TORSIONS INDUCED BY AUXIN

Size: px
Start display at page:

Download "TORSIONS INDUCED BY AUXIN"

Transcription

1 JUNE 1947 VOL. 46, No. i TORSIONS INDUCED BY AUXIN BY R. SNOW Fellow of Magdalen College, Oxford (With I figure in the text) It was reported in a previous paper of this series (1945, p. 77) that petioles of various species and plagiotropic stems of Philadelphus, if given a streak of hetero-auxin in lanoline applied on one side, twist so as to raise the treated side up to or towards the top. It was also shown by an experiment on petioles of Phaseolus multiflorus that the rule is that the torsion raises the treated side towards the top: for it did so even when the whole plant was inverted, although the direction of torsion was then the opposite in relation to the structure of the petiole. It was concluded that the treated side comes to act physiologically in relation to gravity like a dorsum; and it was further thought probable that the normal geostrophism of such lateral members, which brings the morphological dorsum to the top, is related to a tendency to accumulate the natural auxin in higher concentration along the dorsum. Fig. I. Phaseolus looked at horizontally after 54 hr. The dotted line was on top at the start, and the paste was on the far side. These results suggested the question whether orthotropic stems, roots and coleoptiles would react in a similar way if laid horizontal and treated with hetero-auxin in lanoline on one side; and accordingly the following experiments were carried out. Four seedlings of Phaseolus multiflorus were grown in pots, and when the epicotyls were elongating rapidly, the paired first leaves being 5 or 6 cm. long, the pots were laid on their sides in overhead light so that the epicotyls were horizontal with the plane of the leaves also horizontal. Then a thin streak of lanoline containing hetero-auxin at a concentration of i in 275 was placed along one side of the distal i-2 cm. of the epicotyl and was continued for a little way along the ventral face of the petiole of the leaf on that side. The four epicotyls all twisted in such a direction so as to raise the paste from the lateral position towards the New Phytol. 46, i '

2 2 R. SNOW top, the torsions being after 6.^ hr. roughly 75, 6o^\ 30 and 30, and after 23 hr. 80, 60, 60" and 50". The figure shows the third of these seedlings drawn as seen horizontally after 54 hr., when it had twisted 80. Four seedlings of Pisum sativum were similarly placed horizontal, with the plane of the leaves horizontal, and in each of them a young internode, only about 2 cm. long, was given a thin streak of the same paste along its distal half on one side. The paste was continued apically for a little way along the petiole on that side. In all four seedlings the treated internodes twisted so as to raise the paste, the torsions being after 6J hr. 90", 80, 80 and 70, and after 23 hr. 90", 90^ 90 and 80. Two young sunflower seedlings, with hypocotyls 5 and 2-5 cm. long, were placed horizontal with the plane of the cotyledons horizontal, and a very thin streak of a heteroauxin paste of i in 400 was placed along the distal i cm. of each hypocotyl on one side and for a little way along the petiole of the cotyledon on that side. The hypocotyls twisted so as to raise the paste, the torsions being 90 and 70 after 23 hr. Three young tomato seedlings, with hypocotyls only 2 cm. long, were treated like the sunflower seedlings, but with the paste of i in 275. The hypocotyls all twisted so as to raise the paste, the torsions being after 30 hr. 50", 35 and 15", and after 54 hr. 50, 50 and 25. Six oat seedlings grown in the dark were placed so that the elongating coleoptiles were horizontal with their longer transverse diameters horizontal, and each was given a streak of this I in 400 paste along one side. V\\e coleoptiles all twisted so as to raise the paste, the torsions being after 23 hr. at about i7'5 C, iio^, 90", 90, 90'^, 90" and 90. Eight young seedlings of Vicia faba, with main roots still quite short, were each given a streak of a hetero-auxin paste of concentration only i in 6000 on one of the narrow sides of the root. The paste reached from the level of the apical meristem to about 1; mm. behind it. The seedlings were then replaced in loose damp sawdust so that the roots were horizontal with their two narrow sides horizontal. Little shields prevented the sawdust from falling on to the treated apical parts of the roots. The roots all twisted so as to raise the paste, the torsions being after 23 hr. 70, 65, 50, 45, 40, 40, 30 and 25. Thus all the organs tested twisted so as to raise the sides treated with hetero-auxin paste. Naturally the various organs made curves as well as torsions, the curves of the stems and coleoptiles being at first curves away from the paste in the horizontal plane and geonegative curves in the vertical plane. In the four Phaseolus epicotyls, for example, at 6-J hr. the horizontal curves vi'ere 60""', 50", 40^ and 20, and the vertical curves 45, 25, 20 and 30^. But by this time they had made torsions raising the paste which ranged from 30 to 75, so that from this time onwards the tendency to curve away from the paste was directed obliquely downwards and partially counteracted the negative geotropism. Consequently after this time the curves in the two planes did not increase much more, and some of them diminished. Similar results were noticed in the other species also. The various orthotropic stems and coleoptiles which were placed horizontal and had one side treated with hetero-auxin paste were thereby made to curve as well as twist like plagiotropic stems; and this resemblance was not only in the final result, but in the process leading up to it. For it is now generally accepted that normal plagiotropic stems, and also leaves, commonly owe their orientation to a balance between negative geotropism and an opposing tendency which may be called epinastism. Correspondingly in the stems

3 Torsions induced by auxin 3 and coleoptiles treated with auxin paste, the curvature away from the treated side, which became physiologically dorsal, opposed the geonegative curvature after the treated side had risen by torsion, just as does in natural plagiotropic stems the epinastic curvature away from the natural dorsum. But it remains to be discovered how it comes about that the face of a stem or petiole which is physiologically dorsal, either naturally or through being treated with hetero-auxin, tends to rise by torsion to the top. The fact that the roots, though positively geotropic, twisted like the stems so as to raise their treated sides need not be surprising, since in roots as in stems auxin is diverted towards the lower side. In the roots the horizontal curvatures were rather strong, and were of course towards the paste. Incidentally it was noticed that in the stems of Phaseolus and Pisiim the torsions and the curves away from the paste were carried out by the auxinated zone of the stem itself and by a rather short zone just basal to it, whereas the geonegative curves were carried out by a zone further towards the base which was mainly or entirely separate. Consequently, after a day or more, when the stems had twisted so that the two curves were nearly in the same plane, the total curve was S-shaped, as is shown in the figure; and similar S curves were noticed in the coleoptiles. It needs finally to be considered whether the torsions may have been caused by the two curvatures. This is made unlikely by the fact that in Phaseolus and Pisitm the two curves, when present, were mainly in different zones. Moreover in two of the Pisiim stems the geonegative curves at 6?. hr. were nil, and in the other two only 25 and 35'. But it seemed desirable to test directly whether in similar stems curvatures in two planes do cause torsions. So seven similar Phaseolus seedlings were arranged with their epicotyls horizontal, and when these had curved up about 60 the pots were rotated through 90, so as to stimulate them in the plane at right angles. When the components of the total curvatures in the new vertical plane were from 40 to 75 (mean 47 ), it was found that the earlier curves, which were now the components in the horizontal plane, were still from 20 to 35 (mean 29 ); but there were no torsions. With the same method two short young sunflower hypocotyls were stimulated in two planes at right angles, the component curves being in the one hypocotyl 45 and 80 simultaneously, and in the other 20 and 45 ; but again there were no torsions. So in young stems of Phaseolus and Helianthus similar to those used in the experiments with auxin paste, two curvatures induced in planes at right angles are not necessarily accompanied by a torsion, and it therefore seems that in the experiments with the paste the torsions cannot have been caused by the two curvatures. The results of these last experiments are contrary to the statement of Staub (1934) that in many organs, including hypocotyls of Helianthus, a convex face acts as if physiologically dorsal. For if so the face which became convex in the earlier geotropic curvature should have risen by torsion when the pots were rotated through 90. But it seemed possible that longer and weaker sunflower hypocotyls, such as would sag when placed horizontal, might twist when similarly stimulated in two planes. For Rawitscher (1932, p. i()'() mentions that many long shoots, which are too weak to raise their own weight by geotropism when horizontal, make torsions. Actually it was found that two longer and weaker sunflower hypocotyls when similarly stimulated in two planes did make torsions of 30 and 70 such as to raise the convex side of the earlier curve. Whether any of the torsions

4 4 R. SNOW reported by Staub can have been caused in this way is not clear; but the torsions reported here, which were induced by hetero-auxin paste in organs that were not sagging, cannot anyhow have been so caused. SlIMMARY 1. Various young orthotropic stems, and also coleoptiles and main roots, when placed horizontal and treated on one side with hetero-auxin paste all twist so as to raise the treated side to the top, or towards it. 2. These torsions are not caused by the curvatures in two planes which are also induced. 3. The organs treated with the paste become plagiotropic, the treated side being physiologically dorsal. REFERENCES RAWITSCHER, F. (1932). Der Geotrnpismus tier Pflan::en. Jena. SNOW, R. (1945). Further experiments on torsions of lea\'es. Neio Phvtol. 44, 70. STAUB, H. (1934). Beitrag zur Kenntnis unnnittelbarer Torsionen, etc. Schu-eiz. Bot. Ces. 43, 191.

5

ON THE INTERPRETATION OF GEOSTROPHIC AND AUXIN TORSIONS

ON THE INTERPRETATION OF GEOSTROPHIC AND AUXIN TORSIONS JULY 1950 VOL. 49, No. 2 ON THE INTERPRETATION OF GEOSTROPHIC AND AUXIN TORSIONS BY R. SNOW Fellow of Magdalen College, Oxford (With 3 figures in the text) I. INTRODUCTION The purpose of this paper is

More information

A TEST OF SACHS'S THEORY OF THE PLAGIOTROPISM OF LAMINAE

A TEST OF SACHS'S THEORY OF THE PLAGIOTROPISM OF LAMINAE [25] A TEST OF SACHS'S THEORY OF THE PLAGOTROPSM OF LAMNAE BY R. SNOW Fellozv of Magdalen College, Oxford (With 5 figures in the text) According to a suggestion of Sachs (179, pp. 246 and 254) the movements

More information

THE DIRECTION OF TORSION AND THE CHANGES OF SHAPE IN LEAVES FIXED DISTALLY OR COMPLETELY

THE DIRECTION OF TORSION AND THE CHANGES OF SHAPE IN LEAVES FIXED DISTALLY OR COMPLETELY [25] THE DIRECTION OF TORSION AND THE CHANGES OF SHAPE IN LEAVES FIXED DISTALLY OR COMPLETELY BY R. SNOW Fellow of Magdalen College, Oxford (With 11 figures in the text) (i) THE DIRECTION OF TORSION IN

More information

FURTHER EXPERIMENTS ON PLAGIOTROPISM AND CORRELATIVE INHIBITION

FURTHER EXPERIMENTS ON PLAGIOTROPISM AND CORRELATIVE INHIBITION [254] FURTHER EXPERIMENTS ON PLAGIOTROPISM AND CORRELATIVE INHIBITION BY R. SNOW Fellozv of Magdalen College, Oxford From his excellent study of correlative inhibition in Araucaria excelsa Massart (1924)

More information

SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH

SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH [ 292 ] SEASONAL VARIATION IN RESPONSE TO GRAVITY IN LUPINUS POLYPHYLLUS SEEDLINGS: DISTRIBUTION OF STATOLITH STARCH BY E. D. BRAIN [Received ii April 1954) (With 2 figures in the text) In the previous

More information

(not by naphthylacetic acid and

(not by naphthylacetic acid and Acta Bot. Neerl. 22(3), June 1973, p. 221-227. The auxin production of the physiological tip of the Avena coleoptile and the repression of tip regeneration by indoleacetic acid (not by naphthylacetic acid

More information

Gibberellins (GA) are involved in cell elongation, particularly in the stem.

Gibberellins (GA) are involved in cell elongation, particularly in the stem. Plant Hormone Lab Plant hormones influence many aspects of plant growth, particularly cell proliferation and elongation. Different hormones are synthesized in different parts of the plant, and have complex

More information

PLANT HORMONES-Introduction

PLANT HORMONES-Introduction PLANT HORMONES-Introduction By convention hormone are said to be a substances whose site of synthesis and site of action are different; the two events are separated by space and time. Hormones are known

More information

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf.

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf. Topic 1. Plant Structure Introduction: Because of its history, several unrelated taxa have been grouped together with plants into the discipline of botany. Given this context, in this first lab we will

More information

FROM various experiments the writer concluded previously (1937, 1938) that

FROM various experiments the writer concluded previously (1937, 1938) that [ 177 A HORMONE FOR CORRELATIVE INHIBITION BY R. SNOW Fellow of Magdalen College, Oxford (With I figure in the text) I. INTRODUCTION FROM various experiments the writer concluded previously (1937, 1938)

More information

15. PHOTOPERIODISM. 1. Short day plants

15. PHOTOPERIODISM. 1. Short day plants 15. PHOTOPERIODISM Photoperiodism is the phenomenon of physiological changes that occur in plants in response to relative length of day and night (i.e. photoperiod). The response of the plants to the photoperiod,

More information

[ A WOUND SUBSTANCE RETARDING GROWTH IN ROOTS BY SIR FREDERICK KEEBLE, C.B.E., Sc.D., F.R.S., M. G. NELSON, M.A., AND R. SNOW, M.A.

[ A WOUND SUBSTANCE RETARDING GROWTH IN ROOTS BY SIR FREDERICK KEEBLE, C.B.E., Sc.D., F.R.S., M. G. NELSON, M.A., AND R. SNOW, M.A. [ 289 1 A WOUND SUBSTANCE RETARDING GROWTH IN ROOTS BY SIR FREDERICK KEEBLE, C.B.E., Sc.D., F.R.S., M. G. NELSON, M.A., AND R. SNOW, M.A. (From the Department of Botany, Oxford) I T has become well known

More information

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E

CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E CONTROL OF PLANT GROWTH AND DEVELOPMENT BI-2232 RIZKITA R E The development of a plant the series of progressive changes that take place throughout its life is regulated in complex ways. Factors take part

More information

FURTHER EXPERIMENTS ON THE INHIBITION OF THE DE-

FURTHER EXPERIMENTS ON THE INHIBITION OF THE DE- 480 PHYSIOLOG Y: SKOOG A ND THIMA NN PROC. N. A. S. FURTHER EXPERIMENTS ON THE INHIBITION OF THE DE- VELOPMENT OF LATERAL BUDS BY GROWTH HORMONE By FOLKE SKOOG AND KENNETH V. THIMANN WILLIAM G. KERCKHOFF

More information

Topic 15. The Shoot System

Topic 15. The Shoot System Topic 15. The Shoot System Introduction. This is the second of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

* School of Biological Sciences, Carslaw Building, University of Sydney, Sydney, N.S.W By VERONICA H. K. Low*

* School of Biological Sciences, Carslaw Building, University of Sydney, Sydney, N.S.W By VERONICA H. K. Low* Aust. J. biol. Sci., 1971, 24, 187-95 * School of Biological Sciences, Carslaw Building, University of Sydney, Sydney, N.S.W. 2006.. NTRODUCTON A detailed survey of the morphological and anatomical effects

More information

Plants are sessile. 10d-17/giraffe-grazing.jpg

Plants are sessile.   10d-17/giraffe-grazing.jpg Plants are sessile www.mccullagh.org/db9/ 10d-17/giraffe-grazing.jpg Plants have distinct requirements because of their sessile nature Organism-level requirements Must adjust to environment at given location

More information

EFFECTS OF GIBBERELLIC ACID ON INTERNODE GROWTH AND STARCH CONTENTS OF EUCALYPTUS CAMALDULENSIS SEEDLINGS

EFFECTS OF GIBBERELLIC ACID ON INTERNODE GROWTH AND STARCH CONTENTS OF EUCALYPTUS CAMALDULENSIS SEEDLINGS New Phytol. {ig()) S, ioiyio22. EFFECTS OF GIBBERELLIC ACID ON INTERNODE GROWTH AND STARCH CONTENTS OF EUCALYPTUS CAMALDULENSIS SEEDLINGS BY E. P. BACHELARD Department of Forestry, Australian National

More information

Forces in Everyday Life

Forces in Everyday Life reflect What kinds of things can do work? You probably answered that people do work. Perhaps you also thought of machines that help us do work, like scissors or bicycles. Perhaps you thought of animals

More information

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip

Topic 14. The Root System. II. Anatomy of an Actively Growing Root Tip Topic 14. The Root System Introduction. This is the first of two lab topics that focus on the three plant organs (root, stem, leaf). In these labs we want you to recognize how tissues are organized in

More information

How plants respond to their environment

How plants respond to their environment Travis Lick Biology How plants respond to their environment Plants, with their roots firmly fixed in the earth, seem immobile and vulnerable compared to animals, but this does not prevent them from reacting

More information

LECTURES ON THE PHYSIOLOGY OF MOVEMENT IN PLANTS.' Bv FRANCIS DARWIN. VI. DiATROPISM.

LECTURES ON THE PHYSIOLOGY OF MOVEMENT IN PLANTS.' Bv FRANCIS DARWIN. VI. DiATROPISM. I2O Francis Darwin. of the vascular system in proportion to the plant, and the number of tracheids contained in a stele of given diameter, rather than the fundamental type of structure. It is not easy

More information

Primary Plant Body: Embryogenesis and the Seedling

Primary Plant Body: Embryogenesis and the Seedling BIOL 221 Concepts of Botany Primary Plant Body: Embryogenesis and the Seedling (Photo Atlas: Figures 1.29, 9.147, 9.148, 9.149, 9.150, 9.1, 9.2) A. Introduction Plants are composed of fewer cell types,

More information

OF THE LEMNA FROND MORPHOLOGY

OF THE LEMNA FROND MORPHOLOGY MORPHOLOGY OF THE LEMNA FROND FREDERICK H. BLODGETT (WITH PLATE XIV AND ONE FIGURE) In the case of structure simplified by reduction, it is sometimes necessary to trace the development of the parts through

More information

Chapter 33 Plant Responses

Chapter 33 Plant Responses Chapter 33 Plant Responses R. Cummins 1 Chapter 33 Plant Responses External Factors Light, Day Length, Gravity, Temperature Internal Factors Hormones R. Cummins 2 Tropisms R. Cummins 3 Phototropism and

More information

Lab Exercise 4: Primary Growth and Tissues in Stems

Lab Exercise 4: Primary Growth and Tissues in Stems Lab Exercise 4: Primary Growth and Tissues in Stems Tissues of the plant body can be classified in a variety of ways: functionally (based on the tissue function, e.g. vascular tissue ), morphologically

More information

The Journal of General Physiology

The Journal of General Physiology GROWTH SUBSTANCE CURVATURES OF AVENA IN LIGHT AND DARK Bx J. VAN OVERBEEK (From the William G. Kerckhoff Laboratories of the Biological Sciences, California Institute of Technology, Pasadena) (Accepted

More information

(endosperm and scutellum) of Avena seedlings greatly reduces the production EFFECT OF THE ROOTS ON THE PRODUCTION OF A UXIN BY

(endosperm and scutellum) of Avena seedlings greatly reduces the production EFFECT OF THE ROOTS ON THE PRODUCTION OF A UXIN BY 272 PHYSIOLOGY: J. V. OVERBEEK Laboratory, and especially Mr. Philip Abelson, who determined the activity of the various phosphorus samples. We appreciate the interest of Dr. John Lawrence and Mr. Paul

More information

The Transpiration Stream and Upward Translocation of Mineral Ions

The Transpiration Stream and Upward Translocation of Mineral Ions The Ohio State University Knowledge Bank kb.osu.edu Ohio Journal of Science (Ohio Academy of Science) Ohio Journal of Science: Volume 65, Issue 6 (November, 1965) 1965-11 The Transpiration Stream and Upward

More information

Plant Development. Chapter 31 Part 1

Plant Development. Chapter 31 Part 1 Plant Development Chapter 31 Part 1 Impacts, Issues Foolish Seedlings, Gorgeous Grapes Gibberellin and other plant hormones control the growth and development of plants environmental cues influence hormone

More information

The Growth Hormones Found in Plants

The Growth Hormones Found in Plants The Ohio State University Knowledge Bank kb.osu.edu Ohio Journal of Science (Ohio Academy of Science) Ohio Journal of Science: Volume 37, Issue 6 (November, 1937) 1937-11 The Growth Hormones Found in Plants

More information

Plant Responses and Adaptations Video

Plant Responses and Adaptations Video Plant Responses and Adaptations Video Hormone -a substance that is produced in one part of an organism & affects another part of the same individual Plant hormones are chemical substances Control a plant

More information

Introduction to Botany. Lecture 25

Introduction to Botany. Lecture 25 Introduction to Botany. Lecture 25 Alexey Shipunov Minot State University November 2, 2015 Shipunov (MSU) Introduction to Botany. Lecture 25 November 2, 2015 1 / 33 Outline 1 Questions and answers 2 Stem

More information

APICAL DOMINANCE IN VICIA FABA L.

APICAL DOMINANCE IN VICIA FABA L. Qatar Univ. Sci. Bull. (1983), 3: 103-114 APICAL DOMINANCE IN VICIA FABA L. A. M. A. ISMAIL Department of Botany, Faculty of Science University of Qatar, Doha, Qatar. Keywords: Apical dominance, Auxin,

More information

Level 2 Part II. MSU Extension Horticulture Associate Specialist. Pages Montana Master Gardener Handbook

Level 2 Part II. MSU Extension Horticulture Associate Specialist. Pages Montana Master Gardener Handbook Plant Growth and Development Level 2 Part II Toby Day MSU Extension Horticulture Associate Specialist Pages 24-48 Montana Master Gardener Handbook Vegetative parts of a plant Definitions Apical bud or

More information

STUDIES ON THE GEOTROPISM OF STEMS.

STUDIES ON THE GEOTROPISM OF STEMS. STUDIES ON THE GEOTROPISM OF STEMS. EDWIN BINGHAM COPELAND. i. The absence of polarity in the hypocotyl of Cucurbita. THE hypocotyl of Cucurbita, and, I suppose, of every plant whose cotyledons expand

More information

THE method of operating upon stem apices and leaf primordia which we have

THE method of operating upon stem apices and leaf primordia which we have THE DETERMINATION OF AXILLARY BUDS BY MARY SNOW AND R. SNOW (With 10 figures in the text) THE method of operating upon stem apices and leaf primordia which we have practised for other purposes (1931, 1935)

More information

Polytrichum psilocorys 153 A NOTE ON THE PERIODICITY OF LEAF- FORM IN TARAXACUM OFFICINALE

Polytrichum psilocorys 153 A NOTE ON THE PERIODICITY OF LEAF- FORM IN TARAXACUM OFFICINALE Polytrichum psilocorys 153 sterilized by boiling and kept in a glass box. They germinated abundantly and the culture remained pure. The young moss-plants appeared on the protonema, but they showed an extraordinarily

More information

BIO1PS 2012 Plant Science Lecture 4 Hormones Pt. I

BIO1PS 2012 Plant Science Lecture 4 Hormones Pt. I BIO1PS 2012 Plant Science Lecture 4 Hormones Pt. I Dr. Michael Emmerling Department of Botany Room 410 m.emmerling@latrobe.edu.au Hormones and Ghost gum Eucalyptus papuana Coordination ~3 Lectures Leaves

More information

Plant Structure. Lab Exercise 24. Objectives. Introduction

Plant Structure. Lab Exercise 24. Objectives. Introduction Lab Exercise Plant Structure Objectives - Be able to identify plant organs and give their functions. - Learn distinguishing characteristics between monocot and dicot plants. - Understand the anatomy of

More information

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) NCEA Level 3 Biology (91603) 2013 page 1 of 6 Assessment Schedule 2013 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603) Assessment Criteria

More information

LECTURE 4: PHOTOTROPISM

LECTURE 4: PHOTOTROPISM http://smtom.lecture.ub.ac.id/ Password: https://syukur16tom.wordpress.com/ LECTURE 4: PHOTOTROPISM LECTURE FLOW 1. 2. 3. 4. 5. INTRODUCTION DEFINITION INITIAL STUDY PHOTROPISM MECHANISM PHOTORECEPTORS

More information

Plant Growth Regulators

Plant Growth Regulators Plant Growth Regulators Dr.H.B.Mahesha, Yuvaraja s College, University of Mysore, India. Growth is an important factor of living organism defined as a permanent and irreversible change in size or volume

More information

PLANT PHYSIOLOGY. a- Photoperiodism c- Vernalization. b- Auxin precursors d- plant development.

PLANT PHYSIOLOGY. a- Photoperiodism c- Vernalization. b- Auxin precursors d- plant development. Benha university Faculty of science Botany Department Micro&chem.. 3 th year Exam. 2013 PLANT PHYSIOLOGY Q1: Define the following:- a- Photoperiodism c- Vernalization b- Auxin precursors d- plant development.

More information

Botany Physiology. Due Date Code Period Earned Points

Botany Physiology. Due Date Code Period Earned Points Botany Physiology Name C/By Due Date Code Period Earned Points Bot Phys 5N5 Stem Forms Bot Phys 5-05 Identify the major forms of stems in plants I. Identify the major forms of stems in plants A. internal

More information

Reproduction, Seeds and Propagation

Reproduction, Seeds and Propagation Reproduction, Seeds and Propagation Diploid (2n) somatic cell Two diploid (2n) somatic cells Telophase Anaphase Metaphase Prophase I One pair of homologous chromosomes (homologues) II Homologues condense

More information

Plant Juvenility Text Pages: 15 18,

Plant Juvenility Text Pages: 15 18, 45 Plant Juvenility Text Pages: 15 18, 613 619. Objectives: 1. Be able to describe and explain terms related to plant aging. 2. Be able to explain how a woody plant contains tissue of different ontogenetic

More information

Cell polarity and tissue patterning in plants

Cell polarity and tissue patterning in plants Development Supplement I, 1991, 83-93 Printed in Great Britain The Company of Biologists Limited 1991 83 Cell polarity and tissue patterning in plants TSVI SACHS Department of Botany, The Hebrew University,

More information

The mode of development in animals and plants is different

The mode of development in animals and plants is different The mode of development in animals and plants is different Outcome of animal embryogenesis is a mini edition of the adult Outcome of plant embryogenesis is a simple structure with -root apical meristem

More information

Plant Responses. NOTE: plant responses involve growth and changes in growth. Their movement is much slower than that of animals.

Plant Responses. NOTE: plant responses involve growth and changes in growth. Their movement is much slower than that of animals. Plant Responses A stimulus is anything that causes a reaction in an organism. Examples: light, gravity and temperature A response is the activity of an organism as a result of a stimulus. Examples: Growth,

More information

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions

UNIT A: Basic Principles of Plant Science with a focus on Field Crops. Lesson 1: Examining Plant Structures and Functions UNIT A: Basic Principles of Plant Science with a focus on Field Crops Lesson 1: Examining Plant Structures and Functions 1 Terms Alternate leaf arrangement Bulb Cell Cell specialization Cladophyll Compound

More information

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23

Early Development. Typical Body Plan 9/25/2011. Plant Histology Early development, cells & Chapters 22 & 23 Plant Histology Early development, cells & tissues Chapters 22 & 23 Early Development Formation of the embryo The Mature Embryo & Seed Requirements for seed germination Embryo to Adult Apical meristems

More information

362 Growth-Periodicity of the Potato Tuber.

362 Growth-Periodicity of the Potato Tuber. 362 Growth-Periodicity of the Potato Tuber. auxanometer methods to root-stocks by uncovering the root-stock attaching a silver thread, running it horizontally to the open side of the box passing over a

More information

MODIFICATION OF LEAF STRUCTURE BY X-RAYS. asymmetric, distorted, pocked; light green areas intermingle with ordinary

MODIFICATION OF LEAF STRUCTURE BY X-RAYS. asymmetric, distorted, pocked; light green areas intermingle with ordinary MODIFICATION OF LEAF STRUCTURE BY X-RAYS YAKICHI NOGUCHI (WITH SIX FIGURES) Introduction The effect of x-rays upon seeds and seedlings very often causes abnormalities of form and changes in the internal

More information

Bring Your Text to Lab!!!

Bring Your Text to Lab!!! Bring Your Text to Lab!!! Vascular Plant Anatomy: Flowering Plants Objectives: 1. To observe what the basic structure of vascular plants is, and how and where this form originates. 2. To begin to understand

More information

Growth and rheological changes of collenchyma cells: The fusicoccin e fect

Growth and rheological changes of collenchyma cells: The fusicoccin e fect Plant & Cell Physiol. 20(1): 1-7 (1979) Growth and rheological changes of collenchyma cells: The fusicoccin e fect M. Jaccard and P. E. Pilet Institute of Plant Biology and Physiology of the University,

More information

Unit Two: Chemical Control

Unit Two: Chemical Control Unit Two: Chemical Control 3.1 Plant growth and development are regulated by hormones Tropism is a biological phenomenon in which plants grow toward or away from an environmental stimulus, such as light,

More information

DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA

DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA DEVELOPMENTAL GENETICS OF ARABIDOPSIS THALIANA CHASE BALLARD LINDA EAN HECTOR LOPEZ DR. JOANNA WERNER-FRACZEK IN COLLABORATION WITH DR. PATRICIA SPRINGER S LAB AT UCR AND ROBERT KOBLE PURPOSE OF RESEARCH

More information

Name: B5 PLANT HORMONES. Class: Practice questions. Date: 53 minutes. Time: 53 marks. Marks: Biology Only. Comments: Page 1 of 25

Name: B5 PLANT HORMONES. Class: Practice questions. Date: 53 minutes. Time: 53 marks. Marks: Biology Only. Comments: Page 1 of 25 B5 PLANT HORMONES Practice questions Name: Class: Date: Time: 53 minutes Marks: 53 marks Comments: Biology Only Page of 25 Hormones called auxins control plant growth. A student investigated plant growth

More information

Plant. Responses and Adaptations. Plant Hormones. Plant Hormones. Auxins. Auxins. Hormones tell plants:

Plant. Responses and Adaptations. Plant Hormones. Plant Hormones. Auxins. Auxins. Hormones tell plants: Plant Responses and Adaptations Plant Hormones Hormone - a substance that is produced in 1 part of an organism & affects another part of the same individual (a chemical messenger) Plant hormones are chemical

More information

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots

Chapter 6. Biology of Flowering Plants. Anatomy Seedlings, Meristems, Stems, and Roots BOT 3015L (Outlaw/Sherdan/Aghoram); Page 1 of 6 Chapter 6 Biology of Flowering Plants Anatomy Seedlings, Meristems, Stems, and Roots Objectives Seedling germination and anatomy. Understand meristem structure

More information

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf.

Learning objectives: Gross morphology - terms you will be required to know and be able to use. shoot petiole compound leaf. Topic 1. Introduction to Plants Introduction: Because of its history, several unrelated taxa have been grouped together with plants into the discipline of botany. Given this context, in this first lab

More information

EFFECTS OF DIFFERENT MORPHOREGULATORS ON GROWTH AND DEVELOPMENT OF CANNABIS SATIVA L.

EFFECTS OF DIFFERENT MORPHOREGULATORS ON GROWTH AND DEVELOPMENT OF CANNABIS SATIVA L. EFFECTS OF DIFFERENT MORPHOREGULATORS ON GROWTH AND DEVELOPMENT OF CANNABIS SATIVA L. AJINKYA BHARAT LALGE, PETER MENDEL, TOMAS VYHNANEK, VACLAV TROJAN, PETR KALOUSEK, LADISLAV HAVEL Department of Plant

More information

10/4/2017. Chapter 39

10/4/2017. Chapter 39 Chapter 39 1 Reception 1 Reception 2 Transduction CYTOPLASM CYTOPLASM Cell wall Plasma membrane Phytochrome activated by light Cell wall Plasma membrane Phytochrome activated by light cgmp Second messenger

More information

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE 1 CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE Photomorphogenesis and Light Signaling Photoregulation 1. Light Quantity 2. Light Quality 3. Light Duration 4. Light

More information

TOPIC 9.3 GROWTH IN PLANTS

TOPIC 9.3 GROWTH IN PLANTS TOPIC 9.3 GROWTH IN PLANTS 9.3 A Growth INTRO http://cdn2.hubspot.net/hubfs/18130/social-suggested-images/plant_growing.jpeg IB BIO 9.3 3 In general, plants are able to grow indeterminately. This means

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-15 PLANT GROWTH AND DEVELOPMENT Root, stem leaves, flower, fruits and seeds arise in orderly manner in plants. The sequence of growth is as follows-

More information

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model

Chapter 39. Plant Reactions. Plant Hormones 2/25/2013. Plants Response. What mechanisms causes this response? Signal Transduction Pathway model Chapter 39 Plants Response Plant Reactions Stimuli & a Stationary life Animals respond to stimuli by changing behavior Move toward positive stimuli Move away from negative stimuli Plants respond to stimuli

More information

Outline. Leaf Development. Leaf Structure - Morphology. Leaf Structure - Morphology

Outline. Leaf Development. Leaf Structure - Morphology. Leaf Structure - Morphology Outline 1. Leaf Structure: Morphology & Anatomy 2. Leaf Development A. Anatomy B. Sector analysis C. Leaf Development Leaf Structure - Morphology Leaf Structure - Morphology 1 Leaf Structure - Morphology

More information

OCR (A) Biology A-level

OCR (A) Biology A-level OCR (A) Biology A-level Module 1: Development of practical skills in Biology PAG 11: Investigation Into The Measurement of Plant or Animal Responses Please note: You only need to do one from each PAG,

More information

YOM KAKIZAKI SAITAMAGRICULTURAL EXPERIMENT STATION, URAWA, SAITANA

YOM KAKIZAKI SAITAMAGRICULTURAL EXPERIMENT STATION, URAWA, SAITANA A THE FLOWERING HABIT AND NATURAL CROSSING IN THE EGG-PLANT YOM KAKIZAKI SAITAMAGRICULTURAL EXPERIMENT STATION, URAWA, SAITANA In regard to the frequency of natural crossing in the egg-plant,. Solauum

More information

Life Science Chapter 11 SEED PLANTS PART 2

Life Science Chapter 11 SEED PLANTS PART 2 Life Science Chapter 11 SEED PLANTS PART 2 Advanced Seed Producing Advanced Seed Producing Vascular Plants Class: Gymnospermae Class: Angiospermae» Subclass: Monocotyledoneae» Subclass: Dicotyledoneae

More information

THE ROLE OF LEAVES IN AUXIN AND BORON-DEPENDENT ROOTING OF STEM CUTTINGS OF PHASEOLUS AUREUS ROXB.

THE ROLE OF LEAVES IN AUXIN AND BORON-DEPENDENT ROOTING OF STEM CUTTINGS OF PHASEOLUS AUREUS ROXB. jv«w Phytol. (1980) 84, 251-259 251 THE ROLE OF LEAVES IN AUXIN AND BORON-DEPENDENT ROOTING OF STEM CUTTINGS OF PHASEOLUS AUREUS ROXB. BY W. MIDDLETON, B. C. JARVIS AND A. BOOTH Department of Botany, The

More information

Electromagenetic spectrum

Electromagenetic spectrum Light Controls of Plant Development 1 Electromagenetic spectrum 2 Light It is vital for photosynthesis and is also necessary to direct plant growth and development. It acts as a signal to initiate and

More information

ANATOMY, HISTOCHEMISTRY AND CYTOLOGY OF DORMANT AND STRATIFIED APPLE EMBRYOS

ANATOMY, HISTOCHEMISTRY AND CYTOLOGY OF DORMANT AND STRATIFIED APPLE EMBRYOS Neio Phytol. (1981) 87, 573 579 573 ANATOMY, HISTOCHEMISTRY AND CYTOLOGY OF DORMANT AND STRATIFIED APPLE EMBRYOS UL STRUCTURAL CHANGES DURING THE EARLY DEVELOPMENT OF SEEDLINGS IN RELATION TO EMBRYONIC

More information

CONTROL SYSTEMS IN PLANTS

CONTROL SYSTEMS IN PLANTS AP BIOLOGY PLANTS FORM & FUNCTION ACTIVITY #5 NAME DATE HOUR CONTROL SYSTEMS IN PLANTS HORMONES MECHANISM FOR HORMONE ACTION Plant Form and Function Activity #5 page 1 CONTROL OF CELL ELONGATION Plant

More information

Some Varieties of Pisum sativum. substance in the light. the heredity of the pea, can reach a length of 4 m. short-stemmed varieties.

Some Varieties of Pisum sativum. substance in the light. the heredity of the pea, can reach a length of 4 m. short-stemmed varieties. On the Differences in Longitudinal Growth Some Varieties Pisum sativum by Iz. de Haan and Chr.J. Gorteṛ CONTENTS 1) Introduction 2) Analysis the longitudinal growth a) Number and the internodes b) Number

More information

A. Stimulus Response:

A. Stimulus Response: Plant Hormones A. Stimulus Response: A house plant on a windowsill grows light. If you rotate the plant, it reorients its growth until its leaves face the window again. The growth of a shoot towards light

More information

Stems BI 103: Plant & Animal A & P. Learning Objectives

Stems BI 103: Plant & Animal A & P. Learning Objectives Stems BI 103: Plant & Animal A & P Outline: 1. Stems: monocots vs dicots--handout 2. Woody plant growth 3. Discussion problems 4. Monocots & soutside Learning Objectives What are the differences between

More information

Greenhouse Supplemental Light Quality for Vegetable Nurseries

Greenhouse Supplemental Light Quality for Vegetable Nurseries Greenhouse Supplemental Light Quality for Vegetable Nurseries Chieri Kubota and Ricardo Hernández The University of Arizona LED Symposium (Feb 20, 2015) Supplemental lighting from late fall to early spring

More information

Hormonal and other chemical effects on plant growth and functioning. Bill Davies Lancaster Environment Centre, UK

Hormonal and other chemical effects on plant growth and functioning. Bill Davies Lancaster Environment Centre, UK Hormonal and other chemical effects on plant growth and functioning Bill Davies Lancaster Environment Centre, UK Integrating the impacts of soil drought and atmospheric stress High radiant load Reduced

More information

PHYLLOTAXIS OF KNIPHOFIA AND LILIUM CANDID UM

PHYLLOTAXIS OF KNIPHOFIA AND LILIUM CANDID UM PHYLLOTAXIS OF KNIPHOFIA AND LILIUM CANDID UM BY R. SNOW Felloiv of Magdalen College, Oxford [Received 12 March 1957) (With Plate i and 8 figures in the text) KNIPHOFIA According to Berger (1908) the leaves

More information

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1

PLANTS FORM AND FUNCTION PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY. Plant Form & Function Activity #1 page 1 AP BIOLOGY PLANTS FORM AND FUNCTION ACTIVITY #1 NAME DATE HOUR PLANT MORPHOLOGY PART I: BASIC MORPHOLOGY Plant Form & Function Activity #1 page 1 PART II: ROOTS 1. Examine the examples of the two root

More information

Actions of auxin. Hormones: communicating with chemicals History: Discovery of a growth substance (hormone- auxin)

Actions of auxin. Hormones: communicating with chemicals History: Discovery of a growth substance (hormone- auxin) Hormones: communicating with chemicals History- discovery of plant hormone. Auxin Concepts of hormones Auxin levels are regulated by synthesis/degradation, transport, compartmentation, conjugation. Polar

More information

Seed Development and Yield Components. Thomas G Chastain CROP 460/560 Seed Production

Seed Development and Yield Components. Thomas G Chastain CROP 460/560 Seed Production Seed Development and Yield Components Thomas G Chastain CROP 460/560 Seed Production The Seed The zygote develops into the embryo which contains a shoot (covered by the coleoptile) and a root (radicle).

More information

Bio 100 Guide 27.

Bio 100 Guide 27. Bio 100 Guide 27 http://www.offthemarkcartoons.com/cartoons/1994-11-09.gif http://www.cneccc.edu.hk/subjects/bio/album/chapter20/images/plant_growth.jpg http://pgjennielove.files.wordpress.com/2008/06/apical_meristem.png

More information

EFFECT OF SOME GROWTH HORMONES (GA 3, IAA AND KINETIN) ON THE MORPHOLOGY AND EARLY OR DELAYED INITIATION OF BUD OF LENTIL (LENS CULINARIS MEDIK)

EFFECT OF SOME GROWTH HORMONES (GA 3, IAA AND KINETIN) ON THE MORPHOLOGY AND EARLY OR DELAYED INITIATION OF BUD OF LENTIL (LENS CULINARIS MEDIK) Pak. J. Bot., 36(4): 81-89, 24. EFFECT OF SOME GROWTH HORMONES (GA 3, IAA AND KINETIN) ON THE MORPHOLOGY AND EARLY OR DELAYED INITIATION OF BUD OF LENTIL (LENS CULINARIS MEDIK) M. NAEEM, IRAM BHATTI *,

More information

Plants. Tissues, Organs, and Systems

Plants. Tissues, Organs, and Systems Plants Tissues, Organs, and Systems Meristematic cells Specialized cells that are responsible for producing specialized cells, they produce three types of tissue in the body of a plant. Meristematic Cells

More information

Chapter C3: Multicellular Organisms Plants

Chapter C3: Multicellular Organisms Plants Chapter C3: Multicellular Organisms Plants Multicellular Organisms Multicellular organisms have specialized cells of many different types that allow them to grow to a larger size than single-celled organisms.

More information

Ch 25 - Plant Hormones and Plant Growth

Ch 25 - Plant Hormones and Plant Growth Ch 25 - Plant Hormones and Plant Growth I. Patterns of plant growth A. Plant continue to grow, even in old age. i.e. new leaves, needles, new wood, new cones, new flowers, etc. B. Meristem continues to

More information

Plant Growth Regulators(NCERT)

Plant Growth Regulators(NCERT) Plant Growth Regulators(NCERT) Promoters: 1. Auxins: -first isolated from urine, contains Zinc. -Natural: Indole Acetic Acid (IAA) Indole Butyric Acid (IBA) -Synthetic: Naphthalene Acetic Acid (NAA) 2-4

More information

CHANGES WITH AGE IN THE PHOTOSYNTHETIC AND RESPIRATORY COMPONENTS OF THE NET ASSIMILATION RATES OF SUGAR BEET AND WHEAT

CHANGES WITH AGE IN THE PHOTOSYNTHETIC AND RESPIRATORY COMPONENTS OF THE NET ASSIMILATION RATES OF SUGAR BEET AND WHEAT CHANGES WITH AGE IN THE PHOTOSYNTHETIC AND RESPIRATORY COMPONENTS OF THE NET ASSIMILATION RATES OF SUGAR BEET AND WHEAT BY D. J. WATSON, J. H. WILSON*, MARGARET A. FORD AND S. A. W. FRENCH Rothamsted Experimental

More information

Moments and Torques. M = F d

Moments and Torques. M = F d Moments and Torques When a force is applied to an object, the object reacts in six possible ways. It can elongate, compress, translate (moves left, right, up, down, etc.), bend, twist or rotate. The study

More information

Leaf and Internode. Introduction. Parts of the Monocot and Dicot Leaf. Introductory article

Leaf and Internode. Introduction. Parts of the Monocot and Dicot Leaf. Introductory article Andrew Hudson, University of Edinburgh, Edinburgh, UK Christopher Jeffree, University of Edinburgh, Edinburgh, UK Leaves of different species show wide variation in morphology and anatomy, usually associated

More information

(17) CYCLANILIDE: MECHANISM OF ACTION AND USES AS A PLANT GROWTH REGULATOR IN COTTON

(17) CYCLANILIDE: MECHANISM OF ACTION AND USES AS A PLANT GROWTH REGULATOR IN COTTON (17) CYCLANILIDE: MECHANISM OF ACTION AND USES AS A PLANT GROWTH REGULATOR IN COTTON Jim Burton 1 and Marianne Pedersen Abstract. Cyclanilide [1-(2,4-dichlorophenylaminocarbonyl)-cyclopropane carboxylic

More information

Apical dominance models can generate basipetal patterns of bud activation

Apical dominance models can generate basipetal patterns of bud activation Apical dominance models can generate basipetal patterns of bud activation Przemyslaw Prusinkiewicz 1, Richard S. Smith 1 and Ottoline Leyser 2 1 Department of Computer Science, University of Calgary 2

More information

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants.

Useful Propagation Terms. Propagation The application of specific biological principles and concepts in the multiplication of plants. Useful Propagation Terms Propagation The application of specific biological principles and concepts in the multiplication of plants. Adventitious Typically describes new organs such as roots that develop

More information

WEED IDENTIFICATION - TERMINOLOGY. C. Shumway B. Scott

WEED IDENTIFICATION - TERMINOLOGY. C. Shumway B. Scott WEED IDENTIFICATION - TERMINOLOGY C. Shumway B. Scott THIS IS A GLOSSARY OF TERMS USED IN THE IDENTIFICATION OF WEED SPECIES. PROPER IDENTIFICATION IS A KEY COMPONENT ON THE EFFICIENT USE OF WEED CONTROL

More information

PLANT HORMONES AND PLANT DEFENCE MECHANISMS 24 APRIL 2013

PLANT HORMONES AND PLANT DEFENCE MECHANISMS 24 APRIL 2013 PLANT HORMONES AND PLANT DEFENCE MECHANISMS 24 APRIL 2013 Lesson Description In this lesson, we: Discuss general functions of the following plant hormones: - Auxins - Gibberellins - Abscisic acid Discuss

More information

EVIDENCE ON THE SITE OF ACTION OF GROWTH RETARDANTS 1

EVIDENCE ON THE SITE OF ACTION OF GROWTH RETARDANTS 1 Plant & Cell PhysioL, 6 (1965) EVIDENCE ON THE SITE OF ACTION OF GROWTH RETARDANTS 1 ROBERT CLELAND 2 Department of Botany, University of California, Berkeley, Calif., U.S.A. (Received May 18, 1964) 1.

More information