of multispecies predator prey interactions

Size: px
Start display at page:

Download "of multispecies predator prey interactions"

Transcription

1 Ecology , Habitat shape, metapopulation processes and the dynamics Blackwell Publishing Ltd of multispecies predator prey interactions JAMES C. BULL*, NICOLA J. PICKUP*, MICHAEL P. HASSELL* and MICHAEL B. BONSALL* *Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK; Institute of Zoology, Zoological Society of London, Regent s Park, London NW1 4RY, UK; and Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK Summary 1. The effects of habitat shape, connectivity and the metapopulation processes of persistence and extinction are explored in a multispecies resource consumer interaction.. The spatial dynamics of the indirect interaction between two prey species (Callosobruchus chinensis, Callosobruchus maculatus) and a predator (Anisopteromalus calandrae) are investigated and we show how the persistence time of this interaction is altered in different habitat configurations by the presence of an apparent competitor. 3. Habitat structure has differential effects on the dynamics of the resource consumer interaction. Across all habitat types, the pairwise interaction between C. chinensis and A. calandrae is highly prone to extinction, while the interaction between C. maculatus and A. calandrae shows sustained long-term fluctuations. Contrary to expectations from theory, habitat shape has no significant effect on persistence time of the full, threespecies resource consumer assemblage. 4. A stochastic metapopulation model for a range of habitat configurations, incorporating different forms of regulatory processes, highlights that it is the spatially explicit population dynamics rather than the shape of the metapopulation that is the principal determinant of interaction persistence time. Keywords: Anisopteromalus, apparent competition, Callosobruchus, extinction, host parasitoid interaction, population dynamics, time-series, regulatory process, spatial arrangement Ecology (006) 75, doi: /j x Ecological Society Introduction Spatial heterogeneity and habitat structure has wideranging ecological implications, from the persistence of infectious diseases (Hagenaars, Donnelly & Ferguson 004) through to the design of nature reserves (Etienne & Heesterbeek 000). Both theoretical and empirical studies of spatial structure have progressed from simply proposing that spatial mechanisms might increase the persistence of ecological systems (Nicholson & Bailey 1935; Wright 1940; Huffaker, Shea & Herman 1963; Pimentel, Nagel & Madden 1963) to quantitative investigations of the effects of metapopulation structure on single species (Levins 1969; Hanski 1991; Hanski 1999), Correspondence: Dr Mike Bonsall, Department of Zoology, University of Oxford, South Parks Road, Oxford, Oxon. OX1 3PS, UK. Tel: ; Fax: michael.bonsall@zoo.ox.ac.uk pairwise interactions (Holyoak & Lawler 1996; Ellner et al. 001; Bonsall, French & Hassell 00) and multispecies assemblages (Forbes & Chase 00; Chase & Ryberg 004; Bonsall et al. 005). Although it is now relatively well established that metapopulation structure has important implications for the dynamics and persistence for a range of ecological scenarios (Hanski & Gaggiotti 004), a remaining challenge is to explore the effects of habitat connectivity, patch arrangements and patch dynamics on the metapopulation processes of persistence and extinction. While there is a considerable body of theoretical work suggesting that habitat shape and spatial heterogeneity is of importance in determining the outcome of resource consumer interactions (Holyoak 000; Snyder & Chesson 003; Amarasekare 004; Jonzén, Wilcox & Possingham 004), the effects of regional spatial heterogeneity on the persistence of more complex ecological interactions are often unclear (Hagenaars et al. 004). In particular, how

2 900 J. C. Bull et al. spatially variable habitats affect local and regional ecological processes such as predator prey interactions, resource consumer dynamics and indirect species interactions remains largely unexplored. Previously, using predator prey metapopulations, it has been shown that large scale spatial structure can affect the persistence of these extinction-prone resource consumer interactions (Holyoak & Lawler 1996; Ellner et al. 001; Bonsall, French & Hassell 00; Bonsall & Hastings 004). More recently, this effect has been extended to show how metapopulation structures and spatial scale can influence the outcome of more complex multispecies interactions (Bonsall et al. 005). By exploring the effects of apparent competition (where two species that do not compete for resource, share a common natural enemy), it has been illustrated that spatial structure can mitigate the ecological effects of this indirect interaction. Four conditions for metapopulation persistence (e.g. Hanski 1999) have been shown to underpin these multispecies interactions. First, single patches are capable of supporting host populations in the absence of parasitoids. Secondly, patches are at high risk of extinction in the presence of parasitoids. Thirdly, there is asynchrony across space and through time between patches, and finally there is rescue of extinct patches (Bonsall et al. 005). Here, we extend this theme to explore how habitat shape influences the persistence and dynamics of resource consumer metapopulations. Using replicated laboratory microcosms we investigate the effects of parasitism (pairwise resource consumer interactions) and shared parasitism (apparent competitive interactions) over a wide range of habitat designs. Metapopulation shapes are varied in the degree of connectivity (number Ecological Fig. 1. Schematic Society, diagram showing the nine spatial arrangements of patches used. Journal Designs of a d Animal alone were constructed as laboratory experimental treatments, while all Ecology, configurations 75, were included in the stochastic process models. See Table 1 for details of mean and variance in connectivity between patches. of links between patches vary but total number of patches is constant). We illustrate that the effects of apparent competition on the persistence time of the multispecies interaction are observed over the full range of habitat designs. Moreover, while habitat shape affects the population dynamics and regulatory processes of the resource consumer interaction, contrary to expectation the shape of the habitat has no effect on the persistence time of either the pairwise or apparent competitive assemblages. Having demonstrated the importance of habitat shape on population dynamical processes, we further explore metapopulation persistence and habitat shape through the development of a number of stochastic population models incorporating differing regulatory processes and embedding these within an expanded range of patch configurations. These hypothetical habitat designs vary in more than just the variance of connectivity, with both the mean number of connections and the maximum distance across the metapopulation being explored. Across all habitat shapes tested, we find that it is the population regulatory processes, not the spatial arrangement of patches which affects persistence time. Materials and methods EXPERIMENTAL DESIGN Laboratory microcosms were used to explore the hypothesis that habitat shape affects the persistence of an apparent competition interaction between the bruchid beetles, Callosobruchus maculatus (Fabricius) (Coleoptera: Bruchidae) and C. chinensis (L.) (Coleoptera: Bruchidae), mediated through parasitism by the parasitoid, Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae). Clear, plastic boxes ( mm) were used as the baseline patch for the study. Patches had a hole (4 4 mm diameter) placed in each of their four sides which could either be blocked or lengths (50 mm) of plastic tube inserted to connect patches horizontally into lattice arrangements of various designs. A single-layer lattice of these patches was used for treatments that included only one bruchid species. In the treatments including both bruchids, patches were stacked into double-layer systems. In these cases, top- and bottom-layer patches were connected by a 5 mm-diameter mesh-covered hole. The mesh (hole size: mm) prevented vertical movement by bruchids and, consequently, any direct, interspecific resource competition. However, this tested experimental design did not inhibit the foraging activity of the parasitoid over both bruchid species and allowed an apparent competitive interaction to be established. Four different experimental arrangements of nine patches were assembled (Fig. 1a d) in which the mean connectivity was constant (mean connections per patch = 1 78) but the variance in connectivity differed [variance of connectivity: line (treatment 1) = 0 194, I-design (treatment ) = 0 694, cross (treatment 3) = and

3 901 Multispecies metapopulation dynamics double-star (treatment 4) = 1 694]. Three different species combinations were established in each of the habitat designs: C. maculatus with A. calandrae and C. chinensis with A. calandrae as separate, two-species interactions and the full, three-species, apparent competition interaction (C. maculatus C. chinensis A. calandrae). All treatments were replicated four times. Experiments were seeded over a period of 3 weeks by introducing three black-eyed beans [Vigna unguiculata (L.) Wapl. (Leguminosae)] and four pairs of bruchids into every patch each week. In the cases of double-layer lattices, two replicates of each treatment were seeded with four pairs of C. maculatus on the upper lattice and four pairs of C. chinensis on the lower lattice, and two replicates the other way around. On the fourth week, a further three beans were placed in each patch (three on each level of double-layer patches) and new bruchids emerged from the beans introduced in week 1. Subsequently, bean resources were replaced following a 4-week resource renewal scheme, with the oldest three beans being replaced from each patch every week. Removed beans were stored for a further 4 weeks and any newly emerging animals were released back into the appropriate patch. After the host species had become established for several generations without dispersal between patches, dispersal for h each week was initiated. This length of dispersal window has been shown previously to result in a significant increase in interaction persistence time compared to unlimited dispersal (Bonsall et al. 005). Parasitoids were introduced after a further two host generations. Four pairs of wasps were introduced over consecutive weeks into three different patches in the metapopulations. Time-series for all species were obtained by counting both alive and dead insects each week from every patch (dead insects were then removed). All experiments were undertaken in controlled environmental conditions (30 C, 70% relative humidity, 16 : 8 light : dark cycle). METAPOPULATION PROCESSES Asynchrony in the dynamics between patches was investigated through spatiotemporal semivariograms for each metapopulation (of n patches), which were calculated using γ( d, τ) = 1 / i= 1 y= 1( xi τ n n xj τ) where x is the individual species, patch specific growth rate for equally weighted time-point τ and spatial reference point (Legendre & Legendre 1998). This statistic categorizes the squared differences in population growth rate between all possible pairs of patches into groups according to the minimum number of steps (d) between the ith and jth patch in the metapopulation. Means, γ (d,τ), for each of these distance categories represent the level of asynchrony and are presented for each distance (d) and time-point (τ). The potential for extinct patches to be recolonized was determined by calculating the conditional probability that a patch, in which a given species was absent at time τ, was subsequently recolonized. Adults had to be absent from any given patch for 4 weeks continuously in the case of hosts or weeks continuously in the case of parasitoids, in order to allow for any developing insects to emerge as adults. This ensured that immigration from neighbouring patches was the only possible source of insects present in patches from which they were found to be extinct. DYNAMICS AND PERSISTENCE To test the hypothesis that habitat structure affects the dynamics of the predator prey assemblage we explore, using analysis of covariance (with population density as a continuous variable and habitat shape as a categorical variable), how the regulatory processes operating in the persistent, pairwise, host parasitoid (C. maculatus A. calandrae) interaction differ between habitat types. We use conventional population ecological analysis of regressing net reproductive rate [ln(n t+1 /N t )] on lagged population density (Royama 199) and include habitat shape as a covariate. Metapopulation persistence times for the pairwise (C. chinensis A. calandrae) and apparent competitive (C. chinensis C. maculatus A. calandrae) interactions were compared using survival analyses (Cox & Oakes 1984) and any replicates persisting at the end of the experiment were censored. Model simplification (stepwise elimination of non-significant explanatory variables) was used to determine the most appropriate, minimal adequate model (the model retaining only significant terms) with residual errors for this survival regression described appropriately by a Weibull distribution. POPULATION MODELS Further investigation of the relationship between dynamical processes and habitat shape were conducted through development and analysis of population simulation models applied to an expanded range of patch configurations (Fig. 1a i). Patch-specific, population dynamics were modelled by using stochastic population models. In particular, autoregressive processes were used to describe time-lagged density-dependent processes (e.g. N i,t, N i,t 1 ) while moving average processes were used to describe density-independent processes (e.g. Z i,t ). For instance, dynamical changes in the ith patch driven by a second-order density-dependent process [AR()] and a first-order moving average process [MA(1)] are described by (Bonsall et al. 00): N = f( N, N, Z, ) it, + 1 it, it, 1 it, εt where f( ) is the underlying stochastic process and ε t is a independent, identically distributed random variable. Three different population dynamic scenarios operating at the patch-level were considered: a first-order density-dependent process [AR(1)], a second-order density-dependent process [AR()] and a secondorder density-dependent process coupled to a first-order

4 90 J. C. Bull et al. Fig.. Representative time-series from the four different habitat arrangements for the three different predator prey interactions: (a d) Callosobruchus maculatus A. calandrae (mean host abundance); (e h) C. chinensis A. calandrae (mean host abundance); and (i l) C. chinensis C. maculatus A. calandrae. As predicted by the P* rule, Callosobruchus maculatus persists in the metapopulation while C. chinensis is the species that is always driven extinct in the apparent competitive interaction see text for further details (solid grey line: C. maculatus; solid black line: C. chinensis; dashed black line: A. calandrae). density-independent process [AR()MA(1)]. Net changes in abundance within the ith patch are also influenced through dispersal: Nit, + δ = ( 1 δi) Ni + λijn where δ i is the density-independent dispersal fraction from the ith patch, N i and N j are the numbers of animals in the ith and jth patch and λ ij is the connectivity matrix that determines the possible links between patches (and allows the effects of different habitat shapes to be explored). In the analysis, habitat shape and regulatory form were considered as separate, categorical variables explaining variance in persistence time. All analyses were completed in S-PLUS. RESULTS p j= 1 In Fig., we show representative time-series from each of the (replicated) pairwise interactions (C. chinensis A. calandrae, C. maculatus A. calandrae) and the apparent competitive interaction (C. chinensis C. maculatus A. calandrae) from the different habitat shapes. Across all habitat types, all replicates of C. maculatus A. calandrae persisted over the course of the experiment ( 3 weeks). We use these time-series to explore how habitat shape affects (meta)population dynamics of the resource consumer interaction. In the apparent competitive j interaction, C. chinensis is always the species that is driven to extinction (Fig. i l). To explore the hypothesis that habitat type and assemblage complexity affect persistence and metapopulation processes we make comparisons between this pairwise interaction (C. chinensis A. calandrae) and the full three-species apparent competitive interaction. METAPOPULATION PROCESSES Testing the hypothesis that asynchrony is affected by spatial and temporal processes reveals that correlations in patch-specific population growth rates are highly variable across space and through time. Temporally explicit variograms of the full three-species interaction and the pairwise C. chinensis A. calandrae metapopulations illustrate that asynchrony increases with distance between patches and varies widely over time (Fig. 3). The highly variable nature of the asynchrony over time masks any clear differences between treatments. However, the parasitoid appears to be more in phase among patches in the two species C. chinensis A. calandrae interaction than in the apparent competition assemblage (Fig. 3). To determine the recolonization potential and rescue of extinct patches, conditional probabilities were calculated for the re-invasion of each of the species in the apparent competitive interaction (Table 1). While

5 903 Multispecies metapopulation dynamics Fig. 3. Semi-variograms of asynchrony in patch-specific growth rate. Representative replicates are shown for all four habitat shapes, top row of four semivariograms shows asynchrony between C. chinensis within apparent competition assemblages, second row shows A. calandrae from the same replicates, third row shows C. chinensis from within two-species assemblages, with the bottom row showing A. calandrae from the same replicates. Measures of n n asynchrony were made using γ( d, τ) = 1 / i= 1 j= 1( xi τ xj τ) see text for further details. all three species in the study show the potential for recolonization, the rate of recolonization varies between species and amongst habitat arrangement (Table 1). Parasitoids demonstrate the greatest frequency of recolonization, followed by C. maculatus, which was the superior apparent competitor in all cases. Recolonization by C. chinensis into patches where it was extinct was rare and in some cases did not occur at all. DYNAMICS AND PERSISTENCE The average abundance (with standard errors), across all habitat shapes, of C. chinensis in the presence of the wasp (A. calandrae) was (5 33) and the abundance of the parasitoid was 5 69 (0 91). In comparison, the abundance of C. maculatus was ( 15) and the abundance of A. calandrae was 38 9 ( 18). The C. chinensis A. calandrae interaction was extinction prone and persists for only about 17 weeks (mean persistence time 17 0 ( 11) weeks). In contrast, the dynamics of the C. maculatus A. calandrae interactions showed sustained long-term fluctuations across all habitat shapes (Fig. 1a d). Differences in temporal density-dependence occur in this resource consumer interaction among the different habitats (Fig. 4): regression of the net reproductive rate vs. lagged population density shows that the dynamics of C. maculatus (in the presence of A. calandrae) are described by different density-dependent relationships (Fig. 4). In particular, model simplification reveals that the dynamics in the two habitats with low variance in connectivity ( line and I-design ) are described by the same density-dependent relationship, whereas separate relationships are required for each of the two other habitats (with higher variance in connectivity, cross and double-star ) (population size habitat shape interaction F,499 = 3 16, P = ).

6 904 J. C. Bull et al. Table 1. Connectivity and species-specific patch recolonization potentials for three species, apparent competition assemblages in nine spatial arrangements of nine-patch habitats Habitat shape treatments Connectivity Recolonization probability Mean Variance Maximum steps across habitat C. chinensis C. maculatus A. calandrae 1 ( line ) ( I-design ) ( cross ) ( double-star ) ( long cross ) Simulated populations 6 ( open Union Jack ) Simulated populations 7 ( ring ) Simulated populations 8 ( square ) Simulated populations 9 ( closed Union Jack ) Simulated populations Fig. 4. Regional population net-reproductive rate vs. lagged density for Callosobruchus maculatus in the different habitat shapes. (a) the regulatory processes in the low variance treatments ( line and I-design ) can be described by the same line while (b c) in the higher variance treatments (b = cross, c = double-star ), the regulatory processes are described by different regression lines. (open circles: cross treatment; solid circles: double-star treatment; grey circles: line and I-design treatments). Overall, in the nine-patch metapopulations, the presence of an apparent competitor (C. maculatus) affected the persistence of the multispecies assemblage (threespecies persistence time: mean = (SE = 1 46) weeks; two-species persistence time: mean = 17 0 (SE = 11) weeks). The distribution, skew and kurtosis for persistence times for the pairwise and apparent competitive interactions in the different habitats are shown in Fig. 5. Mean (SE) persistence times (in weeks) for the pairwise (C. chinensis A. calandrae) interaction were 16 5 (1 7), 17 5 (4 99), 0 33 (5 89) and (5 43) for each of the habitat types (see Fig. 1a d for patch arrangements). Similarly, persistence times for the apparent competitive interaction were (3 59), 10 5 (1 04), 16 5 (4 17) and 13 0 ( 7) for each of the habitat types (Fig. 1a d). Model simplification revealed that the only significant determinant on persistence time was the presence of the apparent competitor (C. maculatus). Across all habitat treatments, there was a statistically significant decrease in metapopulation persistence time due to presence of the apparent competitor ( = 4 048, P = 0 044). Despite almost an order of magnitude range in the variance of connectivity between the habitat shapes and differences in the metapopulation processes (asynchrony and recolonization in individual patches) operating in these different habitats, there was no significant difference in persistence time of the pairwise and apparent competitive predator prey assemblage between spatial arrangements ( χ 1 = , P = 0 994). There was also no significant interaction effect between assemblage type (pairwise, apparent competitive) and habitat shape on metapopulation persistence time ( χ = 3 766, P = 0 15). Stochastic process models incorporating different forms of temporal autocorrelation were used to investigate further the relationship between habitat shape and population regulatory processes. Across all patch arrangements, habitat shape had no significant impact on persistence time (F 8,133 = 0 78, P = 0 666). However, regulatory process did have a significant effect on persistence time (F,133 = , P < 0 001) (Fig. 6). χ 1

7 905 Multispecies metapopulation dynamics Fig. 5. Box whisker plots showing the distribution, skew and kurtosis of metapopulation persistence times for (a) the pairwise interaction between C. chinensis and A. calandrae and (b) the apparent competitive interaction. The central line in each box shows the median time to extinction (in weeks), with the box extending to cover the interquartile range and whiskers extending to 1 5 times the interquartile range (habitat treatment codes are 1 = line, = I-design, 3 = cross and 4 = double-star ). Under AR(1) processes, the mean persistence time (1 98) of the metapopulation systems was significantly longer than persistence under an AR() or an AR()MA(1) process (5 74, 5 9, respectively). Discussion Here we have evaluated the metapopulation processes in a multispecies host parasitoid assemblage. We have shown that the presence of an apparent competitor can reduce the persistence time and that varying the structure of the habitat can affect the dynamics of predator prey interactions. Moreover, we have shown that differences in the structure of the population regulatory processes may affect the persistence time of spatially explicit ecological interactions. However, habitat shape had no demonstrable effect on persistence in the experimental or stochastic simulation studies. Although, theoretically, habitat shape is predicted to affect species coexistence and persistence (Adler & Neurnberger 1994; Frank & Wissel 1998), here we have shown that the dynamical effect of the natural enemy significantly outweighs any effects that different spatial structures might have on increasing persistence time. While we show that habitat heterogeneity does not affect persistence, it clearly has an effect on the dynamical interaction between predators and prey. This led us to investigate the effects of differing dynamical regulatory processes explicitly in a broad range of spatial configurations. Taken with our findings, that density-dependent and independent processes, as described by autoregressive (AR) or moving average (MA) stochastic processes, respectively, are key determinants of interaction persistence time, it is clear that both patch dynamics and habitat spatial arrangement determine the metapopulation dynamics of predator prey interactions. The role of broad-scale patch heterogeneities and its effect on density dependence are known to affect metapopulation dynamics in resource consumer interactions. For example, Keitt & Johnson (1995) show, theoretically, that differences in global density dependence operating in predator prey metapopulations have a predominant effect on the regional dynamics. Localized patterns in the interaction between the predator and prey affect the time-scale over which these regulatory processes operate and consequently define the observed spatial pattern (rather than the persistence time of the interaction). It is predicted that the region-wide patterns of extinction and connectivity influence the density-dependent processes of prey regulation and predator foraging (Childs, Bonsall & Rees 004). Although it has been argued that metapopulation persistence and extinction are affected strongly by the rate at which the landscape changes (Adler & Neurnberger 1994; Keymer et al. 000; Childs et al. 004), the degree to which changes in patch connectivity affect persistence still remain a challenge for theoretical spatial ecology. In some ways, our metapopulation microcosms might be expected to behave as predicted by simple ecological theory. For example, the P* rule predicts that the prey species which supports the highest predator population (in the absence of the other species) will be the superior apparent competitor (Holt, Grover & Tilman 1994). Averaged across all habitat shapes, C. maculatus supports the higher parasitoid density in the pairwise host parasitoid interactions. However, among all the spatially structured habitats, Callosobruchus maculatus has the lower density in the pairwise host parasitoid metapopulations and yet is the species that dominates

8 906 J. C. Bull et al. Fig. 6. Box whisker plots showing the distribution, skew and kurtosis of simulated metapopulation persistence times across the full range of nine habitat configurations detailed in Fig. 1 under differing population regulatory treatments: AR(1), first-order autoregressive; AR(), second-order autoregressive; and AR()MA(1), second-order autoregressive first-order moving average. in apparent competition. The consequences of coupling patches, dispersal and extinction introduces additional complexities on the outcome of indirect ecological interactions that are not necessarily predicted by simple equilibrium-based effects such as the P* rule. Understanding how predation at the per patch level scales in a non-intuitive way to affect extinction and persistence at the regional-level requires further theoretical and empirical attention. Notwithstanding, apparent competition is known to have a predominant effect on the structure, dynamics and persistence of multispecies resource consumer interactions (Bonsall & Hassell 1997, 1998, 000; Chaneton & Bonsall 000). While it has been shown elsewhere that space can promote the persistence of this indirect interaction (Bonsall & Hassell 000; Bonsall et al. 005), the presence of a shared natural enemy can have an overwhelming effect on the regional metapopulation dynamics. Here, in the presence of the natural enemy (A. calandrae) and independent of habitat shape we show that the presence of C. maculatus decreases the observed persistence time of C. chinensis. On average, C. chinensis is lost a generation ( 4 weeks) earlier in the presence of the apparent competitor than in its absence. While the metapopulation processes of asynchrony in the local dynamics and rescue of extinction patches are operating in these different metapopulation structures, this process is highly variable over time and linked critically to the demographic processes operating at the local scale. Given that we identify no discernable difference in extinction risk, asynchrony and recolonization between habitat shapes, we postulate that local demographic stochastic factors predominately determine the likelihood and strength of these processes. Local stochastic processes are known to be important in determining ecological pattern (Moloney, Morin & Levin 1991), persistence (Frank 005) and dynamics (Bonsall & Hastings 004) in metapopulations. Given this, it is appropriate to consider whether the use of patch-scale determinants of connectivity is sufficient to predict the regional, metapopulation or landscape properties. While properties of metapopulation connectivity can depend on habitat structure, the size of the patches and species-specific traits (Tischendorf & Fahrig 000), the spatial configuration of patches can also affect the spatial dynamics, spread and characteristics of the ecological interaction (With & King 1999; Söndgerath & Schröder 00). For instance, Anderson & Danielson (1997) show, using a simulation model, that the number of corridor connections has no influence on the size of a metapopulation in a landscape unless there is an accompanying change in the uniformity of the distribution of corridor connections among patches. This has implications for correlates of metapopulation size such as the patterns of regulation and persistence. Here, we have shown that habitat configuration affects the dynamics of pairwise predator prey interactions while in more complex multispecies interactions, the structure of the metapopulation is relatively unimportant. Similarly, examples from studies on food-webs and experimental metacommunities (Forbes & Chase 00; Chase & Ryberg 004) further highlight the complexity that spatial scale introduces to understanding the local and regional aspects of species interactions. Spatial configurations of habitat patch networks affect the demographic processes of local interacting populations, the dynamics of dispersal and, consequently, the regional metapopulation processes of extinction, recolonizaton and persistence. Recognizing that different ecological processes operate at different spatial scales and under different patch configuration has important implications for the development of predictive landscape and metapopulation statistics (Mangel & Tier 1993; Hanski & Ovaskainen 000; Goodwin & Fahrig 00; Frank 005). In summary, we have shown that landscape-level factors such as the changes in patch availability and connectivity may not always lead to expected changes in persistence. The (spatial) lags introduced by changes in habitat structure must be sufficient to outweigh any destabilizing effects of the ecological interaction, in order to affect species persistence and coexistence. We emphasize the need for relevant ecological theory to be validated with appropriately designed replication ecological experiments. This approach and our findings have broader implications for the management of fragmented habitats, species interactions and conservation. Acknowledgements The work was supported by the NERC and the Royal Society. M.B.B. is a Royal Society University Research Fellow.

9 907 Multispecies metapopulation dynamics References Adler, F.R. & Neurnberger, B. (1994) Persistence in patchy irregular landscapes. Theoretical Population Biology, 45, Amarasekare, P. (004) Spatial variation and density-dependent dispersal in competitive coexistence. Proceedings of the Royal Society of London B, 71, Anderson, G.S. & Danielson, B.J. (1997) The effects of landscape composition and physiognomy on metapopulation size: the role of corridors. Landscape Ecology, 1, Bonsall, M.B., Bull, J.C., Pickup, N.J. & Hassell, M.P. (005) Indirect effects and spatial scaling affect the persistence of multispecies metapopulations. Proceedings of the Royal Society of London B, 7, Bonsall, M.B., French, D.R. & Hassell, M.P. (00) Metapopulation structures affect persistence of predator prey interactions. Ecology, 71, Bonsall, M.B. & Hassell, M.P. (1997) Apparent competition structures ecological assemblages. Nature, 388, Bonsall, M.B. & Hassell, M.P. (1998) The population dynamics of apparent competition in a host parasitoid assemblage. Ecology, 67, Bonsall, M.B. & Hassell, M.P. (000) The effects of metapopulation structure on indirect interactions in host parasitoids assemblages. Proceedings of the Royal Society of London B, 67, Bonsall, M.B. & Hastings, A. (004) Demographic and environmental stochasticity in predator prey metapopulation dynamics. Ecology, 73, Chaneton, E.J. & Bonsall, M.B. (000) Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos, 88, Chase, J.M. & Ryberg, W.A. (004) Connectivity, scaledependence, and the productivity diversity relationship. Ecology Letters, 7, Childs, D.Z., Bonsall, M.B. & Rees, M. (004) Periodic local disturbance in host parasitoid metapopulations: host suppression and parasitoid persistence. Journal of Theoretical Biology, 7, Cox, D.R. & Oakes, D. (1984) Analysis of Survival Data. Chapman & Hall, London. Ellner, S.P., McCauley, E., Kendall, B.E., Briggs, C.J., Hosseini, P.R., Wood, S.N., Janssen, A., Sabelis, M.W., Turchin, P., Nisbet, R.M. & Murdoch, W.W. (001) Habitat structure and population persistence in an experimental community. Nature, 41, Etienne, R.S. & Heesterbeek, J.A.P. (000) On optimal size and number of reserves for metapopulation persistence. Journal of Theoretical Biology, 03, Forbes, A.E. & Chase, J.M. (00) The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos, 96, Frank, K. (005) Metapopulation persistence in heterogeneous landscapes: lessons about the effect of stochasticity. American Naturalist, 165, Frank, K. & Wissel, C. (1998) Spatial aspects of metapopulation survival from model results to rules of thumb for landscape management. Landscape Ecology, 13, Goodwin, B.J. & Fahrig, L. (00) How does landscape structure affect landscape connectivity? Oikos, 99, Hagenaars, T.J., Donnelly, C.A. & Ferguson, N.M. (004) Spatial heterogeneity and the persistence of infectious diseases. Journal of Theoretical Biology, 9, Hanski, I. (1991) Single-species metapopulation dynamics concepts, models and observations. Biological Journal of the Linnean Society, 4, Hanski, I. (1999) Metapopulation Ecology. Oxford University Press, Oxford. Hanski, I.A. & Gaggiotti, O.E. (004) Ecology, Genetics and Evolution of Metapopulations. Academic Press, London. Hanski, I. & Ovaskainen, O. (000) The metapopulation capacity of a fragmented landscape. Nature, 404, Holt, R.D., Grover, J. & Tilman, D. (1994) Simple rules for interspecific dominance in systems with exploitative and apparent competition. American Naturalist, 144, Holyoak, M. (000) Habitat patch arrangement and metapopulation persistence of predators and prey. American Naturalist, 156, Holyoak, M. & Lawler, S.P. (1996) Persistence of an extinctionprone predator prey interaction through metapopulation dynamics. Ecology, 77, Huffaker, C.B., Shea, K.P. & Herman, S.G. (1963) Experimental studies on predation: complex dispersion and levels of food in an acarine predator prey interaction. Hilgardia, 34, Jonzén, N., Wilcox, C. & Possingham, H.P. (004) Habitat selection and population regulation in temporally fluctuating environments. American Naturalist, 164, E103 E114. Keitt, T.H. & Johnson, A.R. (1995) Spatial heterogeneity and anomalous kinetics emergent patterns in diffusionlimited predator prey interactions. Journal of Theoretical Biology, 17, Keymer, J.E., Marquet, P.A., Velasco-Hernandez, J.X. & Levin, S.A. (000) Extinction thresholds and metapopulation persistence in dynamic landscapes. American Naturalist, 156, Legendre, P. & Legendre, L. (1998) Numerical Ecology. Elsevier, Amsterdam. Levins, R. (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of Entomological Research, 15, Mangel, M. & Tier, C. (1993) A simple direct method for finding persistence times of populations and application to conservation problems. Proceedings of the National Academy of Sciences USA, 90, Moloney, K.A., Morin, A. & Levin, S.A. (1991) Interpreting ecological patterns generated through simple stochastic processes. Landscape Ecology, 5, Nicholson, A.J. & Bailey, V.A. (1935) The balance of animal populations. Part I. Proceedings of the Zoological Society of London, 3, Pimentel, D., Nagel, W.P. & Madden, J.L. (1963) Space time structure and the survival of parasite host systems. American Naturalist, 97, Royama, T. (199) Analytical Population Dynamics. Chapman & Hall, London. Snyder, R.E. & Chesson, P. (003) Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecology Letters, 6, Söndgerath, D. & Schröder, B. (00) Population dynamics and habitat connectivity affecting the spatial spread of populations a simulation study. Landscape Ecology, 17, Tischendorf, L. & Fahrig, L. (000) How should we measure landscape connectivity? Landscape Ecology, 15, With, K.A. & King, A.W. (1999) Extinction thresholds for species in fractal landscapes. Conservation Biology, 31, Wright, S. (1940) Breeding structure of populations in relation to speciation. American Naturalist, 74, Received 6 October 005; accepted 6 March 006

MICHAEL B. BONSALL, DAVID R. FRENCH and MICHAEL P. HASSELL

MICHAEL B. BONSALL, DAVID R. FRENCH and MICHAEL P. HASSELL Ecology 2002 71, Metapopulation structures affect persistence of predator Blackwell Science, Ltd prey interactions MICHAEL B. BONSALL, DAVID R. FRENCH and MICHAEL P. HASSELL Department of Biological Sciences

More information

EFFECTS OF SUCCESSIONAL DYNAMICS ON METAPOPULATION PERSISTENCE

EFFECTS OF SUCCESSIONAL DYNAMICS ON METAPOPULATION PERSISTENCE Ecology, 84(4), 2003, pp. 882 889 2003 by the Ecological Society of America EFFECTS OF SUCCESSIONAL DYNAMICS ON METAPOPULATION PERSISTENCE STEPHEN P. ELLNER 1 AND GREGOR FUSSMANN 2 Department of Ecology

More information

Gary G. Mittelbach Michigan State University

Gary G. Mittelbach Michigan State University Community Ecology Gary G. Mittelbach Michigan State University Sinauer Associates, Inc. Publishers Sunderland, Massachusetts U.S.A. Brief Table of Contents 1 Community Ecology s Roots 1 PART I The Big

More information

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013 Chapter 5 Lecture Metapopulation Ecology Spring 2013 5.1 Fundamentals of Metapopulation Ecology Populations have a spatial component and their persistence is based upon: Gene flow ~ immigrations and emigrations

More information

Scale-free extinction dynamics in spatially structured host parasitoid systems

Scale-free extinction dynamics in spatially structured host parasitoid systems ARTICLE IN PRESS Journal of Theoretical Biology 241 (2006) 745 750 www.elsevier.com/locate/yjtbi Scale-free extinction dynamics in spatially structured host parasitoid systems Timothy Killingback a, Hendrik

More information

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks

Aggregations on larger scales. Metapopulation. Definition: A group of interconnected subpopulations Sources and Sinks Aggregations on larger scales. Metapopulation Definition: A group of interconnected subpopulations Sources and Sinks Metapopulation - interconnected group of subpopulations sink source McKillup and McKillup

More information

Metacommunities Spatial Ecology of Communities

Metacommunities Spatial Ecology of Communities Spatial Ecology of Communities Four perspectives for multiple species Patch dynamics principles of metapopulation models (patchy pops, Levins) Mass effects principles of source-sink and rescue effects

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems

Current controversies in Marine Ecology with an emphasis on Coral reef systems Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

Natal versus breeding dispersal: Evolution in a model system

Natal versus breeding dispersal: Evolution in a model system Evolutionary Ecology Research, 1999, 1: 911 921 Natal versus breeding dispersal: Evolution in a model system Karin Johst 1 * and Roland Brandl 2 1 Centre for Environmental Research Leipzig-Halle Ltd, Department

More information

Application of Cellular Automata in Conservation Biology and Environmental Management 1

Application of Cellular Automata in Conservation Biology and Environmental Management 1 Application of Cellular Automata in Conservation Biology and Environmental Management 1 Miklós Bulla, Éva V. P. Rácz Széchenyi István University, Department of Environmental Engineering, 9026 Győr Egyetem

More information

Oikos. Appendix 1 and 2. o20751

Oikos. Appendix 1 and 2. o20751 Oikos o20751 Rosindell, J. and Cornell, S. J. 2013. Universal scaling of species-abundance distributions across multiple scales. Oikos 122: 1101 1111. Appendix 1 and 2 Universal scaling of species-abundance

More information

Chapter 6 Reading Questions

Chapter 6 Reading Questions Chapter 6 Reading Questions 1. Fill in 5 key events in the re-establishment of the New England forest in the Opening Story: 1. Farmers begin leaving 2. 3. 4. 5. 6. 7. Broadleaf forest reestablished 2.

More information

Stability Of Specialists Feeding On A Generalist

Stability Of Specialists Feeding On A Generalist Stability Of Specialists Feeding On A Generalist Tomoyuki Sakata, Kei-ichi Tainaka, Yu Ito and Jin Yoshimura Department of Systems Engineering, Shizuoka University Abstract The investigation of ecosystem

More information

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions:

Current controversies in Marine Ecology with an emphasis on Coral reef systems. Niche Diversification Hypothesis Assumptions: Current controversies in Marine Ecology with an emphasis on Coral reef systems Open vs closed populations (already Discussed) The extent and importance of larval dispersal Maintenance of Diversity Equilibrial

More information

Natural enemy specialization and the period of population cycles

Natural enemy specialization and the period of population cycles Ecology Letters, (23) 6: 381 384 IDEAS AND PERSPECTIVES Natural enemy specialization and the period of population cycles P. Rohani 1 *, H. J. Wearing 1,2, T. Cameron 3 and S. M. Sait 3 1 Institute of Ecology,

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 7: Dynamics of Predation. Lecture summary: Categories of predation. Linked prey-predator cycles. Lotka-Volterra model. Density-dependence.

More information

Requirements for Prospective Teachers General Science. 4.1a Explain energy flow and nutrient cycling through ecosystems (e.g., food chain, food web)

Requirements for Prospective Teachers General Science. 4.1a Explain energy flow and nutrient cycling through ecosystems (e.g., food chain, food web) Ecology and Conservation Biology (Biol 116) - Syllabus Addendum for Prospective Teachers Ricklefs, R. E., (2001). The Economy of Nature, 5 th Edition. W.H. Freeman & Co Chapter Ch 6-Energy in the Ecosystem

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

ON THE INTERPLAY OF PREDATOR SWITCHING AND PREY EVASION IN DETERMINING THE STABILITY OF PREDATOR PREY DYNAMICS

ON THE INTERPLAY OF PREDATOR SWITCHING AND PREY EVASION IN DETERMINING THE STABILITY OF PREDATOR PREY DYNAMICS ISRAEL JOURNAL OF ZOOLOGY, Vol. 50, 2004, pp. 187 205 ON THE INTERPLAY OF PREDATOR SWITCHING AND PREY EVASION IN DETERMINING THE STABILITY OF PREDATOR PREY DYNAMICS TRISTAN KIMBRELL* AND ROBERT D. HOLT

More information

Merging Spatial and Temporal Structure within a Metapopulation Model

Merging Spatial and Temporal Structure within a Metapopulation Model Merging within a Metapopulation Model manuscript Yssa D. DeWoody Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907-2033; (765) 494-3604; (765) 496-2422 (fax);

More information

IG predator. IG prey. Resource SYNTHESIZING INTRAGUILD PREDATION THEORY AND DATA. Short title: Intraguild Predation

IG predator. IG prey. Resource SYNTHESIZING INTRAGUILD PREDATION THEORY AND DATA. Short title: Intraguild Predation Short title: Intraguild Predation SYNTHESIZING INTRAGUILD PREDATION THEORY AND DATA Name/contact: Elizabeth Borer Department of Ecology, Evolution, and Marine Biology University of California Santa Barbara,

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

Consequences of varying regional heterogeneity in source/sink metacommunities

Consequences of varying regional heterogeneity in source/sink metacommunities OIKOS : /, 26 DOI: 1.1111/j.26.3-1299.14582.x Consequences of varying regional heterogeneity in source/sink metacommunities N. Mouquet, T. E. Miller, T. Daufresne and J. M. Kneitel Mouquet, N., Miller,

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

REPORTS MORE HARM THAN GOOD: WHEN INVADER VULNERABILITY TO PREDATORS ENHANCES IMPACT ON NATIVE SPECIES

REPORTS MORE HARM THAN GOOD: WHEN INVADER VULNERABILITY TO PREDATORS ENHANCES IMPACT ON NATIVE SPECIES REPORTS Ecology, 86(10), 2005, pp. 2555 2560 2005 by the Ecological Society of America MORE HARM THAN GOOD: WHEN INVADER VULNERABILITY TO PREDATORS ENHANCES IMPACT ON NATIVE SPECIES ERIK G. NOONBURG 1,3

More information

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts! Page 1 BIOLOGY 150 Final Exam Winter Quarter 2000 Before starting be sure to put your name and student number on the top of each page. MINUS 3 POINTS IF YOU DO NOT WRITE YOUR NAME ON EACH PAGE! You have

More information

Habitat fragmentation and evolution of dispersal. Jean-François Le Galliard CNRS, University of Paris 6, France

Habitat fragmentation and evolution of dispersal. Jean-François Le Galliard CNRS, University of Paris 6, France Habitat fragmentation and evolution of dispersal Jean-François Le Galliard CNRS, University of Paris 6, France Habitat fragmentation : facts Habitat fragmentation describes a state (or a process) of discontinuities

More information

Synchrony and second-order spatial correlation in. host parasitoid systems. OTTAR N. BJØRNSTAD* and JORDI BASCOMPTE

Synchrony and second-order spatial correlation in. host parasitoid systems. OTTAR N. BJØRNSTAD* and JORDI BASCOMPTE Ecology 200 70, Synchrony and second-order spatial correlation in Blackwell Science Ltd host parasitoid systems OTTAR N. BJØRNSTAD* and JORDI BASCOMPTE *Departments of Entomology and Biology, 50 ASI Building,

More information

Predicting the relationship between local and regional species richness from a patch occupancy dynamics model

Predicting the relationship between local and regional species richness from a patch occupancy dynamics model Ecology 2000, 69, Predicting the relationship between local and regional species richness from a patch occupancy dynamics model B. HUGUENY* and H.V. CORNELL{ *ORSTOM, Laboratoire d'ecologie des eaux douces,

More information

Georgia Performance Standards for Urban Watch Restoration Field Trips

Georgia Performance Standards for Urban Watch Restoration Field Trips Georgia Performance Standards for Field Trips 6 th grade S6E3. Students will recognize the significant role of water in earth processes. a. Explain that a large portion of the Earth s surface is water,

More information

The Ghost of Competition Present

The Ghost of Competition Present vol. 173, no. 3 the american naturalist march 2009 The Ghost of Competition Present T. E. Miller, * C. P. terhorst, and J. H. Burns Department of Biological Science, Florida State University, Tallahassee,

More information

Hydra Effects in Stable Communities and Their Implications for System Dynamics

Hydra Effects in Stable Communities and Their Implications for System Dynamics Utah State University DigitalCommons@USU Mathematics and Statistics Faculty Publications Mathematics and Statistics 5-216 Hydra Effects in Stable Communities and Their Implications for System Dynamics

More information

Effects to Communities & Ecosystems

Effects to Communities & Ecosystems Biology 5868 Ecotoxicology Effects to Communities & Ecosystems April 18, 2007 Definitions Ecological Community an assemblage of populations living in a prescribed area or physical habitat [It is] the living

More information

The Role of Behavioral Dynamics in Determining the Patch Distributions of Interacting Species

The Role of Behavioral Dynamics in Determining the Patch Distributions of Interacting Species vol. 169, no. 4 the american naturalist april 2007 The Role of Behavioral Dynamics in Determining the Patch Distributions of Interacting Species Peter A. Abrams, 1,* Ross Cressman, 2, and Vlastimil Křivan

More information

A Primer of Ecology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts

A Primer of Ecology. Sinauer Associates, Inc. Publishers Sunderland, Massachusetts A Primer of Ecology Fourth Edition NICHOLAS J. GOTELLI University of Vermont Sinauer Associates, Inc. Publishers Sunderland, Massachusetts Table of Contents PREFACE TO THE FOURTH EDITION PREFACE TO THE

More information

Correlations to Next Generation Science Standards. Life Sciences Disciplinary Core Ideas. LS-1 From Molecules to Organisms: Structures and Processes

Correlations to Next Generation Science Standards. Life Sciences Disciplinary Core Ideas. LS-1 From Molecules to Organisms: Structures and Processes Correlations to Next Generation Science Standards Life Sciences Disciplinary Core Ideas LS-1 From Molecules to Organisms: Structures and Processes LS1.A Structure and Function Systems of specialized cells

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dynamics of predator-prey cycles and the effects of dispersal and the Moran effect Here we describe in more detail the dynamics of predator-prey limit cycles in our model, and the manner in which dispersal

More information

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences

BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences BIOS 6150: Ecology Dr. Stephen Malcolm, Department of Biological Sciences Week 14: Roles of competition, predation & disturbance in community structure. Lecture summary: (A) Competition: Pattern vs process.

More information

Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen

Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen Metapopulation modeling: Stochastic Patch Occupancy Model (SPOM) by Atte Moilanen 1. Metapopulation processes and variables 2. Stochastic Patch Occupancy Models (SPOMs) 3. Connectivity in metapopulation

More information

COURSE SCHEDULE. Other applications of genetics in conservation Resolving taxonomic uncertainty

COURSE SCHEDULE. Other applications of genetics in conservation Resolving taxonomic uncertainty Tutorials: Next week, Tues. 5 Oct. meet in from of Library Processing entre (path near Woodward) at 2pm. We re going on a walk in the woods, so dress appropriately! Following week, Tues. 2 Oct.: Global

More information

Population viability analysis

Population viability analysis Population viability analysis Introduction The process of using models to determine risks of decline faced by populations was initially defined as population vulnerability analysis [1], but is now known

More information

What is competition? Competition among individuals. Competition: Neutral Theory vs. the Niche

What is competition? Competition among individuals. Competition: Neutral Theory vs. the Niche Competition: Neutral Theory vs. the Niche Reading assignment: Ch. 10, GSF (especially p. 237-249) Optional: Clark 2009 9/21/09 1 What is competition? A reduction in fitness due to shared use of a limited

More information

ENVE203 Environmental Engineering Ecology (Nov 05, 2012)

ENVE203 Environmental Engineering Ecology (Nov 05, 2012) ENVE203 Environmental Engineering Ecology (Nov 05, 2012) Elif Soyer Ecosystems and Living Organisms Population Density How Do Populations Change in Size? Maximum Population Growth Environmental Resistance

More information

Are spatially correlated or uncorrelated disturbance regimes better for the survival of species?

Are spatially correlated or uncorrelated disturbance regimes better for the survival of species? OIKOS 103: 449 456, 2003 Are spatially correlated or uncorrelated disturbance regimes better for the survival of species? Karin Johst and Martin Drechsler Johst, K. and Drechsler, M. 2003. Are spatially

More information

Field experiments on competition. Field experiments on competition. Field experiments on competition

Field experiments on competition. Field experiments on competition. Field experiments on competition INTERACTIONS BETWEEN SPECIES Type of interaction species 1 species 2 competition consumer-resource (pred, herb, para) mutualism detritivore-detritus (food is dead) Field experiments on competition Example

More information

SLOSS debate. reserve design principles. Caribbean Anolis. SLOSS debate- criticisms. Single large or several small Debate over reserve design

SLOSS debate. reserve design principles. Caribbean Anolis. SLOSS debate- criticisms. Single large or several small Debate over reserve design SLOSS debate reserve design principles Single large or several small Debate over reserve design SLOSS debate- criticisms Caribbean Anolis Pattern not always supported Other factors may explain diversity

More information

Community Structure. Community An assemblage of all the populations interacting in an area

Community Structure. Community An assemblage of all the populations interacting in an area Community Structure Community An assemblage of all the populations interacting in an area Community Ecology The ecological community is the set of plant and animal species that occupy an area Questions

More information

Diversity stability relationships in multitrophic systems: an empirical exploration PRIYANGA AMARASEKARE

Diversity stability relationships in multitrophic systems: an empirical exploration PRIYANGA AMARASEKARE Ecology 2003 72, Diversity stability relationships in multitrophic systems: Blackwell Publishing Ltd. an empirical exploration PRIYANGA AMARASEKARE Department of Ecology and Evolution, University of Chicago,

More information

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores:

BIOS 3010: Ecology Lecture 20: Community Structure & Predation: 2. The effect of grazing herbivores: 3. The effect of grazing herbivores: BIOS 3010: Ecology Lecture 20: Community Structure & Predation: Lecture summary: Effects of grazing herbivores. Effects of predators. Effects of parasites & disease. Variation in time. Disturbance & community

More information

The effect of emigration and immigration on the dynamics of a discrete-generation population

The effect of emigration and immigration on the dynamics of a discrete-generation population J. Biosci., Vol. 20. Number 3, June 1995, pp 397 407. Printed in India. The effect of emigration and immigration on the dynamics of a discrete-generation population G D RUXTON Biomathematics and Statistics

More information

Interspecific Competition

Interspecific Competition Interspecific Competition Intraspecific competition Classic logistic model Interspecific extension of densitydependence Individuals of other species may also have an effect on per capita birth & death

More information

Community phylogenetics review/quiz

Community phylogenetics review/quiz Community phylogenetics review/quiz A. This pattern represents and is a consequent of. Most likely to observe this at phylogenetic scales. B. This pattern represents and is a consequent of. Most likely

More information

Priority areas for grizzly bear conservation in western North America: an analysis of habitat and population viability INTRODUCTION METHODS

Priority areas for grizzly bear conservation in western North America: an analysis of habitat and population viability INTRODUCTION METHODS Priority areas for grizzly bear conservation in western North America: an analysis of habitat and population viability. Carroll, C. 2005. Klamath Center for Conservation Research, Orleans, CA. Revised

More information

Stabilization through spatial pattern formation in metapopulations with long-range dispersal

Stabilization through spatial pattern formation in metapopulations with long-range dispersal Stabilization through spatial pattern formation in metapopulations with long-range dispersal Michael Doebeli 1 and Graeme D. Ruxton 2 1 Zoology Institute, University of Basel, Rheinsprung 9, CH^4051 Basel,

More information

BIOS 230 Landscape Ecology. Lecture #32

BIOS 230 Landscape Ecology. Lecture #32 BIOS 230 Landscape Ecology Lecture #32 What is a Landscape? One definition: A large area, based on intuitive human scales and traditional geographical studies 10s of hectares to 100s of kilometers 2 (1

More information

Essential Questions. What factors are most significant in structuring a community?

Essential Questions. What factors are most significant in structuring a community? Community Ecology Essential Questions What factors are most significant in structuring a community? What determines a communities species composition and the relative amount of species present? What is

More information

Rank-abundance. Geometric series: found in very communities such as the

Rank-abundance. Geometric series: found in very communities such as the Rank-abundance Geometric series: found in very communities such as the Log series: group of species that occur _ time are the most frequent. Useful for calculating a diversity metric (Fisher s alpha) Most

More information

3/24/10. Amphibian community ecology. Lecture goal. Lecture concepts to know

3/24/10. Amphibian community ecology. Lecture goal. Lecture concepts to know Amphibian community ecology Lecture goal To familiarize students with the abiotic and biotic factors that structure amphibian communities, patterns in species richness, and encourage discussion about community

More information

An axiomatic theory for interaction between species in ecology: Gause s exclusion conjecture

An axiomatic theory for interaction between species in ecology: Gause s exclusion conjecture arxiv:q-bio/0611065v1 [q-bio.pe] 20 Nov 2006 An axiomatic theory for interaction between species in ecology: Gause s exclusion conjecture J. C. Flores a,b a Universidad de Tarapacá, Intituto de Alta Investigación,

More information

Optimal Translocation Strategies for Threatened Species

Optimal Translocation Strategies for Threatened Species Optimal Translocation Strategies for Threatened Species Rout, T. M., C. E. Hauser and H. P. Possingham The Ecology Centre, University of Queensland, E-Mail: s428598@student.uq.edu.au Keywords: threatened

More information

Does spatial structure facilitate coexistence of identical competitors?

Does spatial structure facilitate coexistence of identical competitors? Ecological Modelling 181 2005 17 23 Does spatial structure facilitate coexistence of identical competitors? Zong-Ling Wang a, Da-Yong Zhang b,, Gang Wang c a First Institute of Oceanography, State Oceanic

More information

A PATCH MODELING APPROACH TO THE COMMUNITY-LEVEL CONSEQUENCES OF DIRECTIONAL DISPERSAL

A PATCH MODELING APPROACH TO THE COMMUNITY-LEVEL CONSEQUENCES OF DIRECTIONAL DISPERSAL Ecology, 84(5), 2003, pp. 1215 1224 2003 by the Ecological Society of America A PATCH MODELING APPROACH TO THE COMMUNITY-LEVEL CONSEQUENCES OF DIRECTIONAL DISPERSAL JONATHAN M. LEVINE 1 NERC Centre for

More information

What determines: 1) Species distributions? 2) Species diversity? Patterns and processes

What determines: 1) Species distributions? 2) Species diversity? Patterns and processes Species diversity What determines: 1) Species distributions? 2) Species diversity? Patterns and processes At least 120 different (overlapping) hypotheses explaining species richness... We are going to

More information

Investigating seed dispersal and natural. moment methods

Investigating seed dispersal and natural. moment methods Investigating seed dispersal and natural enemy attack with wavelet ltvariances and moment methods Helene C. Muller Landau and Matteo Detto Smithsonian Tropical Research Institute Heterogeneous spatial

More information

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection

Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Ch.5 Evolution and Community Ecology How do organisms become so well suited to their environment? Evolution and Natural Selection Gene: A sequence of DNA that codes for a particular trait Gene pool: All

More information

Competition: Observations and Experiments. Cedar Creek MN, copyright David Tilman

Competition: Observations and Experiments. Cedar Creek MN, copyright David Tilman Competition: Observations and Experiments Cedar Creek MN, copyright David Tilman Resource-Ratio (R*) Theory Species differ in critical limiting concentration for resources (R* values) R* values differ

More information

WHAT IS BIOLOGICAL DIVERSITY?

WHAT IS BIOLOGICAL DIVERSITY? WHAT IS BIOLOGICAL DIVERSITY? Biological diversity or biodiversity is the variety of life - the wealth of life forms found on earth. 9 WHAT IS BIOLOGICAL DIVERSITY? Wilcox s (1984) definition: Biological

More information

Detecting compensatory dynamics in competitive communities under environmental forcing

Detecting compensatory dynamics in competitive communities under environmental forcing Oikos 000: 000000, 2008 doi: 10.1111/j.1600-0706.2008.16614.x # The authors. Journal compilation # Oikos 2008 Subject Editor: Tim Benton. Accepted 18 March 2008 Detecting compensatory dynamics in competitive

More information

BIO S380T Page 1 Summer 2005: Exam 2

BIO S380T Page 1 Summer 2005: Exam 2 BIO S380T Page 1 Part I: Definitions. [5 points for each term] For each term, provide a brief definition that also indicates why the term is important in ecology or evolutionary biology. Where I ve provided

More information

MECHANISMS OF MAINTENANCE

MECHANISMS OF MAINTENANCE Annu. Rev. Ecol. Syst. 2000. 31:343 66 Copyright c 2000 by Annual Reviews. All rights reserved MECHANISMS OF MAINTENANCE OF SPECIES DIVERSITY Peter Chesson Section of Evolution and Ecology University of

More information

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013

REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 REVISION: POPULATION ECOLOGY 18 SEPTEMBER 2013 Lesson Description In this lesson we: Revise population ecology by working through some exam questions. Key Concepts Definition of Population A population

More information

Unifying theories of molecular, community and network evolution 1

Unifying theories of molecular, community and network evolution 1 Carlos J. Melián National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara Microsoft Research Ltd, Cambridge, UK. Unifying theories of molecular, community and network

More information

Community and Population Ecology Populations & Communities Species Diversity Sustainability and Environmental Change Richness and Sustainability

Community and Population Ecology Populations & Communities Species Diversity Sustainability and Environmental Change Richness and Sustainability 1 2 3 4 Community and Population Ecology Chapter 6 Populations & Communities Biosphere> ecosystems> communities> populations> individuals A population is all of the individuals of the same species in a

More information

Chaos and adaptive control in two prey, one predator system with nonlinear feedback

Chaos and adaptive control in two prey, one predator system with nonlinear feedback Chaos and adaptive control in two prey, one predator system with nonlinear feedback Awad El-Gohary, a, and A.S. Al-Ruzaiza a a Department of Statistics and O.R., College of Science, King Saud University,

More information

Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models

Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 7, No. 2, pp. 284 310 c 2008 Society for Industrial and Applied Mathematics Asynchronous and Synchronous Dispersals in Spatially Discrete Population Models Abdul-Aziz

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology. Definition 1. Oikos, ology - the study of the house - the place we live. Etymology - origin and development of the the word 1. Earliest - Haeckel (1869) - comprehensive

More information

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live

History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live History and meaning of the word Ecology A. Definition 1. Oikos, ology - the study of the house - the place we live B. Etymology study of the origin and development of a word 1. Earliest - Haeckel (1869)

More information

The dynamics of disease transmission in a Prey Predator System with harvesting of prey

The dynamics of disease transmission in a Prey Predator System with harvesting of prey ISSN: 78 Volume, Issue, April The dynamics of disease transmission in a Prey Predator System with harvesting of prey, Kul Bhushan Agnihotri* Department of Applied Sciences and Humanties Shaheed Bhagat

More information

Optimal foraging and predator prey dynamics III

Optimal foraging and predator prey dynamics III Theoretical Population Biology 63 (003) 69 79 http://www.elsevier.com/locate/ytpbi Optimal foraging and predator prey dynamics III Vlastimil Krˇ ivan and Jan Eisner Department of Theoretical Biology, Institute

More information

Identifying the density-dependent structure underlying ecological time series

Identifying the density-dependent structure underlying ecological time series OIKOS 92: 265 270. Copenhagen 2001 Identifying the density-dependent structure underlying ecological time series Alan Berryman and Peter Turchin Berryman, A. and Turchin, P. 2001. Identifying the density-dependent

More information

Cormack-Jolly-Seber Models

Cormack-Jolly-Seber Models Cormack-Jolly-Seber Models Estimating Apparent Survival from Mark-Resight Data & Open-Population Models Ch. 17 of WNC, especially sections 17.1 & 17.2 For these models, animals are captured on k occasions

More information

Ecology 302: Lecture VII. Species Interactions.

Ecology 302: Lecture VII. Species Interactions. Ecology 302: Lecture VII. Species Interactions. (Gotelli, Chapters 6; Ricklefs, Chapter 14-15) MacArthur s warblers. Variation in feeding behavior allows morphologically similar species of the genus Dendroica

More information

Human Carrying Capacity. Dangers of overshooting

Human Carrying Capacity. Dangers of overshooting How to calculate carrying capacity 1. Sum estimates of regional K. 2. Curve Fitting 3. Assume Single Resource Constraint 4. Reduce Multiple Requirements to one factor 5. Assume Multiple Independent Constraints

More information

Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation

Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation Parameter Sensitivity In A Lattice Ecosystem With Intraguild Predation N. Nakagiri a, K. Tainaka a, T. Togashi b, T. Miyazaki b and J. Yoshimura a a Department of Systems Engineering, Shizuoka University,

More information

Regulation of Predator-Prey Systems through Spatial Interactions: A Possible Solution to the Paradox of Enrichment

Regulation of Predator-Prey Systems through Spatial Interactions: A Possible Solution to the Paradox of Enrichment Regulation of Predator-Prey Systems through Spatial Interactions: A Possible Solution to the Paradox of Enrichment V. A. A. Jansen Oikos, Vol. 74, No. 3. (Dec., 1995), pp. 384-390. Stable URL: http://links.jstor.org/sici?sici=0030-1299%28199512%2974%3a3%3c384%3aropsts%3e2.0.co%3b2-r

More information

Maintenance of species diversity

Maintenance of species diversity 1. Ecological succession A) Definition: the sequential, predictable change in species composition over time foling a disturbance - Primary succession succession starts from a completely empty community

More information

Annotated Bibliography Patch Dynamics in Naturally Fragmented Habitats: Implications for Conservation Janell Hillman

Annotated Bibliography Patch Dynamics in Naturally Fragmented Habitats: Implications for Conservation Janell Hillman Annotated Bibliography Patch Dynamics in Naturally Fragmented Habitats: Implications for Conservation Janell Hillman The literature below touch upon the basics and application of metapopulations and metacommunities

More information

Transitivity a FORTRAN program for the analysis of bivariate competitive interactions Version 1.1

Transitivity a FORTRAN program for the analysis of bivariate competitive interactions Version 1.1 Transitivity 1 Transitivity a FORTRAN program for the analysis of bivariate competitive interactions Version 1.1 Werner Ulrich Nicolaus Copernicus University in Toruń Chair of Ecology and Biogeography

More information

Summary. A Bird s- Eye View of Community and Population Effects of Ontogenetic Development

Summary. A Bird s- Eye View of Community and Population Effects of Ontogenetic Development Chapter one Summary A Bird s- Eye View of Community and Population Effects of Ontogenetic Development Why start with summarizing the contents of a book? In the present case we see at least two good reasons.

More information

THE CONSEQUENCES OF GENETIC DIVERSITY IN COMPETITIVE COMMUNITIES MARK VELLEND 1

THE CONSEQUENCES OF GENETIC DIVERSITY IN COMPETITIVE COMMUNITIES MARK VELLEND 1 Ecology, 87(2), 2006, pp. 304 311 2006 by the Ecological Society of America THE CONSEQUENCES OF GENETIC DIVERSITY IN COMPETITIVE COMMUNITIES MARK VELLEND 1 National Center for Ecological Analysis and Synthesis,

More information

LECTURE 1: Introduction and Brief History of Population Ecology

LECTURE 1: Introduction and Brief History of Population Ecology WMAN 512 SPRING 2010 ADV WILDL POP ECOL LECTURE 1: Introduction and Brief History of Population Ecology Cappuccino, N. 1995. Novel approaches to the study of population dynamics. pp 2-16 in Population

More information

Computational Ecology Introduction to Ecological Science. Sonny Bleicher Ph.D.

Computational Ecology Introduction to Ecological Science. Sonny Bleicher Ph.D. Computational Ecology Introduction to Ecological Science Sonny Bleicher Ph.D. Ecos Logos Defining Ecology Interactions: Organisms: Plants Animals: Bacteria Fungi Invertebrates Vertebrates The physical

More information

Concepts and Principles of Population Dynamics

Concepts and Principles of Population Dynamics Reprinted from Vkislas on Nemtology Concepts and Principles of Population Dynamics H. FERRIS AND L. T. WILSON Professor, Division of Nematology, University of California, Davis, CA 956 16. Associate Professor,

More information

A Patchy Approach to Food Web Persistence

A Patchy Approach to Food Web Persistence A Patchy Approach to Food Web Persistence Philip J. Platts Abstract. Traditionally, community models have focused on density-dependent factors. More recently, though, studies that consider populations

More information

Workshop on Theoretical Ecology and Global Change

Workshop on Theoretical Ecology and Global Change 2022-32 Workshop on Theoretical Ecology and Global Change 2-18 March 2009 Spatial Heterogeneity, Source-Sink Dynamics, and the Local Coexistence of Competing Species HERNANDEZ DE RODRIGUEZ Maria Josefina

More information

The Living World Continued: Populations and Communities

The Living World Continued: Populations and Communities The Living World Continued: Populations and Communities Ecosystem Communities Populations Review: Parts of an Ecosystem 1) An individual in a species: One organism of a species. a species must be genetically

More information

How variation between individuals affects species coexistence

How variation between individuals affects species coexistence Ecology Letters, (016) 19: 85 838 doi: 10.1111/ele.1618 IDEA AND PERSPECTIVE How variation between individuals affects species coexistence Simon P. Hart, 1* Sebastian J. Schreiber and Jonathan M. Levine

More information

Intecol special issue Complex organism environment feedbacks buffer species diversity against habitat fragmentation

Intecol special issue Complex organism environment feedbacks buffer species diversity against habitat fragmentation Ecography 8: 7 79, 5 doi:./ecog.7 4 The Authors. Ecography 4 Nordic Society Oikos Subject Editor: Jens-Christian Svenning. Editor-in-Chief: Jens-Christian Svenning. Accepted 8 October 4 Complex organism

More information

Community Interactions. Community An assemblage of all the populations interacting in an area

Community Interactions. Community An assemblage of all the populations interacting in an area Community Interactions Community An assemblage of all the populations interacting in an area Populations are affected by: Available living space habitat Resource Availability niche Species interactions

More information

Disentangling spatial structure in ecological communities. Dan McGlinn & Allen Hurlbert.

Disentangling spatial structure in ecological communities. Dan McGlinn & Allen Hurlbert. Disentangling spatial structure in ecological communities Dan McGlinn & Allen Hurlbert http://mcglinn.web.unc.edu daniel.mcglinn@usu.edu The Unified Theories of Biodiversity 6 unified theories of diversity

More information