected species were those that were collected during the 2012 and 2013 field seasons, whereas not collected were species that were not found during the two field seasons.

4 4 T. L. ELLIOTT and T.J. DAVIES thoroughly sampling all of the species within a site s boundaries during short growing seasons. These challenges parallel all such efforts aimed at conducting comprehensive biodiversity surveys (Palmer et al. 2002; Chen et al. 2009), but generating a barcode library imposes additional demands. Simply creating complete regional floristic inventories, even for relatively small floras such as Mont St. Hilaire, is challenging and will considerable effort, which is a substantial impediment, given current costs and budgeting constraints (Pautasso 2012). In addition, rare species will take more time to find, whilst common species can be quick and easy to sample (Preston 1948). For example, we collected a high number of species in a relatively short period of time during the 2012 field season because sampling targeted accessible areas with high species numbers (Fig. 3). However, this opportunistic sampling strategy reduced the amount of time spent searching for rarer species, which can be more difficult to find, illustrating diminishing returns to the amount of effort invested. During the 2013 field season, more targeted sampling based on previous location reports for rarer species was generally aimed at more remote locations within the reserve; however, this strategy required much larger effort but yielded fewer new species as these sites were often species poor (Fig. 4). Low population numbers of rare species can also present a challenge as it is not ethical to collect when sampling might impact population viability; thus, workers must spend valuable time searching for alternative sources of plant material. Differences in phenology can also present major challenges and limit the utility of short, intensive sampling efforts or bioblitzes (a term originally used by Susan Ruby of U.S. National Park Service in 1996; biodiversityonline.ca/bioblitz/intro.htm), as the collection of some plant species must be conducted during a brief window of time during which traits important for species identification are expressed as fruits and/or flowers (Miller & Nyberg 1995; Leponce et al. 2010). For example, the number of plant species collected during the field season at Mont St. Hilaire fluctuated as high numbers of spring ephemerals were collected whilst flowering early in the growing season, which made them easiest to identify, but species numbers dropped off as the summer progressed (Fig. 4). Combining phenological differences with the logistics of getting to remote locations presents an even larger challenge to comprehensive sampling. Within Mont St. Hilaire, several rare species grow in difficult-to-access areas (Maycock 1961), including several locations that were impossible to access due to dangerous physical obstacles such as steep cliffs. In a few cases, several time-consuming return visits to these remote areas were required because of differences in the phenology of rare species found at these sites. Assuming sufficient time and funds exist for adequate collection, there remains a major challenge in correctly identifying species. First, even experts might overlook species if the material that is present at a site is not in an identifiable form for at least part of the year (see above) km 4.05 km Fig. 3 Location of sampling points for plant specimens from Mont St. Hilaire, Quebec, during the 2012 and 2013 field seasons. The reserve boundaries have been extended to include the point in the top right-hand side of the figure. Sampling locations for plants collected during the 2012 field season are indicated by stars, whereas plants collected during the 2013 field season are indicated by circles. Number of unique species collected April May June July August September October Month Fig. 4 Number of terrestrial plant species collected per month during the 2012 and 2013 field seasons at Mont St. Hilaire, Quebec (note: collectors were not available to go to the field in July 2013).

5 BARCODING REGIONAL FLORAS 5 Second, species within genera that are the product of rapid radiations can represent suites of morphologically similar taxa that are difficult to distinguish either in the field or herbarium. In cases of taxonomic uncertainty, more time must then be spent collecting extra specimens of these taxa so that species that closely resemble each other are not missed, in addition to the extra time required to collect, process and send off material to taxonomic experts. Collection of specimens at the Gault Nature Reserve was conducted by experienced botanists; nonetheless, several genera such as the Carex, Dichanthelium, Crataegus, Salix and Amelanchier were problematic to distinguish in the field because of the presence of hybrids, agamic complexes and difficult-to-distinguish species characteristics. Correct identification of such specimens required reference to multiple resources and referral to specialist taxonomists in some cases, as has also been the case in other regional barcoding studies (e.g. Kuzmina et al. 2012). In general, the decline in taxonomists and limited access to herbarium resources and updated taxonomic treatments present a major challenge to accurate species identification the taxonomic impediment (Hoagland 1996; Rodman & Cody 2003). Although these challenges might be familiar to most biodiversity surveys, the unique approach of DNA barcoding presents additional challenges related to species identification. Well-constructed barcode libraries allow end-users to identify plant material to species or genus based on tissue fragments (e.g. a single leaf, root or stem) that would be impossible to identify using traditional taxonomic keys. However, it is not possible for end-users to detect errors in the original species identification because barcode matches are based only on sequence data and not morphology, although digital images and herbarium specimens can be revisited in the future to verify identifications. The correct identification of reference specimens is therefore paramount (Collins & Cruickshank 2013). Once plants have been collected, voucher specimens must be accessioned into a herbarium as required by BOLD. Mounting, labelling and accessioning our 680 specimens were an additional challenge to barcoding. Perhaps most surprisingly, time and cost estimates based on our experiences at the Gault Nature Reserve (Table S3, Supporting information) suggest that over one-third of the time required to complete floristic barcoding studies should be allocated to data organization and processing voucher specimens. Further, our experience conducting botanical surveys near Schefferville, in northern Quebec, suggests these same two steps might still require a similar proportional time commitment when preparing barcode libraries for more remote areas (Table S3, Supporting information). Paid and dedicated staff would be necessary to process samples for larger collection efforts. Sequencing success is not guaranteed once specimens have been collected and vouchered. The choice of DNA barcodes has been a trade-off between factors such as universality (i.e. ability to amplify all species) and resolution (i.e. the ability to differentiate between species) (Hollingsworth et al. 2009). In plants, rbcl has proven relatively straightforward to amplify for most clades but provides only limited resolution, particularly among closely related taxa (Hollingsworth et al. 2009). In contrast, matk offers greater resolution, but the proposed primer sets perform poorly in nonangiosperm plant groups such as the gymnosperms and ferns (Hollingsworth et al. 2011; Li et al. 2011c), although alternative primer combinations are now available (Li et al. 2011c). We do not discuss further the details of marker choice here as the selection of DNA barcode markers has already been debated extensively in the literature (e.g. Kress et al. 2005; Rubinoff et al. 2006; Kress & Erickson 2007; Pennisi 2007; Hollingsworth et al. 2011); however, additional challenges can arise postsequencing. Once barcode sequences are available, additional complexities must be considered before using barcode reference libraries to assign identifications to unknown plant material (e.g. Kesanakurti et al. 2011; Li et al. 2011b). First, the genetic distance differentiating species must be decided upon if cryptic species are suspected (Meyer & Paulay 2005; Collins & Cruickshank 2013). The answer to this is likely taxon and gene specific, and there is probably no correct answer in some circumstances (Hollingsworth et al. 2011), although sequences can be simply grouped with the closest matching barcode if a library is assumed complete (Hajibabaei et al. 2007; Kesanakurti et al. 2011). Whilst species resolution is generally higher in regionally focused studies compared with those focused on particular taxonomic groups (e.g. Le Clerc-Blain et al. 2010; Roy et al. 2010; Burgess et al. 2011), even within the flora of Mont St. Hilaire, we suspect the identification of several genera such as Salix and Carex might be problematic, as these genera have previously been reported to be difficult to distinguish using DNA barcodes (Starr et al. 2009; von Cr autlein et al. 2011), and multiple species within each genus are found in the regional flora. A second (and related) question is how to decide the appropriate sampling density to get estimates of within-species variation in sequences (Meyer & Paulay 2005; Bergsten et al. 2012). One approach would be to maximize the geographical distance between samples (Bergsten et al. 2012). However, as the number of individuals required would likely vary by species and perhaps barcode region, there again is probably no single answer. The effort required for the implementation of this strategy would in any case likely be prohibitive for sampling species-rich floras as many individuals per species would have to be sampled to get an appropriate esti-

6 6 T. L. ELLIOTT and T.J. DAVIES mate. Finally, users of barcode data must decide how to interpret results if different genes give conflicting answers (Li et al. 2011a). Common barcoding genes in plants are perhaps unlikely to give conflicting answers because they are from the chloroplast (Soltis et al. 1998); nonetheless, neutral evolution might still result in apparent conflict and chloroplast vs. nuclear genes might still show incongruence (Rieseberg & Soltis 1991). Possible solutions include adding sequence data and/or individuals or to explore neutral vs. non-neutral mutations separately. We are not aware of any review of this issue as it applies to barcoding, although it has been widely discussed in the broader phylogenetics literature (Pamilo & Nei 1988; Degnan & Rosenberg 2009). These are all important questions that must be addressed in the barcoding literature. Consequences of incomplete sampling Future conservation and research programmes will have to take into consideration the reality that sampling efforts will probably not yield comprehensive floristic inventories, and thus, barcode libraries will often be incomplete. Of concern, the taxa most likely to be missed are rare species (e.g. orchids on MSH), which might lack barcodes and could be of highest conservation priority. Limited sampling or misidentification of closely related species could also impact efforts to generate phylogenetic trees using barcode data. It is possible to generate phylogenetic hypotheses from partial or gappy molecular matrices, at least for those taxa with some barcode data (Wiens 2003; Wiens & Morrill 2011); however, missing sequence data might increase phylogenetic uncertainty, resulting in unresolved nodes (i.e. polytomies). The consequences of this lack of phylogenetic resolution will depend on the questions to which the phylogenetic hypotheses are applied. For example, testing fine-scale patterns in species co-occurrence would require more well-resolved phylogenetic trees at the species level (e.g. Slingsby & Verboom 2006; Araya et al. 2012). In addition, metrics of phylogenetic community structure differ in their sensitivity to phylogenetic resolution (Swenson 2009). Species-level resolution might be more important for capturing interspecific interactions, such as competition and facilitation. Considerations such as these are important for determining whether it is worth investing the extra time and resources to retrieve complete barcode sequences for all species. Lessons learned: suggestions for future studies Based on our experiences, we suggest several ways forward to more effectively plan and execute regional barcoding efforts. First, herbaria, species inventories, local experts and the Global Biodiversity Information Facility (GBIF; can all provide possible locations for species that are hard to find, taking into account possible errors in identification and synonyms. Other suggestions are to use online resources such as Project BudBurst ( and review herbarium specimens to design field sampling around times when plants are in flowering or fruiting stage. The current year s climatic conditions will have to be considered when interpreting the data available through such sources, and the resolution of GBIF location data might not help in the location of rare species. A targeted sampling approach could focus sampling on areas where rare species have been observed in the past, but to be effective, this method requires precise GPS co-ordinates or detailed, accurate information on herbarium labels for previously observed species. This strategy is of course only applicable when targets are known and their populations are not transient. Second, methods such as accumulation and rarefaction curves can be used to provide estimates of potential gains in species numbers provided by additional sampling, although these approaches do not give an absolute answer to the number of species in the area (Gotelli & Colwell 2010). Third, we suggest to be prepared to sample more than one field season by having a sampling plan that focuses on collecting the most common species the first year and targets rare species during subsequent field seasons. Follow-up grants can be used to support continued sampling in subsequent years, but diminishing returns of species numbers relative to the amount of time invested suggest that continued full-time sampling would yield only a few substantial new results. We therefore recommend to maintain continuous sampling at a site by establishing strong long-term collaborations with other researchers at the site who might also benefit from the publically available barcode data. One alternative to reduce the time and costs spent supporting field work is to sequence DNA material from herbarium specimens, although DNA from such material can be degraded, inhibiting amplification of barcode markers. Nonetheless, herbarium specimens are useful for sampling very small populations of rare species that can be documented but not sampled because of their conservation status. Whilst herbaria should be part of the global barcoding initiative, they cannot, however, replace field sampling, especially where the flora for a region is incompletely described. Critically, field collection allows for the discovery of new species and can document shifting species distributions with climate change that would be missed by reviewing herbarium specimens for a region. During our study, 12% of the species on our final list were new records for Mont St. Hilaire (Fig. 2) and would have been omitted if we had relied only on herbarium specimens.

7 BARCODING REGIONAL FLORAS 7 Limited access to taxonomic expertise and resources can also hamper regional barcoding efforts; therefore, it is essential to collaborate with taxonomists as well as work with parataxonomists and herbarium resources when possible. Ideally, strong collaborations with taxonomists should be made before gathering data. Taxonomists are a key component to producing regional barcode libraries and can train the field collectors and notify them of problematic species before the field season and as such should be compensated appropriately for their time and effort (Tripp & Hoagland 2013). Parataxonomists can provide an additional resource and may help encourage local participation in regional barcoding efforts (Janzen 2004; Abadie et al. 2008; Janzen & Hallwachs 2011), but they are not appropriate for all study systems. We suggest using herbaria as much as possible as they provide many resources crucial in species identification; however, extra time and money might be required for workers in areas without local herbaria. Finally, further taxonomic confusion could be avoided by having data repositories such as BOLD recommend common databases and identification resources for attributing names to species. Comprehensively sampling entire areas to create barcode libraries will require large-scale field work incurring major financial costs. Funding such scientific endeavours is a socio-political issue that society needs to address and is largely beyond the scope of this paper. One possibility is to incorporate regional barcoding efforts into current research projects; however, the shortterm nature of grant funding cycles and the considerable time commitment required to compile barcode libraries may provide a disincentive. The unfortunate reality is that adequately sampling large areas, such as northern Quebec, will be expensive and might not be possible under current funding structures. As recent funding cutbacks have already ended the era of free barcode sequencing funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) and other major granting agencies through BOLD, we might thus predict a decrease in the volume of barcode data being produced in the near future. This decline will be a double blow as we will not only see a decrease in the rate of data acquisition, but also because the value of existing barcode data increases as the database grows. We have shown that even for a relatively small, easily accessible and well-sampled site with a flora of only ~650 vascular plant species, comprehensive taxonomic sampling to create a barcode library is a formidable challenge. We have identified a number of specific challenges to barcoding a regional flora that are sometimes overlooked in the literature, and we suggest some possible ways forward. In addition, we emphasize some of the particular benefits that may be gained from efforts to barcode all of the plant species at a site, such as documenting changes in floristic composition and contributing valuable new specimens to herbarium collections. However, regardless of the effort put into collecting specimens in the field and advances in sequencing performance, the information provided by DNA barcodes will not be valuable to science unless the original specimens are correctly identified, and/or voucher specimens are available such that identifications can be revised later. The ibol initiative aims to provide comprehensive DNA barcode libraries that can be used in biodiversity research, conservation and forensics, by allowing endusers to identify biological material through matching barcode sequences. In many cases, this material might be fragmentary or in various developmental stages that are difficult or impossible to identify using traditional taxonomic keys (Jinbo et al. 2011). Correct identification of barcoded specimens relies on resources produced by expert taxonomists, such as updated taxonomic keys, identification services and correctly identified sequences on GenBank. Thus, the success of the ibol initiative will rely upon professionally trained taxonomists working together with plant collectors and molecular biologists to generate accurate barcode libraries. Acknowledgements We would like to thank Nadia Cavallin and the staff at the Gault Nature Reserve for their help with sampling. In addition, we thank the African Centre for DNA Barcoding (ACDB) and the Quebec Centre for Biodiversity Science (QCBS) for supporting this work. Gratitude is also extended to the respondents of our survey of land plant barcoding contributors to BOLD. Funding for T.L.E. was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC). References Abadie JC, Andrade C, Machon N, Porcher E (2008) On the use of parataxonomy in biodiversity monitoring: a case study on wild flora. Biodiversity and Conservation, 17, Araya YN, Silvertown J, Gowing DJ, McConway KJ, Linder HP, Midgley G (2012) Do niche-structured plant communities exhibit phylogenetic conservatism? A test case in an endemic clade. Journal of Ecology, 100, Armstrong KF, Ball SL (2005) DNA barcodes for biodiversity: invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, Bergsten J, Bilton DT, Fujisawa T et al. (2012) The effect of geographical scale of sampling on DNA barcoding. Systematic Biology, 61, Bruni I, De Mattia F, Martellos S et al. (2012) DNA barcoding as an effective tool in improving a digital plant identification system: a case study for the area of Mt. Valerio, Trieste (NE Italy). PLoS One, 7, e Burgess KS, Fazekas AJ, Kesanakurti PR et al. (2011) Discriminating plant species in a local temperate flora using the rbcl+ matk DNA barcode. Methods in Ecology and Evolution, 2, Chen G, Kery M, Zhang J, Ma K (2009) Factors affecting detection probability in plant distribution studies. Journal of Ecology, 97,

8 8 T. L. ELLIOTT and T.J. DAVIES Collins RA, Cruickshank RH (2013) The seven deadly sins of DNA barcoding. Molecular Ecology Resources, 13, C^ote SD, Rooney TP, Tremblay JP, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annual Review of Ecology, Evolution, and Systematics, 35, von Cr autlein M, Korpelainen H, Pietil ainen M, Rikkinen J (2011) DNA barcoding: a tool for improved taxon identification and detection of species diversity. Biodiversity and Conservation, 20, Degnan JH, Rosenberg NA (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24, Dejean T, Valentini A, Miquel C, Taberlet P, Bellemain E, Miaud C (2012) Improved detection of an alient invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. Journal of Applied Ecology, 49, Ebach MC, Holdrege C (2005) DNA barcoding is no substitute for taxonomy. Nature, 434, 697. Fazekas AJ, Burgess KS, Kesanakurti PR et al. (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One, 3, e2802. Francis G (2004) Biosphere reserves in Canada: ideals and some experience. Environments: A Journal of Interdisciplinary Studies, 32, Frezal L, Leblois R (2008) Four years of DNA barcoding: current advances and prospects. Infection, Genetics and Evolution, 8, Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences of the United States of America, 101, Gilbert B, Lechowicz MJ (2005) Invasibility and abiotic gradients: the positive correlation between native and exotic plant diversity. Ecology, 86, Gotelli NJ, Colwell RK (2010) Estimating species richness. In: Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran AE, McGill BJ), pp Oxford University Press, Oxford. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23, Han J, Shi L, Chen X, Lin Y (2012) Comparison of four DNA barcodes in identifying certain medicinal plants of Lamiaceae. Journal of Systematics and Evolution, 50, Hepper FN (1989) Plant Hunting for Kew. HMSO Publications Centre, London. Hoagland K (1996) The taxonomic impediment and the convention on biodiversity. Association of Systematics Collections Newsletter, 24, Hollingsworth PM, Forrest LL, Spouge JL et al. (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106, Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS One, 6, e Janzen DH (2004) Setting up tropical biodiversity for conservation through non-damaging use: participation by parataxonomists. Journal of Applied Ecology, 41, Janzen DH, Hallwachs W (2011) Joining inventory by parataxonomists with DNA barcoding of a large complex tropical conserved wildland in northwestern Costa Rica. PLoS One, 6, e Jinbo U, Kato T, Ito M (2011) Current progress in DNA barcoding and future implications for entomology. Entomological Science, 14, Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, 105, Kesanakurti PR, Fazekas AJ, Burgess KS et al. (2011) Spatial patterns of plant diversity below-ground as revealed by DNA barcoding. Molecular Ecology, 20, Kool A, de Boer HJ, Kr uger A et al. (2012) Molecular identification of commercialized medicinal plants in Southern Morocco. PLoS One, 7, e Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcl gene complements the non-coding trnh-psba spacer region. PLoS One, 2, e508. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102, Kress WJ, Erickson DL, Jones FA et al. (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences, 106, Krishnamurthy PK, Francis RA (2012) A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiversity and Conservation, 21, Kuzmina ML, Johnson KL, Barron HR, Hebert PDN (2012) Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecology, 12, Lahaye R, Van Der Bank M, Bogarin D et al. (2008) DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences, 105, Le Clerc-Blain J, Starr JR, Bull RD, Saarela JM (2010) A regional approach to plant DNA barcoding provides high species resolution of sedges (Carex and Kobresia, Cyperaceae) in the Canadian Arctic Archipelago. Molecular Ecology Resources, 10, Leponce M, Meyer C, Hauser C et al. (2010) Collecting plant genetic diversity: technical guidelines. In: Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories. ABC Taxa (eds Eymann J, Degreef J, Hauser C et al.), pp Belgium Development Cooperation, Brussels, Belgium. Li DZ, Gao LM, Li HT et al. (2011a) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proceedings of the National Academy of Sciences, 108, Li M, Cao H, But PPH, Shaw PC (2011b) Identification of herbal medicinal materials using DNA barcodes. Journal of Systematics and Evolution, 49, Li Y, Gao LM, Poudel RC, Li DZ, Forrest A (2011c) High universality of matk primers for barcoding gymnosperms. Journal of Systematics and Evolution, 49, Maycock PF (1961) Botanical studies on Mont St. Hilaire, Rouville County, Quebec. I General description of the area and a floristic survey. Canadian Journal of Botany, 39, Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3, e422. Miller AG, Nyberg JA (1995) Collecting herbarium vouchers. In: Collecting Plant Genetic Diversity: Technical Guidelines (eds Guarino L, Rao VR, Reid R), pp CAB International, Wallingford. Myers N (1988) Threatened biotas: hot spots in tropical forests. The Environmentalist, 8, Oredsoon A (2000) Choice of surveyor is vital to the reliability of floristic change studies. Watsonia, 23, Palmer MW, Earls PG, Hoagland BW, White PS, Wohlgenmuth T (2002) Quantitative tools for perfecting species lists. Environmetrics, 13, Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Molecular Biology and Evolution, 5, Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, Pautasso M (2012) Challenges in the conservation and sustainable use of genetic resources. Biology Letters, 8, Pennisi E (2007) Wanted: a barcode for plants. Science, 318, Preston FW (1948) The commonness, and rarity, of species. Ecology, 29, Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data System ( Molecular Ecology Notes, 7, Rieseberg LH, Soltis D (1991) Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants, 5, Rodman JE, Cody JH (2003) The taxonomic impediment overcome: NSF s Partnerships for Enhancing Expertise in Taxonomy (PEET) as a model. Systematic Biology, 52,

9 BARCODING REGIONAL FLORAS 9 Roy S, Tyagi A, Shukla V et al. (2010) Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species. PLoS One, 5, e Rubinoff D, Cameron S, Will K (2006) Are plant DNA barcodes a search for the Holy Grail? Trends in Ecology & Evolution, 21, 1 2. Schindel D, Miller SE (2005) DNA barcoding a useful tool for taxonomists. Nature, 435, 17. Slingsby JA, Verboom GA (2006) Phylogenetic relatedness limits cooccurrence at fine spatial scales: evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. The American Naturalist, 168, Soltis D, Soltis PS, Doyle JJ (1998) Molecular Systematics of Plants II: DNA Sequencing. Klewer Academic Publishers, Norwell, MA. Starr JR, Naczi RFC, Chouinard BN (2009) Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Molecular Ecology Resources, 9, Stoeckle MY, Gamble CC, Kirpekar R et al. (2011) Commercial teas highlight plant DNA barcode identification successes and obstacles. Scientific Reports, 1, 1 7. Swenson NG (2009) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS One, 4, e4390. Tripp EA, Hoagland KE (2013) Typifying an era in biology through synthesis of biodiversity information: achievements and impediments. Taxon, 62, de Vere N, Rich T, Ford C et al. (2012) DNA barcoding the native flowering plants and conifers of Wales. PLoS One, 7, 1 e Vernooy R, Haribabu E, Muller M et al. (2010) Barcoding life to conserve biological diversity: beyond the taxonomic imperative. PLoS Biology, 8, e White PT, McGill B, Lechowicz M (2011) Human-disturbance and caterpillars in managed forest fragments. Biodiversity and Conservation, 20, Wiens JJ (2003) Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology, 52, Wiens JJ, Morrill MC (2011) Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Systematic Biology, 60, T.L.E. and T.J.D. conceived the idea and wrote the manuscript; T.L.E. gathered and analysed the data. Data Accessibility Sequences and accompanying metadata are stored on BOLD (process ID s: VEMSH001-VEMSH662; MSTH MSTH061-12). Supporting Information Additional Supporting Information may be found in the online version of this article: Table S1 Contributors to the WG1.2 Land Plants ibol Working Group. Table S2 Updated terrestrial vascular plant species list for the Gault Reserve at Mont St. Hilaire, Quebec. Table S3 Time and cost estimates for two regional barcoding efforts in Quebec, Canada.

Amy Driskell. Laboratories of Analytical Biology National Museum of Natural History Smithsonian Institution, Wash. DC

Amy Driskell. Laboratories of Analytical Biology National Museum of Natural History Smithsonian Institution, Wash. DC DNA Barcoding Amy Driskell Laboratories of Analytical Biology National Museum of Natural History Smithsonian Institution, Wash. DC 1 Outline 1. Barcoding in general 2. Uses & Examples 3. Barcoding Bocas

More information

1. PURPOSE 2. PERIOD OF PERFORMANCE

1. PURPOSE 2. PERIOD OF PERFORMANCE Statement of Work Herbarium Voucher Collection Land Management Section, Environmental Security Department Marine Corps Installations West Marine Corps Base Camp Pendleton, California 1. PURPOSE The purpose

More information

DNA Barcoding Analyses of White Spruce (Picea glauca var. glauca) and Black Hills Spruce (Picea glauca var. densata)

DNA Barcoding Analyses of White Spruce (Picea glauca var. glauca) and Black Hills Spruce (Picea glauca var. densata) Southern Adventist Univeristy KnowledgeExchange@Southern Senior Research Projects Southern Scholars 4-4-2010 DNA Barcoding Analyses of White Spruce (Picea glauca var. glauca) and Black Hills Spruce (Picea

More information

DNA Barcoding: A New Tool for Identifying Biological Specimens and Managing Species Diversity

DNA Barcoding: A New Tool for Identifying Biological Specimens and Managing Species Diversity DNA Barcoding: A New Tool for Identifying Biological Specimens and Managing Species Diversity DNA barcoding has inspired a global initiative dedicated to: Creating a library of new knowledge about species

More information

Unit 5.2. Ecogeographic Surveys - 1 -

Unit 5.2. Ecogeographic Surveys - 1 - Ecogeographic Surveys Unit 5.2 Ecogeographic Surveys - 1 - Objectives Ecogeographic Surveys - 2 - Outline Introduction Phase 1 - Project Design Phase 2 - Data Collection and Analysis Phase 3 - Product

More information

Harvesting and harnessing data for biogeographical research

Harvesting and harnessing data for biogeographical research How do we know what grows where? Harvesting and harnessing data for biogeographical research A. Geography Tree B. Species Tree inventories and surveys natural areas, preserves, state forests, private properties

More information

Phylogenetic diversity and conservation

Phylogenetic diversity and conservation Phylogenetic diversity and conservation Dan Faith The Australian Museum Applied ecology and human dimensions in biological conservation Biota Program/ FAPESP Nov. 9-10, 2009 BioGENESIS Providing an evolutionary

More information

W. John Kress TRACKING EVOLUTIONARY DIVERSITY AND PHYLOGENETIC STRUCTURE ACROSS GLOBAL FOREST DYNAMICS PLOTS USING PLANT DNA BARCODES

W. John Kress TRACKING EVOLUTIONARY DIVERSITY AND PHYLOGENETIC STRUCTURE ACROSS GLOBAL FOREST DYNAMICS PLOTS USING PLANT DNA BARCODES TRACKING EVOLUTIONARY DIVERSITY AND PHYLOGENETIC STRUCTURE ACROSS GLOBAL FOREST DYNAMICS PLOTS USING PLANT DNA BARCODES 6 th international Barcode of Life Conference Guelph, 2015 W. John Kress 50-ha Forest

More information

Creating an e-flora for South Africa

Creating an e-flora for South Africa SANBI POLICY DOCUMENT DIVISION: Biosystematics Research and Biodiversity Collections EFFECTIVE DATE: 1 April 2014 Compiler: Marianne le Roux & Janine Victor POLICY NUMBER: LAST AMENDED: Creating an e-flora

More information

Computational Biology, University of Maryland, College Park, MD, USA

Computational Biology, University of Maryland, College Park, MD, USA 1 Data Sharing in Ecology and Evolution: Why Not? Cynthia S. Parr 1 and Michael P. Cummings 2 1 Institute for Advanced Computer Studies, 2 Center for Bioinformatics and Computational Biology, University

More information

The study of insect species diversity and modern approaches

The study of insect species diversity and modern approaches The study of insect species diversity and modern approaches Humala A.E. Forest Research Institute Karelian Research Centre RAS Petrozavodsk, RUSSIA The main idea and aim of any research TO FILL THE GAPS

More information

Species Identification and Barcoding. Brendan Reid Wildlife Conservation Genetics February 9th, 2010

Species Identification and Barcoding. Brendan Reid Wildlife Conservation Genetics February 9th, 2010 Species Identification and Barcoding Brendan Reid Wildlife Conservation Genetics February 9th, 2010 Why do we need a genetic method of species identification? Black-knobbed Map Turtle (Graptemys nigrinoda)

More information

Chitra Sood, R.M. Bhagat and Vaibhav Kalia Centre for Geo-informatics Research and Training, CSK HPKV, Palampur , HP, India

Chitra Sood, R.M. Bhagat and Vaibhav Kalia Centre for Geo-informatics Research and Training, CSK HPKV, Palampur , HP, India APPLICATION OF SPACE TECHNOLOGY AND GIS FOR INVENTORYING, MONITORING & CONSERVATION OF MOUNTAIN BIODIVERSITY WITH SPECIAL REFERENCE TO MEDICINAL PLANTS Chitra Sood, R.M. Bhagat and Vaibhav Kalia Centre

More information

世界在线植物志 (World Flora Online) 项目介绍

世界在线植物志 (World Flora Online) 项目介绍 Global Strategy for Plant Conservation 世界在线植物志 (World Flora Online) 项目介绍 覃海宁 中国科学院植物研究所 Email: hainingqin@ibcas.ac.cn Website: www.cvh.org.cn #gppc Global Strategy for Plant Conservation A programme of

More information

Plant Systematics. What is Systematics? or Why Study Systematics? Botany 400. What is Systematics or Why Study Systematics?

Plant Systematics. What is Systematics? or Why Study Systematics? Botany 400. What is Systematics or Why Study Systematics? Plant Systematics Botany 400 http://botany.wisc.edu/courses/botany_400/ What is Systematics? or Why Kenneth J. Sytsma Melody Sain Kelsey Huisman Botany Department University of Wisconsin Pick up course

More information

Ants in the Heart of Borneo a unique possibility to join taxonomy, ecology and conservation

Ants in the Heart of Borneo a unique possibility to join taxonomy, ecology and conservation Ants in the Heart of Borneo a unique possibility to join taxonomy, ecology and conservation Carsten Brühl, University Landau, Germany 1 Borneo Interior mountain ranges of Central Borneo represent the only

More information

the Belgian Network for DNA Barcoding (BeBoL)

the Belgian Network for DNA Barcoding (BeBoL) the Belgian Network for DNA Barcoding (BeBoL) http://bebol.myspecies.info Massi Virgilio Joint Experimental Molecular Unit (RMCA-RBINS, Belgium) financed by the Fund for Scientific Research Flanders (FWO)

More information

Introduction to Biosystematics. Course Website: Lecture 1: Introduction to Biological Systematics Outline: The role and value of Systematics

Introduction to Biosystematics. Course Website: Lecture 1: Introduction to Biological Systematics Outline: The role and value of Systematics Introduction to Biosystematics Course Website: http://homepages.ucalgary.ca/~dsikes/courses.htm Check weekly for lecture updates, readings, etc. D. S. Sikes University of Calgary There have been many authorities

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/65602 holds various files of this Leiden University dissertation. Author: Ruchisansakun, S. Title: Balsaminaceae in Southeast Asia: systematics, evolution,

More information

THE SEVILLE STRATEGY ON BIOSPHERE RESERVES

THE SEVILLE STRATEGY ON BIOSPHERE RESERVES THE SEVILLE STRATEGY ON BIOSPHERE RESERVES 1 VISION FOR BIOSPHERE RESERVES IN THE 21 ST CENTURY The international Seville Conference on Biosphere Reserves, organised by UNESCO, adopted a two-pronged approach,

More information

CABRILLO COLLEGE : Spring 2012

CABRILLO COLLEGE : Spring 2012 CABRILLO COLLEGE : Spring 2012 BIOLOGY 1C: Plant Biology and Ecological Principles Instructor: Nicole Crane Office #620 Office hours: MW 2:40-4:00, Thursday 12:40-1:40 ph. 479-5094 e-mail: nicrane@cabrillo.edu

More information

Lecture 2 Biology 5865 Conservation Biology

Lecture 2 Biology 5865 Conservation Biology Lecture 2 Biology 5865 Conservation Biology What is Biological Diversity? Chapter 2 spend additional time on this chapter if you have not had ecology Generally know the meaning and use of terms in bold

More information

DNA Sequencing as a Method for Larval Identification in Odonates

DNA Sequencing as a Method for Larval Identification in Odonates DNA Sequencing as a Method for Larval Identification in Odonates Adeline Harris 121 North St Apt 3 Farmington, ME 04938 Adeline.harris@maine.edu Christopher Stevens 147 Main St Apt 1 Farmington, ME 04938

More information

GRADUATE AND POSTDOCTORAL STUDIES FINAL ORAL EXAMINATION. Tuesday, April 12 th :15 PM

GRADUATE AND POSTDOCTORAL STUDIES FINAL ORAL EXAMINATION. Tuesday, April 12 th :15 PM GRADUATE AND POSTDOCTORAL STUDIES MCGILL UNIVERSITY FINAL ORAL EXAMINATION FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF FRIEDA BEAUREGARD DEPT. OF PLANT SCIENCE Potential for northern range expansion of the

More information

DNA Barcoding and taxonomy of Glossina

DNA Barcoding and taxonomy of Glossina DNA Barcoding and taxonomy of Glossina Dan Masiga Molecular Biology and Biotechnology Department, icipe & Johnson Ouma Trypanosomiasis Research Centre, KARI The taxonomic problem Following ~250 years of

More information

DNA and Floristics. DNA Barcoding. DNA Barcoding. DNA Barcoding - the History. DNA Barcoding 4/19/18

DNA and Floristics. DNA Barcoding. DNA Barcoding. DNA Barcoding - the History. DNA Barcoding 4/19/18 DNA and Floristics DNA Barcoding DNA Barcoding The use of DNA sequences to identify specimens across all of life in a manner analogous to the commercially ubiquitous Universal Product Codes (UPC) A C G

More information

SECTION D Monitoring plan as required in Annex VII of Directive 2001/18/EC

SECTION D Monitoring plan as required in Annex VII of Directive 2001/18/EC SECTION D Monitoring plan as required in Annex VII of Directive 2001/18/EC Type of monitoring plan The monitoring plan described in the submission is based on general surveillance. We believe this is a

More information

DNA barcoding is a technique for characterizing species of organisms using a short DNA sequence from a standard and agreed-upon position in the

DNA barcoding is a technique for characterizing species of organisms using a short DNA sequence from a standard and agreed-upon position in the DNA barcoding is a technique for characterizing species of organisms using a short DNA sequence from a standard and agreed-upon position in the genome. DNA barcode sequences are very short relative to

More information

the map Redrawing Donald Hobern takes a look at the challenges of managing biodiversity data [ Feature ]

the map Redrawing Donald Hobern takes a look at the challenges of managing biodiversity data [ Feature ] Redrawing the map Donald Hobern takes a look at the challenges of managing biodiversity data 46 Volume 12 > Number 9 > 2008 www.asiabiotech.com Cicadetta sp., Canberra, Australia, December 2007 Photograph

More information

Spatial Planning for Protected Areas in Response to Climate Change (SPARC)

Spatial Planning for Protected Areas in Response to Climate Change (SPARC) Spatial Planning for Protected Areas in Response to Climate Change (SPARC) CI-GEF and Conservation International PROJECT SUMMARY Protected areas are the centerpiece of place-based conservation. The Convention

More information

Shaw Nature Reserve. Preserving and documenting diversity By Garrett Billings

Shaw Nature Reserve. Preserving and documenting diversity By Garrett Billings Shaw Nature Reserve Preserving and documenting diversity By Garrett Billings History of Shaw Nature Reserve Burned frequently Native Americans Natural fire regimes Used almost exclusively as agriculture

More information

Middle School. Teacher s Guide MICROPLANTS MAJOR SPONSOR:

Middle School. Teacher s Guide MICROPLANTS MAJOR SPONSOR: Middle School Teacher s Guide MICROPLANTS MAJOR SPONSOR: Introduction As technology continues to rapidly evolve, scientists are able to collect and store more data. Some scientists find themselves with

More information

Complementary Ex Situ Conservation. Nigel Maxted

Complementary Ex Situ Conservation. Nigel Maxted Complementary Ex Situ Conservation Nigel Maxted SADC Crop Wild Relatives Regional training workshop In situ conservation of CWR including diversity assessment techniques Le Meridien Ile Maurice, Mauritius

More information

SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy. Dr.Hamidah Ahmad

SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy. Dr.Hamidah Ahmad SBEL 1532 HORTICULTURE AND NURSERY Lecture 2: Plants Classification & Taxonomy Dr.Hamidah Ahmad Plant Classifications is based on : Purpose of classifying plants: 1. botanical type 2. values or geographical

More information

Global Plant Name data online: their relevance to horticulture (Part 1) Alan Paton, Rafaël Govaerts, Bob Allkin

Global Plant Name data online: their relevance to horticulture (Part 1) Alan Paton, Rafaël Govaerts, Bob Allkin Global Plant Name data online: their relevance to horticulture (Part 1) Alan Paton, Rafaël Govaerts, Bob Allkin Overview Brief overview of some global resources Focus on the issues these resources face

More information

NEW CONCEPTS - SOIL SURVEY OF THE FUTURE

NEW CONCEPTS - SOIL SURVEY OF THE FUTURE NEW CONCEPTS - SOIL SURVEY OF THE FUTURE The new process of doing soil surveys by Major Land Resource Areas (MLRA) highlights this section. Special emphasis is given to an overview of the National Soil

More information

Georgia Performance Standards for Urban Watch Restoration Field Trips

Georgia Performance Standards for Urban Watch Restoration Field Trips Georgia Performance Standards for Field Trips 6 th grade S6E3. Students will recognize the significant role of water in earth processes. a. Explain that a large portion of the Earth s surface is water,

More information

The future of SDIs. Ian Masser

The future of SDIs. Ian Masser The future of SDIs Ian Masser Presentation Considers two questions relating to the future development of SDIs throughout the world Where have we got to now? Where should we go from here? Identifies four

More information

Postgraduate teaching for the next generation of taxonomists

Postgraduate teaching for the next generation of taxonomists Postgraduate teaching for the next generation of taxonomists Alfried P. Vogler Professor of Molecular Systematics Imperial College London and Natural History Museum MSc in Taxonomy and Biodiversity MRes

More information

Pleione praecox. Painting by: Ms. Hemalata Pradhan

Pleione praecox. Painting by: Ms. Hemalata Pradhan Introduction Painting by: Ms. Hemalata Pradhan Pleione praecox 1 INTRODUCTION DNA barcoding is an innovative molecular technique, which uses short and agreed upon DNA sequence(s) from either nuclear or/and

More information

A minimalist barcode can identify a specimen whose DNA is degraded

A minimalist barcode can identify a specimen whose DNA is degraded Molecular Ecology Notes (2006) 6, 959 964 doi: 10.1111/j.1471-8286.2006.01470.x Blackwell Publishing Ltd BARCODING A minimalist barcode can identify a specimen whose DNA is degraded MEHRDAD HAJIBABAEI,*

More information

Analysis of putative DNA barcodes for identification and distinction of native and invasive plant species

Analysis of putative DNA barcodes for identification and distinction of native and invasive plant species Babson College Digital Knowledge at Babson Babson Faculty Research Fund Working Papers Babson Faculty Research Fund 2010 Analysis of putative DNA barcodes for identification and distinction of native and

More information

DNA BARCODING OF PLANTS AT SHAW NATURE RESERVE USING matk AND rbcl GENES

DNA BARCODING OF PLANTS AT SHAW NATURE RESERVE USING matk AND rbcl GENES DNA BARCODING OF PLANTS AT SHAW NATURE RESERVE USING matk AND rbcl GENES LIVINGSTONE NGANGA. Missouri Botanical Garden. Barcoding is the use of short DNA sequences to identify and differentiate species.

More information

Antarctic Marine Biodiversity Data Now Online

Antarctic Marine Biodiversity Data Now Online Contact: Bruno Danis +32(2)6274139 bruno.danis@scarmarbin.be EMBARGOED UNTIL 9 a.m ECT, March 31 2009 Antarctic Marine Biodiversity Data Now Online An efficient network of specialists, data and tools to

More information

The Royal Entomological Society Journals

The Royal Entomological Society Journals Read the latest Virtual Special Issues from The Royal Entomological Society Journals Click on the buttons below to view the Virtual Special Issues Agricultural and Forest Pests Introduction This virtual

More information

IUCN Red List Process. Cormack Gates Keith Aune

IUCN Red List Process. Cormack Gates Keith Aune IUCN Red List Process Cormack Gates Keith Aune The IUCN Red List Categories and Criteria have several specific aims to provide a system that can be applied consistently by different people; to improve

More information

Course: Zoology Course Number: Title: Zoology, 6 th Edition Authors: Miller, Harley Publisher: Glencoe/McGraw-Hill Copyright: 2005

Course: Zoology Course Number: Title: Zoology, 6 th Edition Authors: Miller, Harley Publisher: Glencoe/McGraw-Hill Copyright: 2005 Course: Zoology Course Number: 2000410 Title: Zoology, 6 th Edition Authors: Miller, Harley Publisher: Glencoe/McGraw-Hill Copyright: 2005 Online Resources used in Correlations These resources are made

More information

The Atlas Aspect of the Atlas of Living Australia

The Atlas Aspect of the Atlas of Living Australia The Atlas Aspect of the Atlas of Living Australia Lee Belbin lee@blatantfabrications.com Melbourne Museum, July 28, 2010 The Atlas is funded by the Australian Government under the National Collaborative

More information

What is the range of a taxon? A scaling problem at three levels: Spa9al scale Phylogene9c depth Time

What is the range of a taxon? A scaling problem at three levels: Spa9al scale Phylogene9c depth Time What is the range of a taxon? A scaling problem at three levels: Spa9al scale Phylogene9c depth Time 1 5 0.25 0.15 5 0.05 0.05 0.10 2 0.10 0.10 0.20 4 Reminder of what a range-weighted tree is Actual Tree

More information

The Atlas of Living Australia

The Atlas of Living Australia The Atlas of Living Australia The ALA is a national collaborative research infrastructure supported by the Australian Government. It is led by CSIRO in partnership with the Australian biological community.

More information

Minor Research Project

Minor Research Project Executive Summary Minor Research Project DNA BARCODING OF MURDANNIA (COMMELINACEAE) IN WESTERN GHATS MRP (S)-1409/11-12/KLMG002/UGC-SWRO By Rogimon P. Thomas Assistant Professor Department of Botany CMS

More information

Eric D. Stein Biology Department

Eric D. Stein Biology Department Eric D. Stein Biology Department The Promise of Molecular Methods Faster answers Weeks vs. months Less expensive Better data Recognizing misidentifications Improving taxonomic keys Helping with difficult

More information

CURRICULUM VITAE. 12 August 12 September, 1996: International course on "Hazardous Waste Management", Nykoping, Sweden.

CURRICULUM VITAE. 12 August 12 September, 1996: International course on Hazardous Waste Management, Nykoping, Sweden. CURRICULUM VITAE Biodata: NAME: Ntsamaeeng Annah Moteetee (nee Lemena) DATE OF BIRTH: 12 th November, 1964 NATIONALITY: Lesotho MARITAL STATUS: Married Degrees Held: B.Sc. (Biology/Chemistry): NATIONAL

More information

Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well

Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well Aron J. Fazekas 1. *, Kevin S. Burgess 2, Prasad R. Kesanakurti 1, Sean W. Graham 3., Steven G. Newmaster

More information

Evolutionary Morphology of Land Plants

Evolutionary Morphology of Land Plants MHRD Scheme on Global Initiative on Academic Network (GIAN) Evolutionary Morphology of Land Plants Overview This century will be dominated by Life Sciences for well reasons of understanding evolution,

More information

The National Spatial Strategy

The National Spatial Strategy Purpose of this Consultation Paper This paper seeks the views of a wide range of bodies, interests and members of the public on the issues which the National Spatial Strategy should address. These views

More information

The practice of naming and classifying organisms is called taxonomy.

The practice of naming and classifying organisms is called taxonomy. Chapter 18 Key Idea: Biologists use taxonomic systems to organize their knowledge of organisms. These systems attempt to provide consistent ways to name and categorize organisms. The practice of naming

More information

R eports. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism

R eports. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism Ecology, 93(2), 2012, pp. 242 247 Ó 2012 by the Ecological Society of America Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism T. JONATHAN DAVIES, 1,6 NATHAN J. B.

More information

COMMENTS ON THE CONSERVATION STATUS OF SENECIO VELLEIOIDES (FOREST GROUNDSEL) IN TASMANIA

COMMENTS ON THE CONSERVATION STATUS OF SENECIO VELLEIOIDES (FOREST GROUNDSEL) IN TASMANIA COMMENTS ON THE CONSERVATION STATUS OF SENECIO VELLEIOIDES (FOREST GROUNDSEL) IN TASMANIA Mark Wapstra Environmental Consulting Options Tasmania, 28 Suncrest Avenue, Lenah Valley, Tasmania 7008; mark@ecotas.com.au

More information

NSDI as a tool for Secure land tenure

NSDI as a tool for Secure land tenure NSDI as a tool for Secure land tenure General Overview To look at the progress in SDI development and its application in policy formulation and impact on land tenure. INTEGRATION OF INFORMATION POLICIES

More information

The Tempo of Macroevolution: Patterns of Diversification and Extinction

The Tempo of Macroevolution: Patterns of Diversification and Extinction The Tempo of Macroevolution: Patterns of Diversification and Extinction During the semester we have been consider various aspects parameters associated with biodiversity. Current usage stems from 1980's

More information

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution

AP Environmental Science I. Unit 1-2: Biodiversity & Evolution NOTE/STUDY GUIDE: Unit 1-2, Biodiversity & Evolution AP Environmental Science I, Mr. Doc Miller, M.Ed. North Central High School Name: ID#: NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE AP Environmental

More information

CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD

CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD CLASS XI BIOLOGY NOTES CHAPTER 1: LIVING WORLD Biology is the science of life forms and non-living processes. The living world comprises an amazing diversity of living organisms. In order to facilitate

More information

New England Wild Flower Society's Flora Novae Angliae: A Manual for the Identification of Native and Naturalized Higher Vascular Plants of New England

New England Wild Flower Society's Flora Novae Angliae: A Manual for the Identification of Native and Naturalized Higher Vascular Plants of New England New England Wild Flower Society's Flora Novae Angliae: A Manual for the Identification of Native and Naturalized Higher Vascular Plants of New England Author(s): Alison C. Dibble Source: Rhodora, 114(959):337-340.

More information

Statutory framework of the world network of biosphere reserves UNESCO General Conference 1996

Statutory framework of the world network of biosphere reserves UNESCO General Conference 1996 Statutory framework of the world network of biosphere reserves UNESCO General Conference 1996 Keywords: conservation, protected areas, biosphere reserves, policies, strategies. For the Mountain Forum's

More information

CABRILLO COLLEGE : Fall 2008

CABRILLO COLLEGE : Fall 2008 Instructor: Nicole Crane Office #620 ph. 479-5094 e-mail: nicrane@cabrillo.edu www.cabrillo.edu/~ncrane CABRILLO COLLEGE : Fall 2008 BIOLOGY 1C: Plant Biology and Ecological Principles Textbooks: 1) Biology,

More information

Data Dictionary for Observation Data Transcription Reports from the Colorado Natural Heritage Program

Data Dictionary for Observation Data Transcription Reports from the Colorado Natural Heritage Program Data Dictionary for Observation Data Transcription Reports from the Colorado Natural Heritage Program This Data Dictionary defines terms used in Observation Data Reports exported by the Colorado Natural

More information

Realizing benefits of Spatial Data Infrastructure A user s perspective from Environment Agency - Abu Dhabi

Realizing benefits of Spatial Data Infrastructure A user s perspective from Environment Agency - Abu Dhabi Realizing benefits of Spatial Data Infrastructure A user s perspective from Environment Agency - Abu Dhabi Anil Kumar Director, Environment Information Management 26 April 2012 Geospatial World Forum,

More information

Getting Biodiversity Data

Getting Biodiversity Data Getting Biodiversity Data NatureServe Canada Douglas Hyde Executive Director Value of biodiversity data to business? Reasons vary depending on the business Reduce development uncertainty Integrated views

More information

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to:

Chapter 8. Biogeographic Processes. Upon completion of this chapter the student will be able to: Chapter 8 Biogeographic Processes Chapter Objectives Upon completion of this chapter the student will be able to: 1. Define the terms ecosystem, habitat, ecological niche, and community. 2. Outline how

More information

Nomination Form. Clearinghouse. New York State Office for Technology. Address: State Capitol-ESP, PO Box

Nomination Form. Clearinghouse. New York State Office for Technology. Address: State Capitol-ESP, PO Box NASIRE 2001 RECOGNITION AWARDS Recognizing Outstanding Achievement in the Field of Innovative Use of Technology Nomination Form Title of Nomination: Manager/Job Title: Agency: NYS Geographic Information

More information

Proceedings of Association of Pacific Rim Universities (APRU) Research Symposium on University Museums: Forming a University Museum Collection

Proceedings of Association of Pacific Rim Universities (APRU) Research Symposium on University Museums: Forming a University Museum Collection Proceedings of Association of Pacific Rim Universities (APRU) Research Symposium on University Museums: Forming a University Museum Collection Network as the Core of Frontier Research O-10 The Beaty Biodiversity

More information

"PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2014 University of California, Berkeley

PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION Integrative Biology 200 Spring 2014 University of California, Berkeley "PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2014 University of California, Berkeley D.D. Ackerly April 16, 2014. Community Ecology and Phylogenetics Readings: Cavender-Bares,

More information

Using Information and Geospatial Technologies to Support Biodiversity Conservation Policy Options in Latin America

Using Information and Geospatial Technologies to Support Biodiversity Conservation Policy Options in Latin America Using Information and Geospatial Technologies to Support Biodiversity Conservation Policy Options in Latin America Cover map credit: Javier Alfonso Racero-Casarrubia Using Information and Geospatial Technologies

More information

Ontario Science Curriculum Grade 9 Academic

Ontario Science Curriculum Grade 9 Academic Grade 9 Academic Use this title as a reference tool. SCIENCE Reproduction describe cell division, including mitosis, as part of the cell cycle, including the roles of the nucleus, cell membrane, and organelles

More information

While entry is at the discretion of the centre, candidates would normally be expected to have attained one of the following, or equivalent:

While entry is at the discretion of the centre, candidates would normally be expected to have attained one of the following, or equivalent: National Unit specification: general information Unit code: H1JB 11 Superclass: SE Publication date: May 2012 Source: Scottish Qualifications Authority Version: 01 Summary This Unit is designed to meet

More information

5/31/17. Week 10; Monday MEMORIAL DAY NO CLASS. Page 88

5/31/17. Week 10; Monday MEMORIAL DAY NO CLASS. Page 88 Week 10; Monday MEMORIAL DAY NO CLASS Page 88 Week 10; Wednesday Announcements: Family ID final in lab Today Final exam next Tuesday at 8:30 am here Lecture: Species concepts & Speciation. What are species?

More information

The Living World. AIIMS,CBSE,AIPMT, AFMC,Bio.Tech & PMT, Contact : , Mail at :- by AKB

The Living World. AIIMS,CBSE,AIPMT, AFMC,Bio.Tech & PMT, Contact : , Mail at :- by AKB The Living World Very Short Answer Questions 1. What does ICBN stand for? A: International Code for Botanical Nomenclature. 2. What is flora? A: It is a publication containing actual account of habitat,

More information

Economic and Social Council 2 July 2015

Economic and Social Council 2 July 2015 ADVANCE UNEDITED VERSION UNITED NATIONS E/C.20/2015/11/Add.1 Economic and Social Council 2 July 2015 Committee of Experts on Global Geospatial Information Management Fifth session New York, 5-7 August

More information

Missouri Botanical Garden

Missouri Botanical Garden Missouri Botanical Garden Global Strategy for Plant Conservation: Role and Importance of Floras, Data Bases, and Checklists Peter H. Raven President, Missouri Botanical Garden Florianopolis, Santa Catarina,

More information

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last

More information

5.2. Historic heritage. Photo: Vaughan Homestead, Long Bay Regional Park, Auckland. (Source: ARC). Historic heritage

5.2. Historic heritage. Photo: Vaughan Homestead, Long Bay Regional Park, Auckland. (Source: ARC). Historic heritage Photo: Vaughan Homestead, Long Bay Regional Park, Auckland. (Source: ARC). 274 Hazards and heritage Contents 5.2 Introduction 276 monitoring programmes 276 The state of historic heritage 277 Heritage items

More information

Natura 2000 and spatial planning. Executive summary

Natura 2000 and spatial planning. Executive summary Natura 2000 and spatial planning Executive summary DISCLAIMER The information and views set out in this study are those of the author(s) and do not necessarily reflect the official opinion of the Commission.

More information

climate famous data sharing toolbox in

climate famous data sharing toolbox in This is the story of what was done, and some lessons learnt as we bumped along on a very rough road. In the process of our work in mapping vegetation, modelling to investigate the possible impacts of climate

More information

GIS and Remote Sensing Applications in Invasive Plant Monitoring

GIS and Remote Sensing Applications in Invasive Plant Monitoring Matt Wallace NRS 509 Written Overview & Annotated Bibliography 12/17/2013 GIS and Remote Sensing Applications in Invasive Plant Monitoring Exotic invasive plants can cause severe ecological damage to native

More information

A Regional Database Tracking Fire Footprint Each Year within the South Atlantic Region: Current Database Description and Future Directions

A Regional Database Tracking Fire Footprint Each Year within the South Atlantic Region: Current Database Description and Future Directions A Regional Database Tracking Fire Footprint Each Year within the South Atlantic Region: Current Database Description and Future Directions Last Updated on September 30, 2018 Contributors: NatureServe,

More information

Tigard-Tualatin School District Science Grade Level Priority Standards

Tigard-Tualatin School District Science Grade Level Priority Standards Sixth Grade Science Physical Science 6.1 Structure and Function: Living and non-living systems are organized groups of related parts that function together and have characteristics and properties. 6.1P.1

More information

GBIF Global Biodiversity Information Facility. Dmitry Schigel, Tim Hirsch Arctic data and Global Biodiversity Information Facility

GBIF Global Biodiversity Information Facility. Dmitry Schigel, Tim Hirsch Arctic data and Global Biodiversity Information Facility GBIF Global Biodiversity Information Facility Dmitry Schigel, Tim Hirsch Arctic data and Global Biodiversity Information Facility WHAT IS GBIF? Intergovernmental collaboration founded in 2001 on the recommendation

More information

Citizen Science and Arctic Observing: Using the Internet and Simple Technologies to Improve Understanding of Arctic Ecosystem Change

Citizen Science and Arctic Observing: Using the Internet and Simple Technologies to Improve Understanding of Arctic Ecosystem Change Citizen Science and Arctic Observing: Using the Internet and Simple Technologies to Improve Understanding of Arctic Ecosystem Change Maribeth S. Murray 1, Phillip A. Loring 2, Howard Ferren 3 and Rebekka

More information

Discriminating plant species in a local temperate flora using the rbcl+matk DNA barcode

Discriminating plant species in a local temperate flora using the rbcl+matk DNA barcode Methods in Ecology and Evolution 2011, 2, 333 340 doi: 10.1111/j.2041-210X.2011.00092.x Discriminating plant species in a local temperate flora using the rbcl+matk DNA barcode Kevin S. Burgess 1 *, Aron

More information

Geospatial Services in Special Libraries: A Needs Assessment Perspective

Geospatial Services in Special Libraries: A Needs Assessment Perspective Purdue University Purdue e-pubs Libraries Faculty and Staff Scholarship and Research Purdue Libraries 5-17-2013 Geospatial Services in Special Libraries: A Needs Assessment Perspective Ilana R. Barnes

More information

Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley

Integrative Biology 200A PRINCIPLES OF PHYLOGENETICS Spring 2012 University of California, Berkeley Integrative Biology 200A "PRINCIPLES OF PHYLOGENETICS" Spring 2012 University of California, Berkeley B.D. Mishler Feb. 7, 2012. Morphological data IV -- ontogeny & structure of plants The last frontier

More information

United States Department of the Interior NATIONAL PARK SERVICE Northeast Region

United States Department of the Interior NATIONAL PARK SERVICE Northeast Region United States Department of the Interior NATIONAL PARK SERVICE Northeast Region June 17, 2017 REQUEST FOR STATEMENTS OF INTEREST and QUALIFICATIONS Project Title: ASSESSMENT OF NATURAL RESOURCE CONDITION

More information

Understanding Plant Nomenclature, Terminology and Identification

Understanding Plant Nomenclature, Terminology and Identification Unit 25 Unit code: QCF Level 2: Understanding Plant Nomenclature, Terminology and Identification M/600/2663 BTEC Specialist Credit value: 5 Guided learning hours: 38 Unit aim The aim of this unit is to

More information

Motivation for project:

Motivation for project: Motivation for project: Shale Gas exploration and development requested of government by Oil Companies. Shale Gas Development Strategic Environment Assessment (SGD SEA) commissioned by DEA Biodiversity

More information

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last

More information

Molecular Genetics for Aquatic and Marine Biodiversity Conservation

Molecular Genetics for Aquatic and Marine Biodiversity Conservation Molecular Genetics for Aquatic and Marine Biodiversity Conservation Course Code: 176040H01... Overview In a wider standpoint, conservation genetics uses a combination of ecology, molecular biology, population

More information

Community participation in sustainable tourism - A case study of two indigenous communities

Community participation in sustainable tourism - A case study of two indigenous communities Po-Hsin Lai Department of Park, Recreation, and Tourism Sciences Texas A&M University Community participation in sustainable tourism - A case study of two indigenous communities Community participation

More information

DATA and KNOWLEDGE INFRASTRUCTURE ANALYTICS, KNOWLEDGE DISSEMINATION

DATA and KNOWLEDGE INFRASTRUCTURE ANALYTICS, KNOWLEDGE DISSEMINATION DATA and KNOWLEDGE INFRASTRUCTURE ANALYTICS, KNOWLEDGE DISSEMINATION Contributors from multiple sectors add to Map of Life Consumers use Map of Life knowledge for societal needs BUT TO PROPERLY USE THESE

More information

Project Primary Contact: Gregg Servheen, Idaho Department of Fish and Game, PO Box 25 Boise, ID ,

Project Primary Contact: Gregg Servheen, Idaho Department of Fish and Game, PO Box 25 Boise, ID , Project Title: Idaho Montana Divide Project Objective: Pilot the conceptualization and coordination of a transboundary Decision Support System(DSS) for fish, wildlife, and habitats along the Idaho Montana

More information