Introduction HMTTSC Nikolay Smirnov 1,*, Vladimir Tyutikov 1, and Vadim Zakharov 1

Similar documents
THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL PARTITIONS. Agnieszka A. Lechowska 1, Jacek A. Schnotale 1

Available online at ScienceDirect. Procedia Engineering 121 (2015 )

Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST R

Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha

AR/IA 241 LN 231 Lecture 4: Fundamental of Energy

THE EXPERIMENTAL STUDY OF THE EFFECT OF ADDING HIGH-MOLECULAR POLYMERS ON HEAT TRANSFER CHARACTERISTICS OF NANOFLUIDS

TREES Training for Renovated Energy Efficient Social housing

5. AN INTRODUCTION TO BUILDING PHYSICS

EXPERIMENTAL ANALYSIS OF AIR-CONDITIONING IN HOSPITAL ROOMS BY MEANS OF LIGHT RADIANT CEILINGS

BES with FEM: Building Energy Simulation using Finite Element Methods

NFRC THERMAL TEST SUMMARY REPORT January 27, 1999 Test Specimen

THE EFFECTS OF CALORIMETER TILT ON THE INWARD-FLOWING FRACTION OF ABSORBED SOLAR RADIATION IN A VENETIAN BLIND

Theoretical substantiation choice of comfortable air temperature in industrial premises

DYNAMIC INSULATION APPLIED TO THE RESIDENTIAL BUILDING (PART 2) Numerical Evaluation of Thermal Insulation Effect on Air Supply Window System

Calculating the heat transfer coefficient of frame profiles with internal cavities

Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

Design strategy for Low e windows with effective insulation

Computer Evaluation of Results by Room Thermal Stability Testing

METHOD OF IN-SITU MEASUREMENT OF THERMAL INSULATION PERFORMANCE OF BUILDING ELEMENTS USING INFRARED CAMERA

Research on power consumption of screw press for pressing of oil from rape seed

Report No: NCTL NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 12/14/15

Cooling of Electronics Lecture 2

RESEARCH OF COMPOSITE CONSTRUCTIONS IMPACT ON THE ENERGY EFFICIENCY OF BUILDINGS

FUNDAMENTALS OF HVAC

Determining of Thermal Conductivity Coefficient of Pressed Straw (Name of test)

Standard Test Method for Measuring the Steady-State Thermal Transmittance of Fenestration Systems Using Hot Box Methods 1

HYGROTHERMAL CHARACTERISTICS OF PUMICE AGGREGATE CONCRETE USED FOR MASONRY WALL BLOCKS

The energy performance of an airflow window

SHANGHAI MYLCH WINDOWS & DOORS THERMAL PERFORMANCE TEST REPORT

arxiv: v1 [physics.app-ph] 25 Mar 2018

Test Results: Results of the test period on 06/19/16 using the Equivalent CTS Method: Thermal transmittance at test conditions (U s ):

Initial study - draft

Natural convection heat transfer around a horizontal circular cylinder near an isothermal vertical wall

CAE 331/513 Building Science Fall 2016

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

CRYOGENIC CONDUCTION COOLING TEST OF REMOVABLE PANEL MOCK-UP FOR ITER CRYOSTAT THERMAL SHIELD

ISO INTERNATIONAL STANDARD. Thermal performance of windows, doors and shutters Calculation of thermal transmittance Part 1: Simplified method

Report No: NCTL S NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 07/14/15. Test Specimen

Comparison of Finite Element Analysis to IEC for Predicting Underground Cable Ampacity

Available online at ScienceDirect. Procedia Engineering 113 (2015 )

Thermal Unit Operation (ChEg3113)

Design and Prototyping of a Passive Cold Chain Vaccine Storage Device for Long Hold Times

Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations

Thermal Comfort; Operative Temperature in the Sun

Building heat system sizing

Definitions of U- and g-value in case of double skin facades or vented windows

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

Computational analysis of the heat gain of buildings through their roofs using a heat transfer transient nonlinear model solved by numerical methods

AIR-INS inc. 1320, boul. Lionel-Boulet, Varennes (Quebec) J3X 1P7 Tél. : (450) Fax : (450)

SIMULATION OF FRAME CAVITY HEAT TRANSFER USING BISCO v10w

Baker House Dining Room: Thermal Balance Report. + Q c. + Q v. + Q s. + Q e. + Q heating. + Q appliances. =Q appliances,21h Q appliances, x H

NFRC THERMAL TEST SUMMARY REPORT Expiration Date: 03/31/06

Patrick H. Oosthuizen and J.T. Paul Queen s University Kingston, ON, Canada

ISO INTERNATIONAL STANDARD

If there is convective heat transfer from outer surface to fluid maintained at T W.

Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco

SENSOR. Weather TRANSMITTERS

Double-Skin Facade in Low-Latitude: Study on the Absorptance, Reflectance, and Transmittance of Direct Solar Radiation

Warm surfaces warm edges Insulated glass with thermally improved edge seal

Heat Transfer: Physical Origins and Rate Equations. Chapter One Sections 1.1 and 1.2

Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens

Chapter 3: Steady Heat Conduction. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

the distance of conduction (the thickness), the greater the heat flow.

CFD-SIMULATIONS OF TRANSPARENT COATED AND GAS-FILLED FACADE PANELS

PAUL RUDOLPH Oriental Masonic Gardens

NUMERICAL STUDY OF THE CHARACTERISTICS OF THE AIR CONDENSER SECTION

QIRT th International Conference on Quantitative InfraRed Thermography

Fundamentals of WUFI-Plus WUFI Workshop NTNU / SINTEF 2008

Numerical Analysis of Comfort and Energy Performance of Radiant Heat Emission Systems

Energy flows and modelling approaches

Radiant Heating Panel Thermal Analysis. Prepared by Tim Fleury Harvard Thermal, Inc. October 7, 2003

VALIDATION OF REYNOLDS AVERAGED MODEL AND LARGE EDDY SIMULATION IN ACTUAL FLOOR HEATING ROOM. Hiroki Ono 1 and Koji Sakai 1

EXPERIMENT NO. 4. Thermal Radiation: the Stefan-Boltzmann Law

A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND. Kai Sirén AALTO UNIVERSITY

CFD MODELLING AND ANALYTICAL CALCULATIONS OF THERMAL TRANSMITTANCE OF MULTI-LAYER GLAZING WITH ULTRATHIN INTERNAL GLASS PARTITIONS

STUDY OF A PASSIVE SOLAR WINTER HEATING SYSTEM BASED ON TROMBE WALL

Thermal behavior and Energetic Dispersals of the Human Body under Various Indoor Air Temperatures at 50% Relative Humidity

Model 3024 Albedometer. User s Manual 1165 NATIONAL DRIVE SACRAMENTO, CALIFORNIA WWW. ALLWEATHERINC. COM

EFFECT OF INTERNAL LONG WAVE RADIATION AND CONVECTION ON FENESTRATION SIMULATION

Determination of thermal transmittance of window (test title)

Ceiling mounted radiant panels calculations of heat output in heating and cooling application

Solar Radiation 230 BTU s per Hr/SF. Performance Glazing Coatings, Layers & Gases

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING

Declarations of equivalence of Verosol sun screens. SilverScreen and EnviroScreen

HIGHLY INSULATING AEROGEL GLAZING

AN ASYNCHRONOUS ELECTRIC DRIVE WITH THE INDIRECT CONTROL OF THE OUTPUT VARIABLES

U.P.B. Sci. Bull., Series C, Vol. 79, Iss. 1, 2017 ISSN

Unit 11: Temperature and heat

CFD as a Tool for Thermal Comfort Assessment

INVESTIGATING GLAZING SYSTEM SIMULATED RESULTS WITH REAL MEASUREMENTS

OPTIMIZATION of the GEOMETRY & MATERIAL of SOLAR WATER HEATERS.

Year 9 Geography end of Year Examination

High-impulse SPT-100D thruster with discharge power of kw

Available online at ScienceDirect. Procedia Engineering 106 (2015 ) Dynamics and Vibroacoustics of Machines (DVM2014)

Thermal mass vs. thermal response factors: determining optimal geometrical properties and envelope assemblies of building materials

HIMARC Simulations Divergent Thinking, Convergent Engineering

Preliminary Experimental Study on Heat Transfer Characteristics of Wall with Automatic Adjustment of Heat Transfer Coefficient

Mathematical Modelling of Ceramic Block Heat Transfer Properties

Experimental Analysis of Natural Convective Heat Transfer Performance From Rectangular Fin Array with Perforations

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

Transcription:

Mathematical and physical modeling of heat transfer through window with heat-reflecting screens to determine the potential of reducing thermal costs for microclimate parameters maintaining Nikolay Smirnov,*, Vladimir Tyutikov, and Vadim Zakharov Ivanovo State Power Engineering University, Heat Power Engineering Department, 53003 Ivanovo, Russia Abstract. A mathematical model describing the process of heat transfer through windows with heat-reflecting screens, taking into account physical and geometrical parameters of the building construction, was developed. The computer program for the calculation of heat transfer through the window has been developed and results of numerical heat transfer simulation for different parameters of indoor and outdoor air are given. Expressions to determine the thermal resistance for the specific types of glazing with a heat-reflecting screens installed outside were derived on the basis of the developed method. The adequacy of the suggested mathematical model was confirmed by experimental data. Introduction Pursuant to Russian legislation, annual specific consumption of energy in buildings as of January 00 shall be reduced by 40% of the basic level. Among the costs of fuel and energy resources at an industrial enterprise, the cost of maintaining the necessary parameters of the microclimate is from 0% (the oil refinery, chemical industry) to 40-50% (machine-building, electrotechnical enterprises) []. According to the data of the Central Research Institute of Housing [] a significant proportion of heat loss in residential buildings falls on windows. So, for 5-storey residential buildings (series -5 and -447) the thermal transmission losses through the windows make up from 46 to 54%. European Union legislatures stipulate a coefficient of heat transfer resistance for windows by 00 of.67-.0 m С/W, while Russian official bodies stipulate.0-.05 m С/W by 06. Therefore, the development of new windows with increased heat-shielding properties is an actual task. The scientists from Ivanovo State Power Engineering University (ISPU) and National Institute of Applied Sciences in Strasbourg (INSA de Strasbourg) developed [3] and patented window designs with panel, roll and blinds type heat-reflecting screens, which are * Corresponding author: nsmirnov@bk.ru The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

made of metal and significantly reduce heat losses. Screens can be positioned indoors, outdoors or in a space between glass panes. The use of screens is desirable during nighttime or in the absence of people. Screens may be placed inside or outside buildings, or between window panes. An example of outside panel heat-reflecting screen installation in the window (position 3) in room, where the maintenance of the necessary microclimate parameters is carried out with the help of an air conditioning system, is shown in Fig.. L in t о 8 5 а ext а in 3 v ext v in 6 t in,rh in 7 L ev t ext, RH ext t с, RH с 4 Fig.. System for maintaining of technological microclimate for buildings with adjustable resistance windows: - production room; - wall; 3 - a window with a panel-type heat-reflecting screen installed outside; 4 - the conditioner; 5 - air distributor; 6 - production equipment; 7 - staff; 8 - lighting fixtures. The use of screens not only reduces losses related to heat transfer but also permits ambient temperature reduction in setback heating mode [3]. It is necessary to know the actual resistance to heat transfer of windows with heatreflecting screens for calculating the real savings of thermal energy for the compensation of transmission losses. Development and software implementation of mathematical model of heat transfer through a window with screens A computational scheme was developed for the model describing the process of heat transfer through the translucent part of the window using heat-reflecting screens. The mathematical model of heat exchange through the window system with screens is considered as a multi-layer inertialless system consisting of glazing layers, metal screens and air gaps. Each layer has its own physico-geometric parameters determined by the

glazing and screens material, the type of filling of the air gap, the thickness of the layers (h, δ gl ), etc. On the interfaces between layers, the conditions for equality of temperatures and heat fluxes are specified. In each air gap, as well as on inner and outer surfaces of the structure, there was a coefficient of heat transfer i( j), which is the sum of convective konv rad i( j) and radiant i( j) heat transfer. rad konv i( j) i( j) i( j) () Coefficients of convective and radiant heat exchange were determined by well-known empirical formulas [3].The system of equations was solved numerically in the program Matlab. The developed mathematical model was implemented in the program for calculating of heat transfer process for a glazed unit with metal heat-reflecting screens Glass + Screens. The results of numerical simulation in the Glass + Screens program can be seen in Fig.. t t in =0 о С τ in α in q konv =33 % q rad =67 % t t q konv =30 % q rad =70 % R in = % R gap = % q=9,5 W/m t 3 t 4 q konv =30 % q rad =70 % t 5 R gap = % R gap3(sc) = =30% q konv =9 % q rad =8 % h=0 mm =4 mm M.Scr. q konv =95 % q rad =5 % t 6 R gap4(sc) = =3% М.Э. α ext τ ext v ext q konv =99 % q rad = % R ext =4 % t ext =-5 о С R in =0,3 R gap =0,4 R gap =0,4 R gap3(sc) =0,34 R gap4(sc) =0,36 R=,8 x Fig.. The results of simulating the process of heat transfer through a triple-glazed window with screens in the developed program: - glass, - aluminum screens. We used a glass unit (hereinafter G.U.) as 4Mх0х4Мх0х4М. At the same distance from each other, h = 0 mm, we simulated the installation of heat-reflecting metal screens (hereinafter M.Scr.), made of polished aluminum. The discrepancy in the calculation of the surface temperatures varied from 0.04 to 0.8 C (or 0. to 0.5%). It should be noted that a significant part of the resistance of this design was given by the thermal resistance of the air gap between the glass and the screen (Rgap = 0.34 (m C) / W or 30%) and between the screens (Rgap = 0.36 (m C) / W or 3%), and in these gaps, because of the high reflectivity of polished aluminum, the radiant heat flux q rad was only 8 and 5%, respectively. With the help of regression analysis, after processing the data of the computer program Glass + Screens, empirical formulas were obtained [3] for calculating the resistance to heat transfer in the middle (central) window zone with heat-reflecting screens. The change 3

of the temperature difference between the internal and external air Δt was set in the range from 0 to 60 С (at tin= 0 С), the speed vext from to 5 m / s. Thus, for a triple-glazed window with the formula 4Mх0х4Мх0х4М and two heat-reflecting screens installed from the outside at a distance of 0 mm from each other, in case of natural convection at the inner surface, the resistance to heat transfer can be determined by formula 4. R t, vext 0.889, () t 7.6 0.656.9 v 7.34 v 3.78 ext ext е where Δt the difference between temperatures of indoor and outdoor air, С; vext speed of outside air, m / s. If the recirculation ventilation unit is operating in a room or the inflow to a room is effected by mechanical ventilation, that is, forced convection is present at an inner surface of window. The resistance to heat transfer of a -screen window can be expressed 4, R t, vin, vext 0.749, (3) 9.6 3.8 v 7.6 7.34 0.656 3.78.9 v in t v ext ext е where vin is the air velocity at the inner surface of the window, m / s. On the basis of the derived empirical relationships for G.U. with heat-reflecting screens, in the case of natural convection inside, graphs of the dependences of the resistance to heat transfer R from Δt, vext were obtained (see Fig. 3). R, m.о C/W 3 t, о С v ext, m/s Fig. 3 Dependence of the resistance to heat transfer R of the central zone of window when using the G.U. by the formula 4Mх0х4Мх0х4М and installed outside - one metal screen; - two screens; 3 - three screens. As can be seen from the simulation data (Fig. 3), the resistance to heat transfer depends more on the temperature difference between the internal and external air. The maximum resistance is obtained with the minimum temperature difference and the minimum speed of the outside air. Thus, the resistance to heat transfer for windows with heat-reflecting screens is a nonlinear dependence. 4

Verification of a mathematical model using physical experiment For the good verification of the heat transfer model through a window with a heat-reflecting screen, experimental data from a field experiment conducted in a certified climate chamber of Ivanovo Construction Research Center were used. The study was carried out with different variants of the arrangement of heat-reflecting screens relative to the triple-glazed unit. As a control sample we used a triple-glazed window with the formula 4Мх0х4Мх0х4М and aluminum screens. The system carried out 0 measurements of the values for each steady-state regime. Experimental data were processed using mathematical statistics. The temperature inside the warm compartment of the climatic chamber was maintained at 0- C. Thermograms and temperature graphs along the cutting line of the central part of glass can be seen in Figure 4. Aluminum screens are installed on the left outside at a distance of 0 mm from the outer glass of the triple-glazed window, to the right - only the glass unit. Fig. 4. Thermograms and temperature graphs along the cutting line on the inner surface of the central part of glass unit while keeping the air temperature in the cold compartment of the air chamber equal to +4.3 C (a), -5.3 C (b) and -5.3 C (c): - the internal surface of the window; - binding from plastic pro-fillet; 3 - a tire for fixing thermocouples measuring; 4 - cutting line. As expected, the temperatures on the surface of the glass pane are more reduced when the outside air temperature changes in the control version (only the triple-glazed unit). In the zone where the metal screen is installed from the outside, the temperature drop on the inner glass is less when the change is made. Thermograms clearly show the edge zones of the glass unit, where, due to the formation of cold bridges due to internal aluminum frames, the surface temperature drops by -4 C in the control, and by -3 C in the screen mounting option. In Fig. 5 a comparison of computer calculation data and values of a physical experiment for the resistance of heat transfer for window with metal screens installed outside 0 mm apart from each other in the case of a change in the temperature difference between internal and external air is made. The air velocity in the cold compartment of the climatic chamber was maintained within 3 m/s. 5

As can be seen from Fig. 5, the experimental values of the resistance to heat transfer is occupied in the confidence interval of mathematical modeling data obtained from empirical formulas. The data of the physical experiment also support the hypothesis that the resistance to heat transfer of a window with heat-reflecting screens is not a constant (without taking into account the correction for speed), as in the case of using only a tripleglazed unit, but depends on the difference between the temperatures of internal and external air. Fig. 5. Comparison of the experimental and calculated values of the resistance to heat transfer of the central zone of window, depending on the difference between the temperatures of internal and external air for: G.U. and M.Scr.; - G.U. and M.Scr.; 3 - G.U. and 3 M.Scr.; 4 - G.U. (control). Solid line - the results of calculation by empirical formulas; dashed lines - the boundaries of the confidence interval due to the relative error of the mathematical model ± 3%; points are experimental values with a relative error of measurement ± 4%. Conclusion The results of these studies can be used to determine the potential for using heat-reflecting screens in windows for systems of intermittent heating of buildings, including the case of applying the technology of preliminary air drying for wet or normal conditions of premises of industrial enterprises. References. A.V. Sinilova, Russian foreign economic bulletin, 0 (0). V.S. Belyaev, S.K. Esengabulov, Building physics in the XXI-st century (NIISF RAASN, Moscow, 006) 3. N.N. Smirnov, B. Flaman, M. Barba, V.M. Zakharov, V.V. Tyutikov, D.A. Lapateev,Vestnik of Ivanovo State Power Engineering University, (05) 6