Genetic assessment of fighting ability in Valdostana cattle breeds

Size: px
Start display at page:

Download "Genetic assessment of fighting ability in Valdostana cattle breeds"

Transcription

1 Genetic assessment of fighting ability in Valdostana cattle breeds Cristina Sartori and Roberto Mantovani Department of Animal Science, University of Padua

2 Introduction Fighting Ability Capability to win a contest (Parker, 1974) In cows: rigid dominance relations quickly established at grazing when unfamiliar individuals meet (Beilharz & Zeeb, 1982)

3 Introduction Aosta Chestnut & Aosta Black Pied cattle (Valdostana breed) Autochthonous of West Alps Dual Purpose Population (21): Chestnut n=22,857; Black Pied n=1394 Strong attitude to fight: Batailles de Reines

4 Batailles de Reines Introduction

5 Bataillesde Reines Introduction Each year: 2 Eliminatories + Final battle 3 Tournaments per day, defined by weight Knock-out battles among couples Heréns breed Valais, CH / Haute Savoie, FR, Aosta Black Pied & Aosta Chestnut, Aosta, IT

6 Steps of the study Introduction To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of: 1. Behavioural evaluation of agonistic performances 2. Genetic assessment of fighting ability 3. Incidence of inbreeding on the trait General aim => to build up genetic indexes suitable for breeding

7 To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of: 1. Behavioural evaluation of agonistic performances 2. Genetic assessment of fighting ability 3. Incidence of inbreeding on the trait General aim => to build up genetic indexes suitable for breeding

8 1. Behavioural evaluation of fights Materials & Methods (Sartori, Manser and Mantovani, in prep.) Video recording of 4 tournaments performed in 29 (n = 188 fights) Quantification of the main behaviours expressed during cow fights (JWatcher TM software) Ethogram for cattle escalated conflict

9 1. Behavioural evaluation of fights Materials & Methods Statistical analyses Evaluation of dynamics of conflicts, in terms of: - duration - agonistic intensity - ratio of different behaviours* on total battle *non agonistic behaviours; exhibitions; physical fights Mixed linear model for repeated measurements (SAS, 24) (Sartori, Manser and Mantovani, in prep.)

10 1. Behavioural evaluation of fights Results NA NA Friendly Passive Defence of resource Visual display E E E E Vocalization Looking in eyes Pushing Vigorous clash PF PF 1, 2, 6 = score of intensity NA = Non agonistic behaviour; E = exhibition; PF = Physical fight

11 1 Friendly NA 1. Behavioural evaluation of fights Results 2 Passive 3 NA E Transition diagram of behaviours obtained from ethograms (JWatcher TM, Blumstein & Daniel, 27) Defence of resource 3 E 3 Visual display Least squares means and standard errors of diff. number of fights disputed in the tournament (MIXED Procedure, SAS 24, Bonferroni adjustment method) E 4 Vocalization Variable 1 st Match disputed 3 rd 5 th E 5 Looking in eyes PF Duration of match (sec.) Intensity of match (score) 21.1 (28.6) 3.34 (.11) A (27.9) 3.79 (.11) B (4.5) 4.4 (.15) B Non agonistic behavior/total (%).11 (.3) a.12 (.2) a.4 (.1) b Pushing Exhibition/total (%).74 (.4) a.57 (.4) b.59 (.5) b 6 Physical fight/total (%).15 (.3) A.31 (.4) B.37 (.6) B A & B = diff. at P.1 within row; a & b = diff. at P.5 within row PF Vigorous clash

12 To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of: 1. Behavioural evaluation of agonistic performances 2. Genetic assessment of fighting ability 3. Incidence of inbreeding on the trait General aim => to build up genetic indexes suitable for breeding

13 2. Genetic assessment of the trait Difficulties on genetic analysis of behaviour: Results Low h 2 Great influence of environment (Plomin, 199) Low heritability (Mosseau and Roff 1987) Mark Ridley, 24. Modified from Hoffman 2 Genetic investigation of fighting ability: Data of tournaments Records: 16,59 Participants: 5,891 cows Pedigree: 13,456 animals IDs and pedigree of cows winner & looser of each match individual weight, age & herd weight categories level of the battle board a. Quantitative model for genetic evaluation of fighting ability b. Assessment of the opponents incidence on the trait

14 2. Genetic assessment of the trait Materials & Methods a. Genetic evaluation I. Phenotype for fighting ability (Sartori & Mantovani, 29; 21) Placement Score (PS) PS ijkl =2+ty i +d j +2w k PS = score of cow in a given tournament ty = type of tournament (ty= for heats & ty=7 for final) d = difficulty coefficient (j=-2: >128, -1: , : 33-64, 1: 17-32, 2: <17 participants) w = number of wins achieved (k=,, 8)

15 Materials & 2. Genetic assessment of the trait Methods II. Genetic model (Sartori & Mantovani, 29; 21) y = Xβ + W D p D + Z D a D + e Vectors: y = observations β = systematic fixed factors, p D = permanent environmental effects a D = direct additive genetic effects e = residuals a D V pd e AVa = D AVp IVe Fixed factors (b): Day of tournament (year-battle* weight cat.) Herd-Year Age (in classes) Weight by weight cat. P<.1 for all factors after preliminary ANOVA D EM-REML method, single-trait animal model (Misztal, 28) Models comparison: Akaike Information Criterion (AIC; Akaike, 1974)

16 Materials & 2. Genetic assessment of the trait b. Inclusion of the competitors Methods (Sartori & Mantovani, 29; 21) I. Competitors within the phenotype Competitive PS (CPS) CPS ijkl =5+ty i +2d j -b k -(k-cps ijka ) CPS = score of cow in a given tournament (l=individual; a=competitor) ty = type of tournament (as in PS) d = difficulty coefficient (as in PS) b = highest level achieved (as for w in PS)

17 Materials & 2. Genetic assessment of the trait b. Inclusion of the competitors y = Xβ + W D p D + Z D a D + Z C a C + e Methods (Sartori & Mantovani, 29; 21) II. Competitors within the genetic model Vectors: y = observations β = systematic fixed factors p D = permanent environmental effects a D = direct genetic effects a C = indirect genetic effects (IGEs) e = residuals ad AVa ac = V p D e D AVa C AVp D IVe Fixed factors (b): Day of tournament (year-battle* weight cat.) Herd-Year Age (in classes) Weight by weight cat. P<.1 for all factors after preliminary ANOVA EM-REML method, Competitive animal model, partitioning variance approach (Arango et al., 25; Bijma et al., 27)

18 2. Genetic assessment of the trait Results (Sartori & Mantovani, 29; 21) a. Genetic evaluation Item Classical model, AIC PS no competitors Classical model, competitor in phenotype Competitive model Trait Variance components Va D Va C Vp Ve PS including opponent* h 2 SE h 2 CPS r V a = direct additive genetics, V ass = associative genetics; V p = permanent environmental & V e = random residual; AIC = Akaike Information Criterion; h 2 = heritability; SE h 2 = standard error of h 2 ; r = repeatability

19 2. Genetic assessment of the trait Results (Sartori & Mantovani, 29; 21) b. Inclusion of the competitor Item Classical model, PS no competitors Classical model, competitor in phenotype Competitive model AIC Trait Variance components PS including opponent* *indirect genetic effect Va D Va C Vp Ve More suitable models for genetic analyses h 2 SE h 2 CPS r V a = direct additive genetics, V ass = associative genetics; V p = permanent environmental & V e = random residual; AIC = Akaike Information Criterion; h 2 = heritability; SE h 2 = standard error of h 2 ; r = repeatability

20 To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of: 1. Behavioural evaluation of agonistic performances 2. Genetic assessment of fighting ability 3. Incidence of inbreeding on the trait General aim => to build up genetic indexes suitable for breeding

21 3. Incidence of inbreeding Materials & Methods (Sartori & Mantovani, in peer review) Data of tournaments Records: 23,998 Participants: 8,259 cows Pedigree: 17,724 animals F coefficient (Inbreeding) INBREEDING Recursive algorithm (Aguilar & Misztal, 28) Herd Book Reference population: individuals born in Item ABP AC Individuals retained for analysis 27,638 16,61 Purebred individuals 27,184 14,854 males 7,764 42,737 females 19,42 62,117 Individuals in Herd Book (21) 11,958 22,857 ABP= Aosta Black Pied cattle, AC=Aosta Chestnut cattle

22 3. Incidence of inbreeding Materials & Methods (Sartori & Mantovani, in peer review) a. Comparison among genetic models including inbreeding or not 4 Models: Inbreeding (F): fixed effect, in classes (based on Sewalem et al., 26; P<.1 for F after ANOVA) Classical model, No F Competitive model, No F Classical model, + F Competitive model + F EM-REML method, single-trait animal model - Competitive model, partitioning variance approach - Models comparison: AIC b. Linear regression of EBVs on F across and within lineages of founders Founders individuals without genetic relationships in pedigree other than their heirs (Gulisija et al., 26) lacking in inbreeding attained using a recursive procedure Dataset 33 lineages 6,87 participants (184±235 heir fighting cows/line) at least 1 fighting cows as offspring EBVs of fighting ability

23 3. Incidence of inbreeding Results (Sartori & Mantovani, in peer review) Genetic trend for inbreeding coefficient (F) Inbreeding coefficient (F) B b ABP = +.6%/year b AC = +.3%/year Birth year Aosta Black Pied Aosta Chestnut (>1 iterations) (16 iterations)

24 3. Incidence of inbreeding Results (Sartori & Mantovani, in peer review) Model fitting, variance components & parameters estimates. Average no.competitors per fighting cows = Fitting Variance Components Genetic parameters Model AIC Vp D Vp C Va D Va C h 2 SE h 2 rep. Classical model, no F Classical model, with F Competitive model*, no F Competitive model*, with NF 111, , , r = 99.2% R 2 = 98.6% 87, *including 4 indirect genetic effects Single-trait ENREML (Misztal et al., 28), mixed linear model, linear form Rank correlation among EBVs of fighting cows' sires; n=818

25 3. Incidence of inbreeding Results (Sartori & Mantovani, in peer review) Within lineage (n=33 with a mean of 184 fighters/lineage) regression coefficients between fighting ability & inbreeding coefficient (F) 1 5 bebv/f Founder

26 Conclusions Conclusions Traditional cow competitions of Aosta Black Pied (ABP) and Aosta Chestnut (AC) cattle vary in intensity during a battle and in the course of a competition Fighting ability can be investigated via quantitative genetics as Placement score Tournament, herd, age & weight affect the trait, which h 2 is about 8% Fighting ability expresses in a social contest, and conspecifics may be included in the genetic model as indirect genetic effects ABP and AC cattle show low levels of inbreeding (2.7% ABP;.8% AC), which influence on fighting ability is slight...further step Genetic correlation among fighting ability and milk & meat yields

27 Thank you for your attention! AnaBoRaVa

Effects of inbreeding on milk production, fertility, and somatic cell count in Norwegian Red

Effects of inbreeding on milk production, fertility, and somatic cell count in Norwegian Red NORWEGIAN UNIVERSITY OF LIFE SCIENCES Effects of inbreeding on milk production, fertility, and somatic cell count in Norwegian Red K. Hov Martinsen 1, E. Sehested 2 and B. Heringstad* 1,2 1, Norwegian

More information

Quantitative characters - exercises

Quantitative characters - exercises Quantitative characters - exercises 1. a) Calculate the genetic covariance between half sibs, expressed in the ij notation (Cockerham's notation), when up to loci are considered. b) Calculate the genetic

More information

Animal Model. 2. The association of alleles from the two parents is assumed to be at random.

Animal Model. 2. The association of alleles from the two parents is assumed to be at random. Animal Model 1 Introduction In animal genetics, measurements are taken on individual animals, and thus, the model of analysis should include the animal additive genetic effect. The remaining items in the

More information

Maternal Genetic Models

Maternal Genetic Models Maternal Genetic Models In mammalian species of livestock such as beef cattle sheep or swine the female provides an environment for its offspring to survive and grow in terms of protection and nourishment

More information

Models with multiple random effects: Repeated Measures and Maternal effects

Models with multiple random effects: Repeated Measures and Maternal effects Models with multiple random effects: Repeated Measures and Maternal effects 1 Often there are several vectors of random effects Repeatability models Multiple measures Common family effects Cleaning up

More information

MIXED MODELS THE GENERAL MIXED MODEL

MIXED MODELS THE GENERAL MIXED MODEL MIXED MODELS This chapter introduces best linear unbiased prediction (BLUP), a general method for predicting random effects, while Chapter 27 is concerned with the estimation of variances by restricted

More information

Genetic Parameters for Stillbirth in the Netherlands

Genetic Parameters for Stillbirth in the Netherlands Genetic Parameters for Stillbirth in the Netherlands Arnold Harbers, Linda Segeren and Gerben de Jong CR Delta, P.O. Box 454, 68 AL Arnhem, The Netherlands Harbers.A@CR-Delta.nl 1. Introduction Stillbirth

More information

Multiple random effects. Often there are several vectors of random effects. Covariance structure

Multiple random effects. Often there are several vectors of random effects. Covariance structure Models with multiple random effects: Repeated Measures and Maternal effects Bruce Walsh lecture notes SISG -Mixed Model Course version 8 June 01 Multiple random effects y = X! + Za + Wu + e y is a n x

More information

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 4. The efficiency of selection The selection programmes

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 4. The efficiency of selection The selection programmes INTRODUCTION TO ANIMAL BREEDING Lecture Nr 4 The efficiency of selection The selection programmes Etienne Verrier INA Paris-Grignon, Animal Sciences Department Verrier@inapg.fr The genetic gain and its

More information

Animal Models. Sheep are scanned at maturity by ultrasound(us) to determine the amount of fat surrounding the muscle. A model (equation) might be

Animal Models. Sheep are scanned at maturity by ultrasound(us) to determine the amount of fat surrounding the muscle. A model (equation) might be Animal Models 1 Introduction An animal model is one in which there are one or more observations per animal, and all factors affecting those observations are described including an animal additive genetic

More information

Genotyping strategy and reference population

Genotyping strategy and reference population GS cattle workshop Genotyping strategy and reference population Effect of size of reference group (Esa Mäntysaari, MTT) Effect of adding females to the reference population (Minna Koivula, MTT) Value of

More information

Towards more uniform pig performance. Craig Lewis and Susanne Hermesch

Towards more uniform pig performance. Craig Lewis and Susanne Hermesch Towards more uniform pig performance Craig Lewis and Susanne Hermesch Variability: The issue... - Cost to industry $ - Stabilise the supply chain - Targeting the main traits that increase variability -

More information

Repeated Records Animal Model

Repeated Records Animal Model Repeated Records Animal Model 1 Introduction Animals are observed more than once for some traits, such as Fleece weight of sheep in different years. Calf records of a beef cow over time. Test day records

More information

Estimating Breeding Values

Estimating Breeding Values Estimating Breeding Values Principle how is it estimated? Properties Accuracy Variance Prediction Error Selection Response select on EBV GENE422/522 Lecture 2 Observed Phen. Dev. Genetic Value Env. Effects

More information

Prediction of Future Milk Yield with Random Regression Model Using Test-day Records in Holstein Cows

Prediction of Future Milk Yield with Random Regression Model Using Test-day Records in Holstein Cows 9 ` Asian-Aust. J. Anim. Sci. Vol. 19, No. 7 : 9-921 July 26 www.ajas.info Prediction of Future Milk Yield with Random Regression Model Using Test-day Records in Holstein Cows Byoungho Park and Deukhwan

More information

Mixed-Model Estimation of genetic variances. Bruce Walsh lecture notes Uppsala EQG 2012 course version 28 Jan 2012

Mixed-Model Estimation of genetic variances. Bruce Walsh lecture notes Uppsala EQG 2012 course version 28 Jan 2012 Mixed-Model Estimation of genetic variances Bruce Walsh lecture notes Uppsala EQG 01 course version 8 Jan 01 Estimation of Var(A) and Breeding Values in General Pedigrees The above designs (ANOVA, P-O

More information

The concept of breeding value. Gene251/351 Lecture 5

The concept of breeding value. Gene251/351 Lecture 5 The concept of breeding value Gene251/351 Lecture 5 Key terms Estimated breeding value (EB) Heritability Contemporary groups Reading: No prescribed reading from Simm s book. Revision: Quantitative traits

More information

Genetic parameters for female fertility in Nordic dairy cattle

Genetic parameters for female fertility in Nordic dairy cattle Genetic parameters for female fertility in Nordic dairy cattle K.Muuttoranta 1, A-M. Tyrisevä 1, E.A. Mäntysaari 1, J.Pösö 2, G.P. Aamand 3, J-Å. Eriksson 4, U.S. Nielsen 5, and M. Lidauer 1 1 Natural

More information

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 3. The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 3. The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs INTRODUCTION TO ANIMAL BREEDING Lecture Nr 3 The genetic evaluation (for a single trait) The Estimated Breeding Values (EBV) The accuracy of EBVs Etienne Verrier INA Paris-Grignon, Animal Sciences Department

More information

G E INTERACTION USING JMP: AN OVERVIEW

G E INTERACTION USING JMP: AN OVERVIEW G E INTERACTION USING JMP: AN OVERVIEW Sukanta Dash I.A.S.R.I., Library Avenue, New Delhi-110012 sukanta@iasri.res.in 1. Introduction Genotype Environment interaction (G E) is a common phenomenon in agricultural

More information

Genetic Parameter Estimation for Milk Yield over Multiple Parities and Various Lengths of Lactation in Danish Jerseys by Random Regression Models

Genetic Parameter Estimation for Milk Yield over Multiple Parities and Various Lengths of Lactation in Danish Jerseys by Random Regression Models J. Dairy Sci. 85:1596 1606 American Dairy Science Association, 2002. Genetic Parameter Estimation for Milk Yield over Multiple Parities and Various Lengths of Lactation in Danish Jerseys by Random Regression

More information

3. Properties of the relationship matrix

3. Properties of the relationship matrix 3. Properties of the relationship matrix 3.1 Partitioning of the relationship matrix The additive relationship matrix, A, can be written as the product of a lower triangular matrix, T, a diagonal matrix,

More information

Genetic parameters for various random regression models to describe total sperm cells per ejaculate over the reproductive lifetime of boars

Genetic parameters for various random regression models to describe total sperm cells per ejaculate over the reproductive lifetime of boars Published December 8, 2014 Genetic parameters for various random regression models to describe total sperm cells per ejaculate over the reproductive lifetime of boars S. H. Oh,* M. T. See,* 1 T. E. Long,

More information

Pedigree and genomic evaluation of pigs using a terminal cross model

Pedigree and genomic evaluation of pigs using a terminal cross model 66 th EAAP Annual Meeting Warsaw, Poland Pedigree and genomic evaluation of pigs using a terminal cross model Tusell, L., Gilbert, H., Riquet, J., Mercat, M.J., Legarra, A., Larzul, C. Project funded by:

More information

Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013

Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values. Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 2013 Lecture 5: BLUP (Best Linear Unbiased Predictors) of genetic values Bruce Walsh lecture notes Tucson Winter Institute 9-11 Jan 013 1 Estimation of Var(A) and Breeding Values in General Pedigrees The classic

More information

Impact of Using Reduced Rank Random Regression Test-Day Model on Genetic Evaluation

Impact of Using Reduced Rank Random Regression Test-Day Model on Genetic Evaluation Impact of Using Reduced Rank Random Regression Test-Day on Genetic Evaluation H. Leclerc 1, I. Nagy 2 and V. Ducrocq 2 1 Institut de l Elevage, Département Génétique, Bât 211, 78 352 Jouy-en-Josas, France

More information

Alternative implementations of Monte Carlo EM algorithms for likelihood inferences

Alternative implementations of Monte Carlo EM algorithms for likelihood inferences Genet. Sel. Evol. 33 001) 443 45 443 INRA, EDP Sciences, 001 Alternative implementations of Monte Carlo EM algorithms for likelihood inferences Louis Alberto GARCÍA-CORTÉS a, Daniel SORENSEN b, Note a

More information

Lecture 9. Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Synbreed course version 3 July 2013

Lecture 9. Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Synbreed course version 3 July 2013 Lecture 9 Short-Term Selection Response: Breeder s equation Bruce Walsh lecture notes Synbreed course version 3 July 2013 1 Response to Selection Selection can change the distribution of phenotypes, and

More information

Supplementary File 3: Tutorial for ASReml-R. Tutorial 1 (ASReml-R) - Estimating the heritability of birth weight

Supplementary File 3: Tutorial for ASReml-R. Tutorial 1 (ASReml-R) - Estimating the heritability of birth weight Supplementary File 3: Tutorial for ASReml-R Tutorial 1 (ASReml-R) - Estimating the heritability of birth weight This tutorial will demonstrate how to run a univariate animal model using the software ASReml

More information

Mixed-Models. version 30 October 2011

Mixed-Models. version 30 October 2011 Mixed-Models version 30 October 2011 Mixed models Mixed models estimate a vector! of fixed effects and one (or more) vectors u of random effects Both fixed and random effects models always include a vector

More information

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 2. Genetics of quantitative (multifactorial) traits What is known about such traits How they are modeled

INTRODUCTION TO ANIMAL BREEDING. Lecture Nr 2. Genetics of quantitative (multifactorial) traits What is known about such traits How they are modeled INTRODUCTION TO ANIMAL BREEDING Lecture Nr 2 Genetics of quantitative (multifactorial) traits What is known about such traits How they are modeled Etienne Verrier INA Paris-Grignon, Animal Sciences Department

More information

Best unbiased linear Prediction: Sire and Animal models

Best unbiased linear Prediction: Sire and Animal models Best unbiased linear Prediction: Sire and Animal models Raphael Mrode Training in quantitative genetics and genomics 3 th May to th June 26 ILRI, Nairobi Partner Logo Partner Logo BLUP The MME of provided

More information

Simulation Study on Heterogeneous Variance Adjustment for Observations with Different Measurement Error Variance

Simulation Study on Heterogeneous Variance Adjustment for Observations with Different Measurement Error Variance Simulation Study on Heterogeneous Variance Adjustment for Observations with Different Measurement Error Variance Pitkänen, T. 1, Mäntysaari, E. A. 1, Nielsen, U. S., Aamand, G. P 3., Madsen 4, P. and Lidauer,

More information

Genetic relationships and trait comparisons between and within lines of local dual purpose cattle

Genetic relationships and trait comparisons between and within lines of local dual purpose cattle 67 th Annual meeting of the European Association for Animal Production Belfast, 2016 Genetic relationships and trait comparisons between and within lines of local dual purpose cattle M. Jaeger, K. Brügemann,

More information

Distinctive aspects of non-parametric fitting

Distinctive aspects of non-parametric fitting 5. Introduction to nonparametric curve fitting: Loess, kernel regression, reproducing kernel methods, neural networks Distinctive aspects of non-parametric fitting Objectives: investigate patterns free

More information

Should genetic groups be fitted in BLUP evaluation? Practical answer for the French AI beef sire evaluation

Should genetic groups be fitted in BLUP evaluation? Practical answer for the French AI beef sire evaluation Genet. Sel. Evol. 36 (2004) 325 345 325 c INRA, EDP Sciences, 2004 DOI: 10.1051/gse:2004004 Original article Should genetic groups be fitted in BLUP evaluation? Practical answer for the French AI beef

More information

Reduced Animal Models

Reduced Animal Models Reduced Animal Models 1 Introduction In situations where many offspring can be generated from one mating as in fish poultry or swine or where only a few animals are retained for breeding the genetic evaluation

More information

5. Best Linear Unbiased Prediction

5. Best Linear Unbiased Prediction 5. Best Linear Unbiased Prediction Julius van der Werf Lecture 1: Best linear unbiased prediction Learning objectives On completion of Lecture 1 you should be able to: Understand the principle of mixed

More information

Maine-Anjou. PO Box 1100 Platte City, MO (816) fax (816)

Maine-Anjou. PO Box 1100 Platte City, MO (816) fax (816) Maine-Anjou PO Box 1100 Platte City, MO 64079-1100 (816) 431-9950 fax (816) 431-9951 E-mail: maine@kc.rr.com www.maine-anjou.org The Official Spring 2010 Sire Summary Foreword The Spring 2010 Sire Summary

More information

Lecture 9 Multi-Trait Models, Binary and Count Traits

Lecture 9 Multi-Trait Models, Binary and Count Traits Lecture 9 Multi-Trait Models, Binary and Count Traits Guilherme J. M. Rosa University of Wisconsin-Madison Mixed Models in Quantitative Genetics SISG, Seattle 18 0 September 018 OUTLINE Multiple-trait

More information

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations

Lecture 19. Long Term Selection: Topics Selection limits. Avoidance of inbreeding New Mutations Lecture 19 Long Term Selection: Topics Selection limits Avoidance of inbreeding New Mutations 1 Roberson (1960) Limits of Selection For a single gene selective advantage s, the chance of fixation is a

More information

Single and multitrait estimates of breeding values for survival using sire and animal models

Single and multitrait estimates of breeding values for survival using sire and animal models Animal Science 00, 75: 15-4 1357-798/0/11300015$0 00 00 British Society of Animal Science Single and multitrait estimates of breeding values for survival using sire and animal models T. H. E. Meuwissen

More information

Estimation of Parameters in Random. Effect Models with Incidence Matrix. Uncertainty

Estimation of Parameters in Random. Effect Models with Incidence Matrix. Uncertainty Estimation of Parameters in Random Effect Models with Incidence Matrix Uncertainty Xia Shen 1,2 and Lars Rönnegård 2,3 1 The Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden; 2 School

More information

GENERALIZED LINEAR MIXED MODELS: AN APPLICATION

GENERALIZED LINEAR MIXED MODELS: AN APPLICATION Libraries Conference on Applied Statistics in Agriculture 1994-6th Annual Conference Proceedings GENERALIZED LINEAR MIXED MODELS: AN APPLICATION Stephen D. Kachman Walter W. Stroup Follow this and additional

More information

GBLUP and G matrices 1

GBLUP and G matrices 1 GBLUP and G matrices 1 GBLUP from SNP-BLUP We have defined breeding values as sum of SNP effects:! = #$ To refer breeding values to an average value of 0, we adopt the centered coding for genotypes described

More information

Lecture 4. Basic Designs for Estimation of Genetic Parameters

Lecture 4. Basic Designs for Estimation of Genetic Parameters Lecture 4 Basic Designs for Estimation of Genetic Parameters Bruce Walsh. Aug 003. Nordic Summer Course Heritability The reason for our focus, indeed obsession, on the heritability is that it determines

More information

MULTIBREED ANIMAL EVALUATION AND ITS APPLICATION TO THE THAI ENVIRONMENT. Numbers of Sires. Multibreed Population. Numbers of Calves.

MULTIBREED ANIMAL EVALUATION AND ITS APPLICATION TO THE THAI ENVIRONMENT. Numbers of Sires. Multibreed Population. Numbers of Calves. MULTIBREED ANIMAL EVALUATION AND ITS APPLICATION TO THE THAI ENVIRONMENT M. A. Elzo University of Florida Multibreed Populations Genetic and Environmental Effects Modeling Strategies Multibreed Model Covariance

More information

Genetic evaluation for three way crossbreeding

Genetic evaluation for three way crossbreeding Genetic evaluation for three way crossbreeding Ole F. Christensen olef.christensen@mbg.au.dk Aarhus University, Center for Quantitative Genetics and Genomics EAAP 2015, Warszawa Motivation (pigs) Crossbreeding

More information

Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Uppsala EQG course version 31 Jan 2012

Short-Term Selection Response: Breeder s equation. Bruce Walsh lecture notes Uppsala EQG course version 31 Jan 2012 Short-Term Selection Response: Breeder s equation Bruce Walsh lecture notes Uppsala EQG course version 31 Jan 2012 Response to Selection Selection can change the distribution of phenotypes, and we typically

More information

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 32: Infinite-dimensional/Functionvalued. Functions and Random Regressions. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 32: Infinite-dimensional/Functionvalued Traits: Covariance Functions and Random Regressions Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 Longitudinal traits Many classic quantitative

More information

Crosses. Computation APY Sherman-Woodbury «hybrid» model. Unknown parent groups Need to modify H to include them (Misztal et al., 2013) Metafounders

Crosses. Computation APY Sherman-Woodbury «hybrid» model. Unknown parent groups Need to modify H to include them (Misztal et al., 2013) Metafounders Details in ssgblup Details in SSGBLUP Storage Inbreeding G is not invertible («blending») G might not explain all genetic variance («blending») Compatibility of G and A22 Assumption p(u 2 )=N(0,G) If there

More information

Genetics and Genetic Prediction in Plant Breeding

Genetics and Genetic Prediction in Plant Breeding Genetics and Genetic Prediction in Plant Breeding Which traits will be most responsive to selection? What stage will be best to select for specific characters? What environments are most suited to the

More information

Lecture 5 Basic Designs for Estimation of Genetic Parameters

Lecture 5 Basic Designs for Estimation of Genetic Parameters Lecture 5 Basic Designs for Estimation of Genetic Parameters Bruce Walsh. jbwalsh@u.arizona.edu. University of Arizona. Notes from a short course taught June 006 at University of Aarhus The notes for this

More information

Raphael Mrode. Training in quantitative genetics and genomics 30 May 10 June 2016 ILRI, Nairobi. Partner Logo. Partner Logo

Raphael Mrode. Training in quantitative genetics and genomics 30 May 10 June 2016 ILRI, Nairobi. Partner Logo. Partner Logo Basic matrix algebra Raphael Mrode Training in quantitative genetics and genomics 3 May June 26 ILRI, Nairobi Partner Logo Partner Logo Matrix definition A matrix is a rectangular array of numbers set

More information

Multiple-Trait Across-Country Evaluations Using Singular (Co)Variance Matrix and Random Regression Model

Multiple-Trait Across-Country Evaluations Using Singular (Co)Variance Matrix and Random Regression Model Multiple-rait Across-Country Evaluations Using Singular (Co)Variance Matrix and Random Regression Model Esa A. Mäntysaari M Agrifood Research Finland, Animal Production, SF 31600 Jokioinen 1. Introduction

More information

Sampling approaches in animal health studies. Al Ain November 2017

Sampling approaches in animal health studies. Al Ain November 2017 Sampling approaches in animal health studies Al Ain 13-14 November 2017 Definitions Populations and Samples From a statistical point of view: Population is a set of measurements, that may be finite or

More information

Procedure 2 of Section 2 of ICAR Guidelines Computing of Accumulated Lactation Yield. Computing Lactation Yield

Procedure 2 of Section 2 of ICAR Guidelines Computing of Accumulated Lactation Yield. Computing Lactation Yield of ICAR Guidelines Computing of Accumulated Lactation Yield Table of Contents 1 The Test Interval Method (TIM) (Sargent, 1968)... 4 2 Interpolation using Standard Lactation Curves (ISLC) (Wilmink, 1987)...

More information

Categorical and Zero Inflated Growth Models

Categorical and Zero Inflated Growth Models Categorical and Zero Inflated Growth Models Alan C. Acock* Summer, 2009 *Alan C. Acock, Department of Human Development and Family Sciences, Oregon State University, Corvallis OR 97331 (alan.acock@oregonstate.edu).

More information

Estimates of genetic parameters for total milk yield over multiple ages in Brazilian Murrah buffaloes using different models

Estimates of genetic parameters for total milk yield over multiple ages in Brazilian Murrah buffaloes using different models Estimates of genetic parameters for total milk yield over multiple ages in Brazilian Murrah buffaloes using different models R.C. Sesana 1, F. Baldi 1, R.R.A. Borquis 1, A.B. Bignardi 1, N.A. Hurtado-Lugo

More information

Breeding Values and Inbreeding. Breeding Values and Inbreeding

Breeding Values and Inbreeding. Breeding Values and Inbreeding Breeding Values and Inbreeding Genotypic Values For the bi-allelic single locus case, we previously defined the mean genotypic (or equivalently the mean phenotypic values) to be a if genotype is A 2 A

More information

Latent random variables

Latent random variables Latent random variables Imagine that you have collected egg size data on a fish called Austrolebias elongatus, and the graph of egg size on body size of the mother looks as follows: Egg size (Area) 4.6

More information

Just to review Genetics and Cells? How do Genetics and Cells Relate? The cell s NUCLEUS contains all the genetic information.

Just to review Genetics and Cells? How do Genetics and Cells Relate? The cell s NUCLEUS contains all the genetic information. Just to review Genetics and Cells? How do Genetics and Cells Relate? The cell s NUCLEUS contains all the genetic information. It s called: DNA A. Describe what Gregor Mendel discovered in his experiments

More information

Chapter 7 The Genetic Model for Quantitative Traits

Chapter 7 The Genetic Model for Quantitative Traits Chapter 7 The Genetic Model for Quantitative Traits I. The Basic Model II. Breeding Value III. Gene Combination Value IV. Producing Ability Chapter 7 The Genetic Model for Quantitative Traits Learning

More information

Lecture 7 Correlated Characters

Lecture 7 Correlated Characters Lecture 7 Correlated Characters Bruce Walsh. Sept 2007. Summer Institute on Statistical Genetics, Liège Genetic and Environmental Correlations Many characters are positively or negatively correlated at

More information

Cooperation. Main points for today. How can altruism evolve? Group living vs. cooperation. Sociality-nocooperation. and cooperationno-sociality

Cooperation. Main points for today. How can altruism evolve? Group living vs. cooperation. Sociality-nocooperation. and cooperationno-sociality Cooperation Why is it surprising and how does it evolve Cooperation Main points for today Sociality, cooperation, mutualism, altruism - definitions Kin selection Hamilton s rule, how to calculate r Group

More information

Likelihood Methods. 1 Likelihood Functions. The multivariate normal distribution likelihood function is

Likelihood Methods. 1 Likelihood Functions. The multivariate normal distribution likelihood function is Likelihood Methods 1 Likelihood Functions The multivariate normal distribution likelihood function is The log of the likelihood, say L 1 is Ly = π.5n V.5 exp.5y Xb V 1 y Xb. L 1 = 0.5[N lnπ + ln V +y Xb

More information

Contrasting Models for Lactation Curve Analysis

Contrasting Models for Lactation Curve Analysis J. Dairy Sci. 85:968 975 American Dairy Science Association, 2002. Contrasting Models for Lactation Curve Analysis F. Jaffrezic,*, I. M. S. White,* R. Thompson, and P. M. Visscher* *Institute of Cell,

More information

Supplementary File 2: Tutorial for ASReml

Supplementary File 2: Tutorial for ASReml Supplementary File 2: Tutorial for ASReml Running ASReml using Context Having downloaded and installed the software our experience is that people are often confused about how to actually run it. In fact

More information

Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests

Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests Estimation of the Proportion of Genetic Variation Accounted for by DNA Tests R.M. Thallman 1, K. J. Hanford 2, R. L. Quaas* 3, S. D. Kachman 2, R. J. Tempelman 4, R. L. Fernando 5, L. A. Kuehn 1, and E.

More information

A r t i s a n B e e f G e n e t i c s E m b r y o c a t a l o g

A r t i s a n B e e f G e n e t i c s E m b r y o c a t a l o g E m b r y o c a t a l o g M u l t i p ly Yo u r H e r d Premium Embryos from Proven Sires and Dams Meticulously Selected for Quality and Productivity 2 012 To Order call (479)299-4368 E m b r y o C a t

More information

Evaluation of Autoregressive Covariance Structures for Test-Day Records of Holstein Cows: Estimates of Parameters

Evaluation of Autoregressive Covariance Structures for Test-Day Records of Holstein Cows: Estimates of Parameters J. Dairy Sci. 88:2632 2642 American Dairy Science Association, 2005. Evaluation of Autoregressive Covariance Structures for Test-Day Records of Holstein Cows: Estimates of Parameters R. M. Sawalha, 1 J.

More information

Lecture 28: BLUP and Genomic Selection. Bruce Walsh lecture notes Synbreed course version 11 July 2013

Lecture 28: BLUP and Genomic Selection. Bruce Walsh lecture notes Synbreed course version 11 July 2013 Lecture 28: BLUP and Genomic Selection Bruce Walsh lecture notes Synbreed course version 11 July 2013 1 BLUP Selection The idea behind BLUP selection is very straightforward: An appropriate mixed-model

More information

Multiple Trait Evaluation of Bulls for Calving Ease

Multiple Trait Evaluation of Bulls for Calving Ease University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Papers and Publications in Animal Science Animal Science Department February 1984 Multiple Trait Evaluation of Bulls

More information

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele 3U Evolution Notes What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele Let s look back to what we know: From genetics we can say that a gene is

More information

HOW TO MEASURE INDIRECT GENETIC EFFECTS: THE CONGRUENCE OF TRAIT-BASED AND VARIANCE-PARTITIONING APPROACHES

HOW TO MEASURE INDIRECT GENETIC EFFECTS: THE CONGRUENCE OF TRAIT-BASED AND VARIANCE-PARTITIONING APPROACHES ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2009.00676.x HOW TO MEASURE INDIRECT GENETIC EFFECTS: THE CONGRUENCE OF TRAIT-BASED AND VARIANCE-PARTITIONING APPROACHES Joel W. McGlothlin 1,2 and Edmund D. Brodie

More information

Lecture 9. QTL Mapping 2: Outbred Populations

Lecture 9. QTL Mapping 2: Outbred Populations Lecture 9 QTL Mapping 2: Outbred Populations Bruce Walsh. Aug 2004. Royal Veterinary and Agricultural University, Denmark The major difference between QTL analysis using inbred-line crosses vs. outbred

More information

Selection on Correlated Characters (notes only)

Selection on Correlated Characters (notes only) Selection on Correlated Characters (notes only) The breeder s equation is best suited for plant and animal breeding where specific traits can be selected. In natural populations selection is rarely directed

More information

Solving Large Test-Day Models by Iteration on Data and Preconditioned Conjugate Gradient

Solving Large Test-Day Models by Iteration on Data and Preconditioned Conjugate Gradient Solving Large Test-Day Models by Iteration on Data and Preconditioned Conjugate Gradient M. LIDAUER, I. STRANDÉN, E. A. MÄNTYSAARI, J. PÖSÖ, and A. KETTUNEN Animal Production Research, Agricultural Research

More information

Final Review. Yang Feng. Yang Feng (Columbia University) Final Review 1 / 58

Final Review. Yang Feng.   Yang Feng (Columbia University) Final Review 1 / 58 Final Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Final Review 1 / 58 Outline 1 Multiple Linear Regression (Estimation, Inference) 2 Special Topics for Multiple

More information

Linear Models for the Prediction of Animal Breeding Values

Linear Models for the Prediction of Animal Breeding Values Linear Models for the Prediction of Animal Breeding Values R.A. Mrode, PhD Animal Data Centre Fox Talbot House Greenways Business Park Bellinger Close Chippenham Wilts, UK CAB INTERNATIONAL Preface ix

More information

VARIANCE COMPONENT ESTIMATION & BEST LINEAR UNBIASED PREDICTION (BLUP)

VARIANCE COMPONENT ESTIMATION & BEST LINEAR UNBIASED PREDICTION (BLUP) VARIANCE COMPONENT ESTIMATION & BEST LINEAR UNBIASED PREDICTION (BLUP) V.K. Bhatia I.A.S.R.I., Library Avenue, New Delhi- 11 0012 vkbhatia@iasri.res.in Introduction Variance components are commonly used

More information

Short country report Czech Republic

Short country report Czech Republic Short country report Czech Republic Suckler cows development 38 472 45 665 48 595 58 725 67 294 82 257 7 100 333 124 14 49 136 081 141 146 139 706 154 337 163 163 180 000 160 000 140 000 120 000 100 000

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Model complexity scores (v3) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 34 Estimating prediction error 2 / 34 Estimating prediction error We saw how we can estimate

More information

Legend: S spotted Genotypes: P1 SS & ss F1 Ss ss plain F2 (with ratio) 1SS :2 WSs: 1ss. Legend W white White bull 1 Ww red cows ww ww red

Legend: S spotted Genotypes: P1 SS & ss F1 Ss ss plain F2 (with ratio) 1SS :2 WSs: 1ss. Legend W white White bull 1 Ww red cows ww ww red On my honor, this is my work GENETICS 310 EXAM 1 June 8, 2018 I. Following are 3 sets of data collected from crosses: 1. Spotted by Plain gave all spotted in the F1 and 9 spotted and 3 plain in the F2.

More information

Lecture 13 Family Selection. Bruce Walsh lecture notes Synbreed course version 4 July 2013

Lecture 13 Family Selection. Bruce Walsh lecture notes Synbreed course version 4 July 2013 Lecture 13 Family Selection Bruce Walsh lecture notes Synbreed course version 4 July 2013 1 Selection in outbred populations If offspring are formed by randomly-mating selected parents, goal of the breeder

More information

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE

... x. Variance NORMAL DISTRIBUTIONS OF PHENOTYPES. Mice. Fruit Flies CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE NORMAL DISTRIBUTIONS OF PHENOTYPES Mice Fruit Flies In:Introduction to Quantitative Genetics Falconer & Mackay 1996 CHARACTERIZING A NORMAL DISTRIBUTION MEAN VARIANCE Mean and variance are two quantities

More information

Prediction of response to selection within families

Prediction of response to selection within families Note Prediction of response to selection within families WG Hill A Caballero L Dempfle 2 1 Institzite of Cell, Animal and Population Biology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT,

More information

Quantitative Genetics I: Traits controlled my many loci. Quantitative Genetics: Traits controlled my many loci

Quantitative Genetics I: Traits controlled my many loci. Quantitative Genetics: Traits controlled my many loci Quantitative Genetics: Traits controlled my many loci So far in our discussions, we have focused on understanding how selection works on a small number of loci (1 or 2). However in many cases, evolutionary

More information

Appendix A Evolutionary and Genetics Principles

Appendix A Evolutionary and Genetics Principles Appendix A Evolutionary and Genetics Principles A.1 Genetics As a start, we need to distinguish between learning, which we take to mean behavioral adaptation by an individual, and evolution, which refers

More information

Environmental signals

Environmental signals Environmental signals Why are environmental signals rare? Pp 632-635 Resource recruitment signals Costs and benefits Vertebrates and social insects Predator detection signals Types Patterns of usage Intertrophic

More information

Oct Analysis of variance models. One-way anova. Three sheep breeds. Finger ridges. Random and. Fixed effects model. The random effects model

Oct Analysis of variance models. One-way anova. Three sheep breeds. Finger ridges. Random and. Fixed effects model. The random effects model s s Oct 2017 1 / 34 s Consider N = n 0 + n 1 + + n k 1 observations, which form k groups, of sizes n 0, n 1,..., n k 1. The r-th group has sample mean Ȳ r The overall mean (for all groups combined) is

More information

Cowboy Genetics GENE HUNTING ON HORSEBACK A TRIP THROUGH THE WILD WORLD OF MOLECULAR GENETICS!

Cowboy Genetics GENE HUNTING ON HORSEBACK A TRIP THROUGH THE WILD WORLD OF MOLECULAR GENETICS! Cowboy Genetics GENE HUNTING ON HORSEBACK A TRIP THROUGH THE WILD WORLD OF MOLECULAR GENETICS! by Lana Kaiser, DVM I was hoping for a heifer (okay, let s face it, I am always hoping for a heifer, but this

More information

Phantom Groups LRS. July-Aug 2012 CGIL. LRS (CGIL) Summer Course July-Aug / 34

Phantom Groups LRS. July-Aug 2012 CGIL. LRS (CGIL) Summer Course July-Aug / 34 Phantom Groups LRS CGIL July-Aug 2012 LRS (CGIL) Summer Course July-Aug 2012 1 / 34 Phantom Groups Incomplete Pedigrees Parent IDs are often missing. Animals are transfered to new owners. Animal IDs are

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /8/2016 1/38 BIO5312 Biostatistics Lecture 11: Multisample Hypothesis Testing II Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 11/8/2016 1/38 Outline In this lecture, we will continue to

More information

RESTRICTED M A X I M U M LIKELIHOOD TO E S T I M A T E GENETIC P A R A M E T E R S - IN PRACTICE

RESTRICTED M A X I M U M LIKELIHOOD TO E S T I M A T E GENETIC P A R A M E T E R S - IN PRACTICE RESTRICTED M A X I M U M LIKELIHOOD TO E S T I M A T E GENETIC P A R A M E T E R S - IN PRACTICE K. M e y e r Institute of Animal Genetics, Edinburgh University, W e s t M a i n s Road, Edinburgh EH9 3JN,

More information

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012

Lecture 3: Linear Models. Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 Lecture 3: Linear Models Bruce Walsh lecture notes Uppsala EQG course version 28 Jan 2012 1 Quick Review of the Major Points The general linear model can be written as y = X! + e y = vector of observed

More information

H = σ 2 G / σ 2 P heredity determined by genotype. degree of genetic determination. Nature vs. Nurture.

H = σ 2 G / σ 2 P heredity determined by genotype. degree of genetic determination. Nature vs. Nurture. HCS825 Lecture 5, Spring 2002 Heritability Last class we discussed heritability in the broad sense (H) and narrow sense heritability (h 2 ). Heritability is a term that refers to the degree to which a

More information

AN INTRODUCTION TO GENERALIZED LINEAR MIXED MODELS. Stephen D. Kachman Department of Biometry, University of Nebraska Lincoln

AN INTRODUCTION TO GENERALIZED LINEAR MIXED MODELS. Stephen D. Kachman Department of Biometry, University of Nebraska Lincoln AN INTRODUCTION TO GENERALIZED LINEAR MIXED MODELS Stephen D. Kachman Department of Biometry, University of Nebraska Lincoln Abstract Linear mixed models provide a powerful means of predicting breeding

More information

Overview. Background

Overview. Background Overview Implementation of robust methods for locating quantitative trait loci in R Introduction to QTL mapping Andreas Baierl and Andreas Futschik Institute of Statistics and Decision Support Systems

More information

Longitudinal random effects models for genetic analysis of binary data with application to mastitis in dairy cattle

Longitudinal random effects models for genetic analysis of binary data with application to mastitis in dairy cattle Genet. Sel. Evol. 35 (2003) 457 468 457 INRA, EDP Sciences, 2003 DOI: 10.1051/gse:2003034 Original article Longitudinal random effects models for genetic analysis of binary data with application to mastitis

More information