STUDIES ON COUPLING OF PROTON MOTIVE FORCE PROMOTED MITOCHONDRIAL ELECTRON TRANSPORT TO ATP SYNTHESIS

Size: px
Start display at page:

Download "STUDIES ON COUPLING OF PROTON MOTIVE FORCE PROMOTED MITOCHONDRIAL ELECTRON TRANSPORT TO ATP SYNTHESIS"

Transcription

1 STUDIES ON COUPLING OF PROTON MOTIVE FORCE PROMOTED MITOCHONDRIAL ELECTRON TRANSPORT TO ATP SYNTHESIS According to the chemiosmotic theory, oxidation of respiratory substrates, phosphorylation of ADP to ATP as well as ion transport into and from mitochondria are strongly coupled via a proton concentration gradient which builds up between the two sides of the inner mitochondrial membrane in the course of the electron transport mediated by the mitochondrial respiratory chain complexes. Gibbs' free energy generated by the redox reactions of the mitochondrial respiratory chain provides the driving force to transport H + from the matrix ( mx ) to the intermembrane space ( im ) of mitochondria and build up the above mentioned concentration gradient of the H + ions and also an electrical potential difference ( E m ) which is generated directly due to the charge separation between the two faces of the inner membrane. The sum of the two energies is called the proton motive force (proton electrochemical potential): 2.3 RT H + im P= E m + lg = E m - 0,06(pH im - ph mx )= E m +0,06 ph F H + mx Phosphorylation of ADP by inorganic phosphate is facilitated by the proton motive force. This hence constitutes the coupling of the oxidative phosphorylation to the terminal oxidation. Compounds that hamper the formation or the maintenance of the above mentioned proton gradient abolish the driving force for ATP synthesis and selected active transport mechanisms. This also abrogates the coupling between reactions of energy production and usage. These compounds are referred to as uncouplers and they are usually of lipophilic character with optimal proton binding capacity near ph 6.5 (weak acids; e.g. 2,4-dinitrophenol). OXIDATION OF SUBSTRATES AND ATP GENERATION 1. Respiratory control and the P/O ratio Under the condition of intact mitochondria oxidizing respiratory substrates (in the course of phosphorylating ADP to ATP), the rate of oxygen consumption and the quantity of the ATP already synthesized can be both assayed in parallel. The rate of substrate oxidation measured under optimal conditions (respiratory substrate at saturation concentration, inorganic phosphate and oxygen dissolved in a buffered isotonic medium at neutral ph) depends only on whether ADP is present or not. The accelerating effect on substrate oxidation 1

2 of ADP is referred to as the acceptor control, or respiratory control: in the absence of ADP the rate of respiration is low (resting respiration), but it becomes higher when ADP, even at low concentration, is given. After ADP gets phosphorylated, the oxygen uptake returns to a low rate. The proportion of the rate of oxygen uptake measured in the presence of ADP to the rate measured after ADP is consumed is characteristic of the efficiency of the coupling that exists between the mitochondrial respiration and ATP synthesis, and is called the respiratory control ratio (RCR): The rate of oxygen uptake in the presence of ADP RCR = 1 The rate of oxygen uptake in the absence of ADP In case any uncoupler is present, or the inner membrane is so-called leaky, both the RCR and the P/O decrease, thus ADP fails to accelerate respiration, and no net ATP gets synthesized, although the rate of oxygen uptake is still high. When in well-coupled mitochondria the ATP synthesis is inhibited by the antibiotic oligomycin, respiration also becomes suppressed since the proton motive force generated by respiration reaches a limit represented by the Gibbs' free energy change of substrate oxidation (and also because the matrix becomes alkaline); a similar effect is observed in the absence of phosphate or ADP. Transport of ADP from the cytoplasm to the matrix via the ADP:ATP translocase of the inner mitochondrial membrane can be inhibited by atractylosides; these compounds also inhibit the respiration, although the proton motive force remains still high. Respiration can then be re-established by an uncoupler or upon launching an ion transport (e.g. uptaking Ca 2+ ). 2. Inhibiting the respiratory chain Substances, known as site-specific inhibitors of the respiration, lower the oxygen uptake and they are applied when studying the characteristics of the sites oxidizing specific substrates. Due to the lack of energy production, neither the generation of a proton motive force, nor the synthesis of ATP (nor an active ion transport) can be expected, and respiration will not be re-established either, even when ADP or an uncoupler is given. In the presence of a specific inhibitor of the electron transport chain, all the components of the chain which are localized between the binding sites of the substrate and the specific inhibitor become reduced, while all the further components towards the oxygen binding site become oxidized. The most important respiratory inhibitors are: CN -, CO, N 3 - (inhibiting cytochrome oxidase), antimycin-a (acts between cytochrome b and c 1 ), malonate (inhibiting succinate dehydrogenase) and rotenone (inhibiting NADH dehydrogenase). 2

3 3. Principle of the polarographic assay of dissolved oxygen Oxygen consumption during respiration is recorded by using a Clark-type oxygen electrode composed of a reference electrode (silver/silver chloride) and a platinum electrode (negative relative to the reference electrode). Both are immersed in a highly concentrated (4 M?) KCl solution. The apparatus is separated from the reaction vessel by a polyethylene membrane, which permits dissolved oxygen entering the electrode surface layer from the reaction mixture, and here, if a voltage is imposed across the two electrodes, oxygen undergoes an electrolytic reduction. When current is plotted as a function of polarizing voltage, first an increase in current (at about 0.4 V), then a plateau region (between 0.5 and 0.8 V) can be observed. The increase in current is caused by the increasing number of oxygen molecules participating in the transport of charges. Then, if voltage is further elevated, the number of oxygen molecules involved in transport reaches a limit determined by their rate of diffusion, which is proportional to the concentration gradient of oxygen established between the bulk of solution and electrode surface ('diffusion-limited current' in the plateau region). By this means, at 0.6 V constant polarization voltage current becomes directly proportional to the concentration of oxygen. Current recorded under these conditions is used to calculate changes in oxygen concentration during respiration. The reaction vessel is kept isothermic at a constant temperature and the reaction mixture is stirred continuously during the reaction by the use of a plastic-encased flea driven by a magnetic stirrer to facilitate establishment of the equilibrium between the concentrations of oxygen in the reaction mixture and the electrode space. Reactions are carried out in a closed vessel, so no air bubbles are allowed to be trapped above the medium, and on the inner wall of the vessel. Reactants are carefully pipetted to a hole on the stopper of the vessel, and the force of stirring will drive them inside. After each experiment the vessel is emptied by suction aspiration of the fluid and washed by repeated water rinsing. Electronic equipment composed of the polarizing voltage source and sensitivity control adjustments are arranged as shown in Fig. 1. Oxygen current is converted to voltage change and recorded by a potentiometric recorder at its highest sensitivity (2 mv/full scale). 3

4 Fig.1. Scheme of the polarizing voltage and sensitivity control of an oxygen electrode. The variable resistor R 1 is the sensitivity control, R 2 supplies a polarizing voltage of 0.6 V, R 3 is for zero offset control. REAGENTS, PREPARATIONS AND EQUIPMENT Preparation of mitochondria (needed directly in advance of the laboratory lesson): Sacrifice a rat by cervical dislocation, excise the liver, rinse it and then place it into the icecold Isolating Buffer. Chop it into small pieces, rinse it again, then add a 4-fold volume of Isolating Buffer, and then homogenize it carefully in a Potter-Elvehjem homogenizer (spherical pestle, large clearance), with a few strokes. Repeat homogenization using a tighter pestle of cylindric shape, with a small clearance. Centrifuge homogenate at 600 x g at 0 o C for 8 min, then decant the supernatant into a clean centrifuge tube (the sediment contains largely nuclei and cell debris and it is discarded). Centrifuge supernatant at x g for 20 min to pellet mitochondria. Store mitochondria in the form of pellet until use. When needed, suspend the mitochondria carefully in ice-cold Isolating Buffer to about mg prot./ml, and keep it on ice. Sample: Mitochondrial suspension at a protein concentration of mg/ml. Reagents: Incubating Buffer (called 'Medium'): 80 mm KCl, 20 mm Tris, 1 mm EGTA, 10 mm KH 2 PO 4, ph 7.2. Reagents glutamate (ph= 7.2) malate (ph= 7.2) Concentration of stock solution Volume added Final concentration 0.7 M 20 µl 4.67 mm 0.3 M 20 µl 2 mm 4

5 succinate 0.75 M 20 µl 5 mm (ph= 7.2) ADP (ph= 7.2) 50 mm 20 µl 0.33 mm DNP 10 mm 20 µl mm oligomycin (dissolved in ethanol) 0.08 mg/ml (M=805 g/mol) 9.9*10-11 M = 9.9*10-8 mm= 9.9* 10-5 µm=0.099 pmol malonate 100 mm 20 µl mm (ph= 7.2) KCN 100 mm 20 µl mm atractyloside 5 mg/ml (M= 803 g/mol) 20 µl 6.2 * 10-6 M= 6.2 * 10 - mm= 6.2 µm Na-dithionite (solid) Equipment Reaction vessel with a stopper, a teflon-coated stirring flea and a magnetic stirrer, an attached oxygen electrode with a polarizer unit (needs a 1.5 V battery and the polarizer output adjusted to 0.6 V) and a potentiometric recorder. EXPERIMENTAL PROCEDURE WARNING! You are working with highly toxic substances. Be very careful! Use separate tips for each reagent to avoid the contamination of the stock solutions. Indicate in your recordings the exact time a reagent was given at. Avoid bubbles remaining in, or entering the vessel after you start the experiment. Calibration of the apparatus The initial saturation concentration of oxygen in the medium as a function of temperature is shown in Fig. 2. To use this plot for computing the actual oxygen concentrations, one needs to know the exact temperature of the medium at any given point. During the calibration procedure a calibration curve on the potentiometer is recorded between the limits of the saturation concentration of oxygen and no oxygen present at all (achieved by the addition of dithionite). To launch the calibration procedure, switch the polarizing unit as well as the potentiometric recorder on and pipette 3.5 ml incubation medium into the reaction vessel. Place the stopper (lid) on the vessel to isolate the medium from air, then switch the magnetic stirrer on (at the lowest speed), start the recorder and the pen (at the chart speed of 60 cm/h 5

6 (=1 cm/min), at 2 mv/full scale). When the pen is stabilized add a few grains of sodium dithionite close to the hole on the stopper, turn the stopper slightly to permit dithionite entering the vessel. The pen is now moving towards 0. When it is stabilized, adjust it to 0 unit (use the zero control knob on the recorder). Zero oxygen concentration is now set. To adjust the recorder pen to saturating oxygen concentration, first remove the stopper, and then carefully clean up the vessel and stopper by repeated rinsing with deionized water (use water aspiration, but be careful with the electrode membrane located on the inner wall of the vessel at the side arm). Pipette a fresh batch of medium into the vessel, close the stopper (start the stirrer and the recorder), and when the pen is stabilized, adjust its position to 100 units (use the sensitivity knob on the polarizer unit). After this calibration procedure is completed, saturation oxygen concentration will be set to 100 units on the recorder. Exp. #1: Determination of the respiratory control and the ADP/O (P/O) ratio The experiment may be carried out using the substrate succinate, or glutamate plus malate. Proposed procedure: Add 3 ml medium Add 20 µl substrate (glutamate plus malate or succinate) close the vessel, set the pen at position 100, and wait until no more change occurs in pen position (no oxygen consumption); Add 50 µl mitochondria and record the slope of the line on the recorder; Add 20 µl ADP: Record the oxygen uptake rates. After ADP is utilized and respiration is declined, give ADP again, and record respiration one more time. Calculate the P/O ratio after adding ADP each occasion (see attached sheet); Add a few grains of dithionite to demonstrate that oxygen is still present in the medium. Exp. #2: Effects of ADP, atractyloside, DNP or KCN on respiration The experiment may be carried out using the substrate succinate, or glutamate plus malate. Proposed procedure: Add medium (3.0 ml) + substrate (20 l), close the vessel with the stopper, and wait until no more change occurs in pen position (roughly 1 min); Add 50 l mitochondria piercing through the stopper and after respiration is stabilized; Add 20 l ADP and record the oxygen uptake rates; Add 20 l atractyloside to inhibit the adenine-nucleotide translocase; Add 20 l DNP to uncouple respiration from phosphorylation, check whether DNP indeed restored the fast oxygen consumption; 6

7 Add 20 l KCN to inhibit complex IV and hence the mitochondrial respiration; Add a few grains of dithionite to demonstrate that oxygen is still present in the medium. Exp. #3: Inhibition of succinate oxidation by malonate Proposed procedure: Add medium (3.0 ml) + succinate (20 l), close the vessel with stopper, and wait until no more change occurs in pen position (roughly 1 min); Add 50 l mitochondria piercing through the stopper and after respiration is stabilized; Add 20 l ADP after recording the accelerated respiration; Add 20 l malonate to competitively inhibit the succinate dehydrogenase; Add 20 l succinate to re-establish the mitochondrial respiration; Add a few grains of dithionite to demonstrate that oxygen is still present in the medium. Exp. #4: Effects of ADP, oligomycin, DNP and KCN on respiration Proposed procedure: Add medium (3.0 ml) + glutamate plus malate (20 l), close the vessel with stopper, and wait until no more change occurs in pen position (roughly 1 min); Add 50 l mitochondria piercing through the stopper and when respiration is stabilized; Add 20 l ADP after recording the accelerated respiration; Add 20 l oligomycin to inhibit the ATP-synthase and block the mitochondrial respiration; Add 20 l DNP to re-establish the mitochondrial respiration; Add a few grains of dithionite to demonstrate that oxygen is still present in the medium. SCOPES OF THIS LABORATORY LESSON The main objectives of this class are to study and demonstrate the mechanism of the mitochondrial respiration and evaluate the effects of different inhibitors on the mitochondrial respiration with an emphasis on the effect of oligomycin, an ATP synthase inhibitor. Additionally, a further aim is to determine the P/O ratio and RC in the presence of succinate or glutamate plus malate. 7

8 EVALUATION OF THE RESULTS 1. Calculate the rates of 'resting' and 'active' respiration in oxygen/mg prot./min for the respiratory substrates used. 2. Calculate the RC values for the two substrates. 3. Calculate P/O (ADP/O) for the substrate used. 4. Evaluate the effects of the respiratory inhibitors and the uncoupler on the mitochondrial respiration, the ATP synthesis and the mitochondrial proton gradient! Fig.2. Oxygen content of water saturated with air as a function of temperature. 8

9 O 2 100% Fig.3. Determination of the ADP/O (P/O) ratio using the experimental results. CALCULATION OF THE ADP/O (P/O) RATIO (See Fig. 2. and 3. for details) Final volume: Temperature: Saturating conc. of O 2 at this temp.: Total oxygen content ('X'): Oxygen used for ADP ('Y'):...units = Substrate for the respiration: Concentration of the stock solution: Volume added: Concentration of the ADP stock solution: Volume added: Amount of ADP used: ml 0 C mole/ml mole mole mm l mm ml mole ADP, mole... ADP/O (P/O) ratio: = = 2* O 2, mole 2*... 9

Analyzing Microgram Quantities of Isolated Mitochondria in the Agilent Seahorse XFe/XF24 Analyzer

Analyzing Microgram Quantities of Isolated Mitochondria in the Agilent Seahorse XFe/XF24 Analyzer Analyzing Microgram Quantities of Isolated Mitochondria in the Agilent Seahorse XFe/XF24 Analyzer Application Note Introduction Enhanced appreciation of the role of altered mitochondrial function in tumorigenesis,

More information

Oxidative Phosphorylation

Oxidative Phosphorylation Paper : 04 Metabolism of carbohydrates Module : 15 Principal Investigator Paper Coordinator Content Reviewer Content Writer Dr.S.K.Khare,Professor IIT Delhi. Dr. Ramesh Kothari,Professor UGC-CAS Department

More information

BCH 4054 Spring 2001 Chapter 21 Lecture Notes

BCH 4054 Spring 2001 Chapter 21 Lecture Notes BCH 4054 Spring 2001 Chapter 21 Lecture Notes 1 Chapter 21 Electron Transport and Oxidative Phosphorylation 2 Overview Oxidation of NADH and CoQH 2 produced in TCA cycle by O 2 is very exergonic. Some

More information

20. Electron Transport and Oxidative Phosphorylation

20. Electron Transport and Oxidative Phosphorylation 20. Electron Transport and Oxidative Phosphorylation 20.1 What Role Does Electron Transport Play in Metabolism? Electron transport - Role of oxygen in metabolism as final acceptor of electrons - In inner

More information

The Proton Motive Force. Overview. Compartmentalization 11/6/2015. Chapter 21 Stryer Short Course. ATP synthesis Shuttles

The Proton Motive Force. Overview. Compartmentalization 11/6/2015. Chapter 21 Stryer Short Course. ATP synthesis Shuttles The Proton Motive Force Chapter 21 Stryer Short Course Redox reactions Electron transport chain Proton gradient Overview ATP synthesis Shuttles Analogy: How does burning coal put flour in the grocery store?

More information

18 Efficiency of Acanthamoeba castellanii uncoupling protein in energy-dissipating processes

18 Efficiency of Acanthamoeba castellanii uncoupling protein in energy-dissipating processes 18 Efficiency of Acanthamoeba castellanii uncoupling protein in energy-dissipating processes W. Jarmuszkiewicz 1,L.Hryniewiecka 1, C.M. Sluse-Goffart 2 and F.E. Sluse 2 1 Department of Bioenergetics, Adam

More information

Analyzing microgram quantities of isolated mitochondria in the XF24 Analyzer

Analyzing microgram quantities of isolated mitochondria in the XF24 Analyzer Technical Brief Analyzing microgram quantities of isolated mitochondria in the XF24 Analyzer George Rogers, PhD, Seahorse Bioscience Anne Murphy, PhD, University of California, San Diego Alvaro Elorza,

More information

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor

ΔG o' = ηf ΔΕ o' = (#e ( V mol) ΔΕ acceptor Reading: Sec. 19.1 Electron-Transfer Reactions in Mitochondria (listed subsections only) 19.1.1 Electrons are Funneled to Universal Electron Acceptors p. 692/709 19.1.2 Electrons Pass through a Series

More information

Cellular Respiration Stage 4: Electron Transport Chain

Cellular Respiration Stage 4: Electron Transport Chain Cellular Respiration Stage 4: Electron Transport Chain 2006-2007 Cellular respiration What s the point? The point is to make ATP! ATP 2006-2007 ATP accounting so far Glycolysis 2 ATP Kreb s cycle 2 ATP

More information

BIOLOGY 479 INTEGRATED PHYSIOLOGY LABORATORY Dept. of Biological & Allied Health Sciences BLOOMSBURG UNIVERSITY of PENNSYLVANIA.

BIOLOGY 479 INTEGRATED PHYSIOLOGY LABORATORY Dept. of Biological & Allied Health Sciences BLOOMSBURG UNIVERSITY of PENNSYLVANIA. BIOLOGY 479 INTEGRATED PHYSIOLOGY LABORATORY Dept. of Biological & Allied Health Sciences BLOOMSBURG UNIVERSITY of PENNSYLVANIA LAB REPORT: Investigating Aerobic Respiration Michael Tekin Lab section:

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow,

Chapter Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, Chapter 6 6.1 Cells and the Flow of Energy A. Forms of Energy 1. Energy is capacity to do work; cells continually use energy to develop, grow, repair, reproduce, etc. 2. Kinetic energy is energy of motion;

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

Contains ribosomes attached to the endoplasmic reticulum. Genetic material consists of linear chromosomes. Diameter of the cell is 1 m

Contains ribosomes attached to the endoplasmic reticulum. Genetic material consists of linear chromosomes. Diameter of the cell is 1 m 1. (a) Complete each box in the table, which compares a prokaryotic and a eukaryotic cell, with a tick if the statement is correct or a cross if it is incorrect. Prokaryotic cell Eukaryotic cell Contains

More information

Lectures by Kathleen Fitzpatrick

Lectures by Kathleen Fitzpatrick Chapter 10 Chemotrophic Energy Metabolism: Aerobic Respiration Lectures by Kathleen Fitzpatrick Simon Fraser University Figure 10-1 Figure 10-6 Conversion of pyruvate The conversion of pyruvate to acetyl

More information

Introduction differential centrifugation microcentrifuge. Supplies needed (besides kit):

Introduction differential centrifugation microcentrifuge. Supplies needed (besides kit): I. Mitochondria Isolation Introduction(modified from the Pierce Chemical Co Instructions) This lab has two parts: (I) first we isolate the mitochondria, then (II) we measure the activity of a mitochondrial

More information

number Done by Corrected by Doctor Nafeth Abu Tarboush

number Done by Corrected by Doctor Nafeth Abu Tarboush number 8 Done by Ali Yaghi Corrected by Mamoon Mohamad Alqtamin Doctor Nafeth Abu Tarboush 0 P a g e Oxidative phosphorylation Oxidative phosphorylation has 3 major aspects: 1. It involves flow of electrons

More information

ETC/CHEMIOSIS. By: Leslie, Kelsey, Morgan

ETC/CHEMIOSIS. By: Leslie, Kelsey, Morgan ETC/CHEMIOSIS By: Leslie, Kelsey, Morgan WHY THIS IS IMPORTANT House Clip SO3E7 The Son of a Coma Guy- Time: 32:00 Patient was visiting his father who was in a vegetative state for 10 years, and his only

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

Sara Khraim. Shaymaa Alnamos ... Dr. Nafeth

Sara Khraim. Shaymaa Alnamos ... Dr. Nafeth 10 Sara Khraim Shaymaa Alnamos... Dr. Nafeth *Requirement of oxidative phosphorylation: 1- Source and target for electrons(nadh+fadh2 >> O2). 2- Electron carriers. 3- Enzymes, like oxidoreductases and

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Cellular respiration ATP. Cellular Respiration Stage 4: Electron Transport Chain. AP Biology. The point is to make ATP! What s the point?

Cellular respiration ATP. Cellular Respiration Stage 4: Electron Transport Chain. AP Biology. The point is to make ATP! What s the point? ellular respiration ellular Respiration Stage 4: Electron Transport hain What s the point? The point is to make! accounting so far Glycolysis 2 Kreb s cycle 2 Life takes a lot of energy to run, need to

More information

Photosynthesis and Cellular Respiration Practice Test Name

Photosynthesis and Cellular Respiration Practice Test Name Photosynthesis and Cellular Respiration Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which H+ has just passed through the

More information

Supporting Information

Supporting Information Supporting Information Development of a mitochondriotropic antioxidant based on caffeic acid: proof of concept on cellular and mitochondrial oxidative stress models José Teixeira a,b, Fernando Cagide a,

More information

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová

Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Electron Transport Chain (Respiratory Chain) - exercise - Vladimíra Kvasnicová Respiratory chain (RCH) a) is found in all cells b) is located in a mitochondrion c) includes enzymes integrated in the inner

More information

ATP. Division Ave. High School AP Biology. Cellular Respiration Stage 4: Electron Transport Chain. Cellular respiration. The point is to make ATP!

ATP. Division Ave. High School AP Biology. Cellular Respiration Stage 4: Electron Transport Chain. Cellular respiration. The point is to make ATP! ellular Respiration Stage 4: Electron Transport hain 2006-2007 ellular respiration What s the point? The point is to make! 2006-2007 1 accounting so far Glycolysis 2 Kreb s cycle 2 Life takes a lot of

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation

Lecture 10. Proton Gradient-dependent ATP Synthesis. Oxidative. Photo-Phosphorylation Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation Model of the Electron Transport Chain (ETC) Glycerol-3-P Shuttle Outer Mitochondrial Membrane G3P DHAP

More information

Bio102 Problems Photosynthesis

Bio102 Problems Photosynthesis Bio102 Problems Photosynthesis 1. Why is it advantageous for chloroplasts to have a very large (in surface area) thylakoid membrane contained within the inner membrane? A. This limits the amount of stroma

More information

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts)

Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) 1 Life 21 - Aerobic respiration Raven & Johnson Chapter 9 (parts) Objectives 1: Describe the overall action of the Krebs cycle in generating ATP, NADH and FADH 2 from acetyl-coa 2: Understand the generation

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 5: Energy for Biological Processes Notes Aerobic Respiration Aerobic respiration as splitting of the respiratory substrate, to release carbon dioxide as a waste product

More information

NAD + /NADH Assay [Colorimetric]

NAD + /NADH Assay [Colorimetric] G-Biosciences 1-800-628-7730 1-314-991-6034 technical@gbiosciences.com A Geno Technology, Inc. (USA) brand name NAD + /NADH Assay [Colorimetric] (Cat. #786 1539, 786 1540) think proteins! think G-Biosciences

More information

Modified Adams Assay for Phenolics in Wine

Modified Adams Assay for Phenolics in Wine Modified Adams Assay for Phenolics in Wine 1. Total Iron-Reactive Phenolics THIS VALUE WILL DETERMINE DILUTIONS FOR TANNIN & POLYMERIC PIGMENT ANALYSES 1.1 Into a reduced volume cuvette, pipette in the

More information

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc.

TCA Cycle. Voet Biochemistry 3e John Wiley & Sons, Inc. TCA Cycle Voet Biochemistry 3e Voet Biochemistry 3e The Electron Transport System (ETS) and Oxidative Phosphorylation (OxPhos) We have seen that glycolysis, the linking step, and TCA generate a large number

More information

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D.

Biochemical bases for energy transformations. Biochemical bases for energy transformations. Nutrition 202 Animal Energetics R. D. Biochemical bases for energy transformations Biochemical bases for energy transformations Nutrition 202 Animal Energetics R. D. Sainz Lecture 02 Energy originally from radiant sun energy Captured in chemical

More information

Forms of stored energy in cells

Forms of stored energy in cells Forms of stored energy in cells Electrochemical gradients Covalent bonds (ATP) Reducing power (NADH) During photosynthesis, respiration and glycolysis these forms of energy are converted from one to another

More information

Transporters and Membrane Motors Nov 15, 2007

Transporters and Membrane Motors Nov 15, 2007 BtuB OM vitamin B12 transporter F O F 1 ATP synthase Human multiple drug resistance transporter P-glycoprotein Transporters and Membrane Motors Nov 15, 2007 Transport and membrane motors Concentrations

More information

MITOCW watch?v=vykadbjib8a

MITOCW watch?v=vykadbjib8a MITOCW watch?v=vykadbjib8a The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality, educational resources for free.

More information

INSTITUT FÜR ANGEWANDTE LABORANALYSEN GMBH. First-Beer Magnetic DNA Kit. Extraktion von Hefe- und Bakterien-DNA aus Bier und anderen Getränken

INSTITUT FÜR ANGEWANDTE LABORANALYSEN GMBH. First-Beer Magnetic DNA Kit. Extraktion von Hefe- und Bakterien-DNA aus Bier und anderen Getränken First-Beer INSTITUT FÜR ANGEWANDTE LABORANALYSEN GMBH First-Beer Magnetic DNA Kit Extraktion von Hefe- und Bakterien-DNA aus Bier und anderen Getränken Extraction of bacteria and yeast DNA from beer and

More information

MitoSeminar II: Some calculations in bioenergetics

MitoSeminar II: Some calculations in bioenergetics MitoSeminar II: Some calculations in bioenergetics MUDr. Jan Pláteník, PhD. Ústav lékařské biochemie 1.LF UK Helpful comments of Prof. MUDr. Jiří Kraml, DrSc., are acknowledged. 1 Respiratory chain and

More information

ANALYSIS METHODS OF OXYGEN CONSUMPTION IN BIOLOGICAL SYSTEMS

ANALYSIS METHODS OF OXYGEN CONSUMPTION IN BIOLOGICAL SYSTEMS ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL. I. CUZA IAŞI Tomul III, s. Biofizică, Fizică medicală şi Fizica mediului 2007 ANALYSIS METHODS OF OXYGEN CONSUMPTION IN BIOLOGICAL SYSTEMS Magda Aflori 1, I. Neacşu

More information

Lab 2A: Sub-Cellular Fractionation

Lab 2A: Sub-Cellular Fractionation Lab 2A: Sub-Cellular Fractionation A response is required for each item marked: (# ). Your grade for the lab 2 report (2A and 2B combined) will be the fraction of correct responses on a 50 point scale[(#

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 107 Week 6 Procedure 7.2 Label test tubes well, including group name 1) Add solutions listed to small test tubes 2)

More information

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS A. Top 10 If you learned anything from this unit, you should have learned: 1. Energy production through chemiosmosis a. pumping of H+

More information

All organisms require a constant expenditure of energy to maintain the living state - "LIFE".

All organisms require a constant expenditure of energy to maintain the living state - LIFE. CELLULAR RESPIRATION All organisms require a constant expenditure of energy to maintain the living state - "LIFE". Where does the energy come from and how is it made available for life? With rare exception,

More information

Lab 2A: Sub-Cellular Fractionation

Lab 2A: Sub-Cellular Fractionation Lab 2A: Sub-Cellular Fractionation A response is required for each item marked: (# ). Your grade for the lab 2 report (2A and 2B combined) will be the fraction of correct responses on a 50 point scale[(#

More information

The contribution of uncoupling protein and ATP synthase to state 3 respiration in Acanthamoeba castellanii mitochon - dria

The contribution of uncoupling protein and ATP synthase to state 3 respiration in Acanthamoeba castellanii mitochon - dria Vol. 51 No. 2/2004 533 538 QUARTERLY Communication The contribution of uncoupling protein and ATP synthase to state 3 respiration in Acanthamoeba castellanii mitochon - dria Wiesława Jarmuszkiewicz 1,

More information

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison BIOLOGICAL SCIENCE FIFTH EDITION Freeman Quillin Allison 8 Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge Roadmap 8 In this chapter you will learn how Enzymes use

More information

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6

Outline. Metabolism: Energy and Enzymes. Forms of Energy. Chapter 6 Metabolism: Energy and Enzymes Chapter 6 Forms of Energy Outline Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration 1 2 Forms

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reactions, light-dependent, Calvin cycle, thylakoid, photosystem II, oxygen, light-harvesting, two, chloroplasts,

More information

Glutamate Dehydrogenase Assay Kit

Glutamate Dehydrogenase Assay Kit Glutamate Dehydrogenase Assay Kit Catalog Number KA0879 100 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4

More information

Lecture 7 Cell Biolog y ٢٢٢ ١

Lecture 7 Cell Biolog y ٢٢٢ ١ Lecture 7 ١ Mitochondria ٢ Mitochondria Mitochondria are the energy factories of the cells. The energy currency for the work that animals must do is the energy-rich molecule adenosine triphosphate (ATP).

More information

Photolysis of water During the photolysis of water, photons of split water forming oxygen gas (O 2 ), (hydrogen ions or protons) and.

Photolysis of water During the photolysis of water, photons of split water forming oxygen gas (O 2 ), (hydrogen ions or protons) and. A2 Light-dependent reactions of photosynthesis: ATP; thylakoid; energy; Pi; electrons; grana; reduce; electron; water; chlorophyll; transport; oxidising; carriers; ADP; oxygen; NADP; light; H + ; The light

More information

Fluoro NADP/NADPH Fluorescent NADP/NADPH Detection Kit

Fluoro NADP/NADPH Fluorescent NADP/NADPH Detection Kit Fluoro NADP/NADPH Fluorescent NADP/NADPH Detection Kit Contact Information Address Telephone Toll Free Fax General Information Sales Technical Questions Website Cell Technology Inc 950 Rengstorff Ave Suite

More information

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04)

Change to Office Hours this Friday and next Monday. Tomorrow (Abel): 8:30 10:30 am. Monday (Katrina): Cancelled (05/04) Change to Office Hours this Friday and next Monday Tomorrow (Abel): 8:30 10:30 am Monday (Katrina): Cancelled (05/04) Lecture 10 Proton Gradient-dependent ATP Synthesis Oxidative Phosphorylation Photo-Phosphorylation

More information

General Medicine 2016/17

General Medicine 2016/17 ÚSTAV LÉKAŘSKÉ BIOCHEMIE A LABORATORNÍ DIAGNOSTIKY 1. LF UK Buffers, buffer capacity. Oxidoreduction, electrode processes Practical lesson on medical biochemistry General Medicine Martin Vejražka, Tomáš

More information

Buffers, Electrochemistry. Jan Pláteník & Tomáš Navrátil 2010/2011

Buffers, Electrochemistry. Jan Pláteník & Tomáš Navrátil 2010/2011 Buffers, Electrochemistry Practical Lesson on Medical Chemistry and Biochemistry General Medicine Jan Pláteník & Tomáš Navrátil 2010/2011 1 BUFFERS AND BUFFER CAPACITY 1.1 Principle of buffering: A buffer

More information

Metabolism: Energy and Enzymes. February 24 th, 2012

Metabolism: Energy and Enzymes. February 24 th, 2012 Metabolism: Energy and Enzymes February 24 th, 2012 1 Outline Forms of Energy Laws of Thermodynamics Metabolic Reactions ATP Metabolic Pathways Energy of Activation Enzymes Photosynthesis Cellular Respiration

More information

Section A: The Principles of Energy Harvest

Section A: The Principles of Energy Harvest CHAPTER 9 CELLULAR RESPIRATION: HARVESTING CHEMICAL ENERGY Section A: The Principles of Energy Harvest 1. Cellular respiration and fermentation are catabolic, energy-yielding pathways 2. Cells recycle

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reectlons, light-dependent, Calvin cycle, thylakoid, oxygen, light-harvesting, two, chloroplasts, photosynthesis,

More information

Glycolysis: Acetyl-CoA synthesis (Intermediate Step) and Krebs Cycle Electron Transport Chain (ETC):

Glycolysis: Acetyl-CoA synthesis (Intermediate Step) and Krebs Cycle Electron Transport Chain (ETC): Name: Bio AP Lab: Cell Respiration (Modified from Carolina Cell Respiration & AP Biology Investigative Labs) BACKGROUND: You are probably familiar with photosynthesis, the process that plants use to harness

More information

GST Activity Assay Kit (Colorimetric)

GST Activity Assay Kit (Colorimetric) GST Activity Assay Kit (Colorimetric) Catalog Number KA0799 100 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information...

More information

Succinate (Succinic Acid) Assay Kit (Colorimetric)

Succinate (Succinic Acid) Assay Kit (Colorimetric) Succinate (Succinic Acid) Assay Kit (Colorimetric) Catalog Number KA3955 100 assays Version: 02 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Intended Use... 3 Background...

More information

Sphere Scientific Corporation MonoPS Microspheres Our standard polystyrene microspheres are extremely uniform with an excellent lot-to-lot reproducibility. Those microspheres are mainly devoted to hydrophobic

More information

Superoxide Dismutase Activity Assay Kit

Superoxide Dismutase Activity Assay Kit Superoxide Dismutase Activity Assay Kit Catalog Number KA0783 100 assays Version: 04 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information...

More information

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

MyBioSource.com. Na + /K + ATPase Microplate Assay Kit. User Manual. Catalog # Detection and Quantification of Na + /K + ATPase activity in Urine,

MyBioSource.com. Na + /K + ATPase Microplate Assay Kit. User Manual. Catalog # Detection and Quantification of Na + /K + ATPase activity in Urine, Na + /K + ATPase Microplate Assay Kit Catalog # User Manual Detection and Quantification of Na + /K + ATPase activity in Urine, Serum, Plasma, Tissue extracts, Cell lysate, Cell culture media and Other

More information

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece

Photosynthesis. Chapter 10. Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Chapter 10 Photosynthesis Active Lecture Questions for use with Classroom Response Systems Biology, Seventh Edition Neil Campbell and Jane Reece Edited by William Wischusen, Louisiana State University

More information

Metabolism and Enzymes

Metabolism and Enzymes Energy Basics Metabolism and Enzymes Chapter 5 Pgs. 77 86 Chapter 8 Pgs. 142 162 Energy is the capacity to cause change, and is required to do work. Very difficult to define quantity. Two types of energy:

More information

Aerobic Cellular Respiration

Aerobic Cellular Respiration Aerobic Cellular Respiration Under aerobic conditions (oxygen gas is available), cells will undergo aerobic cellular respiration. The end products of aerobic cellular respiration are carbon dioxide gas,

More information

GR QUIZ WITH ANS KEY Cellular Processes. Part I: Multiple Choice. 1. In leaf cell, the synthesis of ATP occurs in which of the following?

GR QUIZ WITH ANS KEY Cellular Processes. Part I: Multiple Choice. 1. In leaf cell, the synthesis of ATP occurs in which of the following? GR QUIZ WITH ANS KEY Cellular Processes Part I: Multiple Choice 1. In leaf cell, the synthesis of ATP occurs in which of the following? I. Ribosomes II. Mitochondria III. Chloroplasts A. I only B. II only

More information

camp Direct Immunoassay Kit

camp Direct Immunoassay Kit camp Direct Immunoassay Kit Catalog Number KA0886 100 assays Version: 05 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion

Chapter Objectives. Chapter 13 Electrochemistry. Corrosion. Chapter Objectives. Corrosion. Corrosion Chapter Objectives Larry Brown Tom Holme Describe at least three types of corrosion and identify chemical reactions responsible for corrosion. www.cengage.com/chemistry/brown Chapter 13 Electrochemistry

More information

Supporting Online Material. On-Chip Dielectrophoretic Co-Assembly of Live Cells and. Particles into Responsive Biomaterials

Supporting Online Material. On-Chip Dielectrophoretic Co-Assembly of Live Cells and. Particles into Responsive Biomaterials Supporting Online Material On-Chip Dielectrophoretic Co-Assembly of Live Cells and Particles into esponsive Biomaterials Shalini Gupta, ossitza G. Alargova, Peter K. Kilpatrick and Orlin D. Velev* Description

More information

RayBio Nickel Magnetic Particles

RayBio Nickel Magnetic Particles RayBio Nickel Magnetic Particles Catalog #: 801-108 User Manual Last revised January 4 th, 2017 Caution: Extraordinarily useful information enclosed ISO 1348 Certified 3607 Parkway Lane, Suite 100 Norcross,

More information

Slide 1 / 6. Free Response

Slide 1 / 6. Free Response Slide 1 / 6 Free Response Slide 2 / 6 1 To maximize efficiency, the rate of light harvesting at PSII has to equal the rates of electron transfer from water to the PSI reaction center. If electrons are

More information

ADH Activity Assay Kit

ADH Activity Assay Kit ADH Activity Assay Kit Catalog Number KA3713 100 assays Version: 03 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

Metabolismo Biología de 12º

Metabolismo Biología de 12º DEPARTAMENTO DE CIENCIAS NATURALES Metabolismo Biología de 12º Nombre y Apellidos FOTOSÍNTESIS 1) Organisms that can exist with light as an energy source and an inorganic form of carbon and other raw materials

More information

AP Biology Cellular Respiration

AP Biology Cellular Respiration AP Biology Cellular Respiration The bonds between H and C represents a shared pair of electrons These are high-energy electrons This represents chemical potential energy Hydro-carbons posses a lot of chemical

More information

Electrolysis: Splitting Water Student Advanced Version

Electrolysis: Splitting Water Student Advanced Version Electrolysis: Splitting Water Student Advanced Version In this lab you will use a battery to perform electrolysis, or chemical decomposition, of different aqueous solutions (like water) to produce gases

More information

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways Chapter 8: An Introduction to Metabolism 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways 1. Energy & Chemical Reactions 2 Basic Forms of Energy Kinetic Energy (KE) energy in motion

More information

AHL Topic 8 IB Biology Miss Werba

AHL Topic 8 IB Biology Miss Werba CELL RESPIRATION & PHOTOSYNTHESIS AHL Topic 8 IB Biology Miss Werba TOPIC 8 CELL RESPIRATION & PHOTOSYNTHESIS 8.1 CELL RESPIRATION 1. STATE that oxidation involves the loss of electrons from an element,

More information

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction. Human Physiology - Problem Drill 04: Enzymes and Energy Question No. 1 of 10 Instructions: (1) Read the problem and answer choices carefully, (2) Work the problems on paper as needed, (3) Pick the answer,

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Experiment 32C APPLICATIONS OF ACID-BASE EQUILIBRIA

Experiment 32C APPLICATIONS OF ACID-BASE EQUILIBRIA Experiment 32C APPLICATIONS OF ACID-BASE EQUILIBRIA FV 23Feb18 MATERIALS: 50 ml buret (2), 25 ml graduated cylinder (2), 50 ml beaker (2), 150 ml beaker (2), small plastic vials (6), stirring rods (2),

More information

Chapter 3 Electrochemical methods of Analysis-Potentiometry

Chapter 3 Electrochemical methods of Analysis-Potentiometry Chapter 3 Electrochemical methods of Analysis-Potentiometry Electroanalytical chemistry Contents Introduction Galvanic and electrolytic cells Salt bridge Electrode potential and cell potential Indicator

More information

MitoCheck Mitochondrial OCR Assay Kit

MitoCheck Mitochondrial OCR Assay Kit MitoCheck Mitochondrial OCR Assay Kit Item No. 701170 www.caymanchem.com Customer Service 800.364.9897 Technical Support 888.526.5351 1180 E. Ellsworth Rd Ann Arbor, MI USA TABLE OF CONTENTS GENERAL INFORMATION

More information

PHENOL OXIDASE AND PEROXIDASE ASSAYS CENTER FOR DEAD PLANT STUDIES 15 September 2000

PHENOL OXIDASE AND PEROXIDASE ASSAYS CENTER FOR DEAD PLANT STUDIES 15 September 2000 PHENOL OXIDASE AND PEROXIDASE ASSAYS CENTER FOR DEAD PLANT STUDIES 15 September 2000 The purpose of this assay is to measure the activity of enzymes that can oxidize phenols. Such enzymes are classified

More information

Unit 1C Practice Exam (v.2: KEY)

Unit 1C Practice Exam (v.2: KEY) Unit 1C Practice Exam (v.2: KEY) 1. Which of the following statements concerning photosynthetic pigments (chlorophylls a and b, carotenes, and xanthophylls) is correct? (PT1-12) a. The R f values obtained

More information

The following question(s) were incorrectly answered.

The following question(s) were incorrectly answered. Name: Marcie Joseph Module: Cells & chemistry Test topic/animation: My animations/all animations Test type: Multiple choice Score: 48/50 Percent correct: 96% The following question(s) were incorrectly

More information

Energy Transformation. Metabolism = total chemical reactions in cells.

Energy Transformation. Metabolism = total chemical reactions in cells. Energy Transformation Metabolism = total chemical reactions in cells. metabole = change Metabolism is concerned with managing the material and energy resources of the cell -Catabolism -Anabolism -Catabolism

More information

Recommended Adsorption and Covalent CouplingProcedures

Recommended Adsorption and Covalent CouplingProcedures Recommended Adsorption and Covalent CouplingProcedures Introduction Our strength is in offering you a complete microparticle technology. We give you simple, validated protocols for coupling proteins to

More information

Pyruvate Kinase Assay Kit

Pyruvate Kinase Assay Kit Pyruvate Kinase Assay Kit Catalog Number KA0873 100 assays Version: 05 Intended for research use only www.abnova.com Table of Contents Introduction... 3 Background... 3 General Information... 4 Materials

More information

Biological Chemistry and Metabolic Pathways

Biological Chemistry and Metabolic Pathways Biological Chemistry and Metabolic Pathways 1. Reaction a. Thermodynamics b. Kinetics 2. Enzyme a. Structure and Function b. Regulation of Activity c. Kinetics d. Inhibition 3. Metabolic Pathways a. REDOX

More information

Operating Instructions for Ammonium ISE Specifications

Operating Instructions for Ammonium ISE Specifications Operating Instructions for Ammonium ISE Specifications Range: The Ammonium Electrode responds to uncomplexed ion activity over the range 1 x 10-1M to 1 x 10-6M. Linear detection limit is about 10-5M Interference's:

More information

Preparing the sample for determination of Viability

Preparing the sample for determination of Viability Preparing the sample for determination of Viability I. For preparing one sample for analysis you will need: - 1 pcs CELLCHIP - 1 piece of colored Eppendorf with SOFIA GREEN lyophilized dye - 1 piece of

More information

LAB. FACTORS INFLUENCING ENZYME ACTIVITY

LAB. FACTORS INFLUENCING ENZYME ACTIVITY AP Biology Date LAB. FACTORS INFLUENCING ENZYME ACTIVITY Background Enzymes are biological catalysts capable of speeding up chemical reactions by lowering activation energy. One benefit of enzyme catalysts

More information

SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis):

SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis): SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis): Aim: SDS-PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis) is one of the common methods used in the molecular biology

More information

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye

CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials. Compiled by. Dr. A.O. Oladebeye CHM 213 (INORGANIC CHEMISTRY): Applications of Standard Reduction Potentials Compiled by Dr. A.O. Oladebeye Department of Chemistry University of Medical Sciences, Ondo, Nigeria Electrochemical Cell Electrochemical

More information