HHHHHHH. United States Patent (19) Pelster et al. 11 Patent Number: 5,085,668 (45) Date of Patent: Feb. 4, 1992 (54 SINGLE-STEP PRINTING OF CELLULOSE

Similar documents
Effect of alkali concentration on viscose dyeing of PV blended fabric with Reactive dye

United States Patent (19)

Document 11 discloses aqueous colloidal solutions of hydrated oxides of copper which are highly suitable for use as fungicides.

Application of New Synthetic Fifth Generation Thickeners for Printing Cotton Fabric with Reactive Dyes

(12) United States Patent (10) Patent No.: US 7825,066 B1

Colour Index Generic Names, Constitution Numbers and the Use of Colon Numbers

Mengying Li.

Reminder: These notes are meant to supplement, not replace, the textbook and lab manual. Electrophilic Aromatic Substitution notes

United States Patent [19] Sakaguchi et a1.

(12) United States Patent

Paper Reference. (including synoptic assessment) Thursday 11 June 2009 Afternoon Time: 1 hour 30 minutes

Triazinyl Betaines as Fibre Reactive Groups

CHM Salicylic Acid Properties (r16) 1/11

ICSE Board Class X Chemistry Board Paper Time: 1½ hrs Total Marks: 80

Deduce the following information from the structure of estradiol, a phenol contain compound.

(c) Dr. Payal B. Joshi

Acids, Bases & Salts

United States Patent (19)

5.4 Chemical changes Reactivity of metals Metal oxides The reactivity series. Key opportunities for skills development

I Write the reference number of the correct answer in the Answer Sheet below.

) USOO A. United States Patent (19) 11 Patent Number: 5,363,458 Pan et al. 45 Date of Patent: Nov. 8, 1994

EXPERIMENT 8 Reactions of Hydrocarbons

ACID-BASE EXTRACTION

General Chemistry. Lecture 3

Experiment 5. Synthetic Polymers.

Acids and bases, as we use them in the lab, are usually aqueous solutions. Ex: when we talk about hydrochloric acid, it is actually hydrogen chloride

United States Patent (19)

Experiment 17 Preparation of Methyl Orange

Benzene and Aromatic Compounds. Chapter 15 Organic Chemistry, 8 th Edition John McMurry

Q1. Ammonia is used in the production of fertilisers. The flow diagram shows the main stages in the manufacture of ammonia.

CHEMISTRY. SCIENCE Paper 2

4.4.1 Reactivity of metals Metal oxides The reactivity series. Key opportunities for skills development.

Chapter 15 - Acids and Bases Fundamental Concepts

(51) Int Cl.: C09B 23/14 ( ) D21H 17/67 ( ) D21H 21/18 ( ) D21H 21/30 ( )

4. Carbon and Its Compounds

Nitration of Methyl Benzoate

Arenediazonium Ions in Organic Synthesis: Para Red and para-iodonitrobenzene

ATOMS, MOLECULES and IONS

Chapter 16 - Acids and Bases

(12) Patent Application Publication (10) Pub. No.: US 2016/ A1

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

Ch 20 Carboxylic Acids and Nitriles

United States Patent (19)

United States Patent (19)

Annals of West University of Timisoara

One Q partial negative, the other partial negative Ø H- bonding particularly strong. Abby Carroll 2

1.12 Acid Base Equilibria

(12) United States Patent (10) Patent No.: US 7,303,925 B2. Sidewell et al. (45) Date of Patent: Dec. 4, 2007

Some Reactions of Hydrocarbons Experiment #2

Downloaded from

(12) United States Patent (10) Patent No.: US 6,229,054 B1. Dai et al. (45) Date of Patent: May 8, THEREFOR 3,644,534 2/1972 Reabe.

Downloaded from

To observe trends in solubility and exceptions to these trends. To write chemical formulas based on cation/anion charges.

Chapter 2. Atoms, Molecules, and Ions. Copyright 2018 Cengage Learning. All Rights Reserved.

Some..(A) Describe the synthesis of azo dyes and the full chemical equations for each step.

CH 1020 Exam #3 Study Guide For reference see Chemistry: An Atoms-focused Approach by Gilbert, Kirss, and Foster

(12) Patent Application Publication (10) Pub. No.: US 2013/ A1

1 Chapter 19 Acids, Bases, and Salts

United States Patent (19) Amiet

*EP A1* EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2004/22

CHEMISTRY. SCIENCE Paper 2

(12) United States Patent (10) Patent No.: US 8,383,674 B1

12. Acid Base Equilibria

1. Demonstrate knowledge of the three subatomic particles, their properties, and their location within the atom.

ISO INTERNATIONAL STANDARD. Textiles Quantitative chemical analysis Part 1: General principles of testing

The Periodic Table. run vertically on the periodic table (up and down).


Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

United States Patent (19) Gruaz et al.

Reactive Dyeing Mechanism. Reactive Dyeing Mechanism. Diffusion Factor. Adsorption Factor : Liquor ratio (Liquor-to-material ratio) (C) (B) (A)

Chapter 4. Reactions in Aqueous Solution. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Lecture 1 Solubility and Distribution Phenomena

TEPZZ 6 Z487A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2013/31

United States Patent [19]

Natural and Synthetic Polymers: The Preparation of Nylon OBJECTIVES PRELABORATORY QUESTIONS

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

ELECTROBLEACHING OF COTTON FABRICS IN SODIUM CHLORIDE SOLUTION F. Vitero 1, P. Monllor 1, M. Bonet 1, E. Morallon 2, C. Quijada 1

Chapter 19: Amines. Introduction

(12) United States Patent (10) Patent NO.: US 6,371,384 ~1 Garcia (45) Date of Patent: Apr. 16,2002

(12) Patent Application Publication (10) Pub. No.: US 2014/ A1

Downloaded from

(12) United States Patent

Relation between Color and constitution

5.1.3 Acids, Bases and Buffers

TEPZZ A_T EP A1 (19) (11) EP A1. (12) EUROPEAN PATENT APPLICATION published in accordance with Art.

Unit 1 Chemistry Basics

for sodium ion (Na + )

Arenes occur naturally in many substances, and are present in coal and crude oil. Aspirin, for example, is an aromatic compound, an arene: HO

MAHESH TUTORIALS I.C.S.E.

Espacenet Claims: US (A)

SC10 Chapter 5 Note package!

Name 2/14 Bonding Page 1

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2011/06

Section 3.1 Matter, Elements, & Atoms. 8 th Grade Earth & Space Science - Class Notes

4. Acid Base Equilibria

11/26/ Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds. Polycyclic Aromatic Compounds

Chlorobenzene from Aniline via the Sandmeyer Reaction. August 21, By ParadoxChem126. Introduction

Ch. 8 - Solutions, Acids & Bases. Solution = a homogeneous mixture of 2 or more substances

Chapter 4. Reactions in Aqueous Solution

Lecture 1 Chapter 12 Sections 1-2. Solutions Solubility

Transcription:

United States Patent (19) Pelster et al. (54 SINGLE-STEP PRINTING OF CELLULOSE FIBERS WITH TRIPHEN-DOXAZINE REACTIVE DYES AND WITHSODIUM ACETATE OR SODUM TRICHLORO-ACETATE ASALKALI 75 Inventors: Gerhard Pelster, Kelkheim; Wolfram Schidlo, Hofheim am Taunus, both of (73) Assignee: 21) Appl. No.: 602,754 (22 Filed: Oct. 24, 1990 Fed. Rep. of Germany Hoechst AG, Frankfurt am Main, Fed. Rep. of Germany Related U.S. Application Data 63) Continuation of Ser. No. 418,527, Oct. 3, 1989, aban doned. (30) Foreign Application Priority Data Oct. 5, 1988 (DE) Fed. Rep. of Germany... 3833864 51) Int.... D06P 1/38; D06P 3/66; C09B 62/00 52 U.S. C.... 8/549; 8/532; 8/543; 8/594; 8/601; 8/918 58) Field of Search... 8/549, 594, 601, 543 HHHHHHH US005085668A 11 Patent Number: (45) Date of Patent: Feb. 4, 1992 (56) References Cited U.S. PATENT DOCUMENTS 4,588,41 5/1986 Scheibli et al.... 8/528 4,622,396 11/1986 Harms et al.... 4,786,721 1 1/1988 Tzikas et al.... 4,841,048 6/989 Sawamoto et al. 4,841,049 6/1989 Seitz... 4,874,857 10/1989 Harms... 544/75 Primary Examiner-A. Lionel ingman 57 ABSTRACT On testing triphendioxazine reactive dyes it was found that they are unsuitable for almost all conventional single-step printing processes since they are not stable under these conditions. In the course of the development of an uncomplicated single-step printing process for these dyes, it has been found according to the invention, then, that by replac ing the customary fixing alkali (NaHCO3) by stoichio metrically specific amounts of sodium acetate or sodium trichloroacetate or certain mixtures of sodium trichlor oacetate and sodium acetate it is possible to fix triphen dioxazine reactive dyes in full yields without change in hue. In addition, it is possible to print conventional print pastes. 3 aims, No Drawings

1. SINGLE-STEP PRINTING OF CELLULOSE FBERS WITH TRPHEN-DOXAZINE REACTIVE DYES AND WITHSODUMACETATE OR SOOUM TRICHLOROACETATE ASALKAL 5 This application is a continuation of copending appli cation Ser. No. 07/418,527, filed on Oct. 3, 1989 aban don. The present invention relates to the preparation of 10 strong and brilliant prints with fiber-reactive triphendi oxazine dyes on textile material which consists of cellu lose fibers or contains cellulose fibers blended with other fibers. The single-step printing of cellulose textiles by direct 15 printing with reactive dyes has been common knowl edge for a considerable time. In contradistinction from two-step printing techniques, where the printing ink is made up without the alkaline fixing aid and the latter is applied only in a separate operation, i.e. in a second 20 step, to the printed and dried material, the print pastes, if to be applied in a single step, already contain the alkali, conventionally sodium carbonate or bicarbonate, necessary to fix the reactive dyes to the printed cellu lose fibers. After printing and drying, such single-step 25 prints are fixed by treatment with saturated steam at 102-106 C. The triphendioxazine reactive dyes considered here for printing cellulose fibers are likewise a conventional class of coloring organic substances which are de- 30 scribed for example in Published European Patent Ap plications EP-A-0,234,778, EP-A-0,260,227, EP-A- 0,214,093, EP-A-0,158,110, EP-A-0,271,656, to mention but a few. Such alkali-fixable blue dyes, which by their constitu- 35 tion belong to the category of polycyclic chemical products having heterocyclic structural elements, are commercially available, equipped with a wide variety of reactive systems, and are to replace over the long run in particular the costly anthraquinone-based dyes used 40 today for this purpose. Suitable fiber-reactive systems on the chromophores of these water-soluble dyes are not only those groupings which react with the OH-containing constituents of the cellulosic fiber molecule by an addition mechanism, for 45 example the vinylsulfonyl radical itself or a precursor therefor (which forms during the dyeing in an alkaline medium such a characteristic group as an intermediate, in particular a sulfatoethylsulfonyl group and the like), but also those which react with the fiber substance by 50 substitution reaction, for example reactive substituents on mono- or dihalogenated heterocycles such triazine, pyrimidine, quinoxaline and the like (which are easily detachable and leave behind an electrophilic radical), so that all of them are capable of entering a covalent bond 55 in this manner. In this respect, interest must be given in particular to those derivatives of the triphendioxazine series which contain one or more different or identical fiber-reactive groupings of the abovementioned type on the same molecule of the dye bonded directly to an 60 aromatic ring of the chromophore or via a short-chain, preferably aliphatic, bridge member, and in which, if different bisreactive radicals are present, for example a terminal vinylsulfonyl reactive group can be bonded to the chromophore of the triphendioxazine via a halogen- 65 containing, heterocyclic configuration. The colorants used for carrying out the prints are listed in the COLOUR INDEX, 3rd edition, 1971, and 2 supplements 1975, 1982 and 1987, under the generic heading of C. I. Reactive Dyes. A disadvantage of these coloristically valuable dyes of the triphendioxazine type (applicable to all two-step printing techniques), however, has been found to be that they are unsuitable for almost all conventional single-step printing techinques using sodium bicarbon ate as fixing alkai since they are unstable under the fixing conditions customary therein. The otherwise bright blue colors of the dye patterns become distorted to unsightly, dull bluish to olive shades, due essentially to an alkali destruction of the chromophore (not only of the fixed but also of the unfixed dye portion) during the steaming operation. Laid-Open European Patent Application EP-A- 0,144,093, then, discloses a single-step printing process wherein the usual sodium bicarbonate is replaced by sodium acetate as fixing alkali for reactive dyes to im prove the storage stability of the print pastes. The amounts used therein are supposed to be 2 times to at most 6 times the stoichiometric amount per fiber-reac tive radical. The switch of fixing alkali is said to coun teract premature deactivation of the reactive system in the water-containing pastes; technical teaching realat ing to the prevention of destruction of the chromo phoric molecule cannot be derived from this publica tion. However, on following the directions given therein it has been found that this procedure does not give the same color yields as are obtained with sodium carbonate, in particular in the case of deep prints such as black, navy and the like. As mentioned above, it must be considered a disad vantage of triphendioxazine reactive dyes that they cannot be used under the conditions of bicarbonate fixation since the dye molecule is not sufficiently stable. It is an object of the present invention to develop an uncomplicated single-step printing process whereby these triphendioxazine reactive dyes can be fixed with out impairing their chromophore in order that they may become available for single-step printing at all. This objective is then to make possible on the one hand the production of bright blue shades and on the other, in blends with dyes of different structures and different hues, the production of bright navys to attractive blacks. It has now been found that this object is achieved according to the invention by a process for the single step printing of textile material which consists of cellu lose fibers or contains cellulose fibers blends with other fibers with fiber-reactive triphendioxazine, dyes, which comprises adding to the print pastes apart from at least one dye of the abovementioned type as the sole fixing alkali a) per reactive group of the dye used from 10 to 20 times the stoichiometric amount of sodium acetate (calculated on the anhydrous product) or b) 20-40 of sodium trichloroacetate per kg of print paste or c) a mixture of 20-40 g of sodium trichloroacetate per kg of print paste and 15-30 g of sodium acetate trihydrate per kg of print paste and fixing the prints produced therewith, after drying, by steaming with saturated steam at temperatures within the range of 102'-110' C. In variant a) of the process, it is advantageous to dispense with the otherwise customary addition of urea. Dye fixation by the claimed process generally re quires steaming times of 8-15 minutes.

3 Usable fiber blends for treatment by the novel process are those of cellulose with synthetic fibers, primarily polyester fibers. The above-defined single-step printing technique makes it possible, then, to use triphendioxazine reactive dyes without loss of depth and without change in hue as 4 EXAMPLE 1. (A) Prior Art Process. Using Sodium Bicarbonate A mercerized cottom fabric is printed with a print paste prepared by intimately mixing the ingredients specified hereinafter at room temperature: 40 g of the blue reactive dye of the formula HeCH:Nh f=o (H): COOH 100 g 250 g 450 g 25g 50 g 85g 1,000 g sole dyes for bright blue shades or, mixed with reactive dyes of different structures, as the basis for navy or black shades. In addition, reactive dyes can be printed by the conventional single-step technique using sodium bicarbonate as fixing alkali since, after all, the fixing conditions in the steam are in both cases the same. The process according to the present invention dif fers from the conventional processes for preparing sin gle-step prints only in that triphendioxazine reactive dye print pastes are made up not with sodium bicarbon ate as fixing alkali but with the reagents and reagent quantities defined according to the invention. The process according to the invention also ensures print stability during drying and any subsequent storage of the printed batches prior to fixation. The Examples which follow will explain the inven tion in comparison with the prior art process. In the Examples, the dyes are used in commercial form and concentration. SO2-CH2-CH2-O- N O NH-e-CH2NH =o O NN ch), looh of urea of water of a medium-viscosity alginate thickening (7% strength) of sodium bicarbonate of the sodiurn salt of m-nitrobenzoic acid (as aqueous solution 1:4) of makeweight (water or thickening) 30 35 45 50 and it is dried at 100 C. for 5 minutes. To fix the printed dye, each a section of the treated fabric is steamed at 105 C. for 8, 12 or 24 minutes, then rinsed with water, soaped off until neutral and finally finished. The results obtained are blue prints where the dye shows a certain degree of destruction with increasing steaming time. Even the print steamed for just 8 minutes no longer bears any relationship to the shade to be ex pected with other application techniques, and is com pletely unusable. (B) Process According to the Invention In place of the 25 g of sodium bicarbonate per kg mentioned under method A, the print paste specified there contains in this case 47 g of sodium acetate X3 H2O per kg and no urea but instead 163 g of make weight per kg. Otherwise the prints are produced and fixed completely the same way. The result is in all 3 cases a full, bright blue print without hue impairment. EXAMPLE 2 A causticized viscose staple fabric is printed with a print paste containing: sco (CH2)2 COOH 20 g of the blue reactive dye of the formula SO2-CH2-CH2-O- N O NH-e-CH2NH =o O NN (H): C booh of the disazo dye Reactive Black 5 of C.I. No. 20505 of the red reactive dye of the formula

5 -continued OCH3 OH NH-CO-CH3 o: H. fh: O- NN OO HO3S 250 g of water 50 g of the sodium salt of m-nitrobenzoic acid (as aqueous solution 1:4) 50 g of sodium acetate X 3 H2O 500 g of a medium-viscosity alginate thickening (7% strength) 110 g of makeweight (water or thickening) 1,000 g the printed fabric is dried at 100' C. and then steamed at 103 C. for 10 minutes to fix the dye. The fabric thus treated is then soaped off with water until neutral and finished. The result obtained is a deep navy print. If 20 g of sodium bicarbonate per kg are experimen tally added to the above print paste and otherwise the same procedure is adopted, the only print pattern ob tained on the fabric is a reddish anthracite shade, since this fixing alkali has destroyed the triphendioxaxine blue component used. (the total amount of water including the makeweight is then only 230 g/kg), and otherwise the same procedure as described above is adopted. The result obtained is a navy print having the same 25 color yield as in Example 2. 30 18 g of the blue reactive dye of the formula S. HO3S-O-CH-CH2-NH O NN 14g 6 g EXAMPLE 3 To prepare the print pattern, the print paste of Exam ple 2 has added to it in place of 50 g of sodium aceta tex3h2o per kg 80 g of sodium trichloroacetate (as aqueous solution 1:1) per kg and 100 g of urea per kg In this case too an addition of bicarbonate leads to the destruction of the blue portion of the printed color. EXAMPLE 4 A mercerized cotton fabric is printed with a print paste containing the following constituents: N O NH-CH2-CH2-O- of the disazo dye Reactive Black 5 of C.I. No. 20505 of the yellow reactive dye of the formula CH3 CH3 go HOS-O-CH2-CH2-OS NetN-CH-CO-NH OCH3 OCH3 100 g of urea 250 g of water 50 g of the sodium salt of m-nitrobenzoic acid (as aqueous solution 1:4) 60 g of sodium trichloroacetate (as aqueous solution 1:1) 20 g of sodium acetate x 3 H2O 450 g of thickening (as in Example 1) 32 g of makeweight (water or thickening) 1,000 g s 65 the fabric thus treated is dried, steamed at 105 C. for 8 minutes to fix the dye and then finished as in the preced ing examples. The result obtained is a navy print. It the print is repeated for the same print paste after a week and steamed, washed and soaped off, the same print result is obtained without loss of depth of shade or change in hue.

7 8 the print pastes at least one triphendioxazine dye and as EXAMPLE 5 the sole fixing alkali To carry out the printing operation, the print pastes a) per reactive group of the dye used from 10 to 20 of Examples 1A and 1B contain instead of the vinylsul- times the stoichiometric amount of sodium acetate fonyl reactive dye used therein the blue reactive dye of 5 (calculated on the anhydrous product) or b) 20-40 the following formula: g of sodium trichloroacetate per kg of print paste N O NH-CH2-CH-NH N NH-CH2-CH2-NH O NN HO3S N N C N 1s l N NH NH N C Each print pattern is produced, dried, steamed and aftertreated exactly as described in Example 1A or 1B. The results obtained by variant A are unusable prints or c) a mixture of 20-40 g of sodium trichloroace tate per kg of print paste and 15-30 g of sodium acetate trihydrate per kg of print paste as a consequence of partial or complete destruction of s and fixing the prints produced therewith, after drying, the chromophore. by steaming with saturated steam at temperatures Variant B, however, produces a bright, deep blue within the range of 102-110' C. print having good fastness properties. 2. The process as claimed in claim 1, wherein in the We claim: variant a) the otherwise customary addition of urea is 1. A process for the single-step printing of textile dispensed with. material which consists of cellulose fibers or contains 3. The process as claimed in claim 1, wherein the cellulose fibers biends with other fibers with fiber-reac- dried prints are steamed for 8-15 minutes to fix the dye. tive triphendioxazine dyes, which comprises adding to x k 1: E 35 45 50 55 65