Proton Decay searches -- sensitivity, BG and photo-coverage. Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

Similar documents
Proton Decays. -- motivation, status, and future prospect -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

UNO: Underground Nucleon Decay and Neutrino Observatory

Recent Nucleon Decay Results from Super-Kamiokande

Tsuyoshi Nakaya (Kyoto Univ.)

Multi-Megaton Water Cherenkov Detector for a Proton Decay Search TITAND (former name: TITANIC)

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

Search for Proton Decay in Super-Kamiokande

( Some of the ) Lateset results from Super-Kamiokande

Hyper-Kamiokande. Kenzo NAKAMURA KEK. August 1-2, 2005 Neutrino Meeting IIT-Bombay, Mumbai, India

Reconstruction algorithms in the Super-Kamiokande large water Cherenkov detector

Search for Neutron Antineutron Oscillations at Super Kamiokande I. Brandon Hartfiel Cal State Dominguez Hills May

Recent results from Super-Kamiokande

Super- Kamiokande. Super- Kamiokande (1996- ) h=41.4m. Hyper- K (201X? - ) Kamiokande ( ) M. Yokoyama Friday 14:30

Recent Results from Alysia Marino, University of Colorado at Boulder Neutrino Flux Workshop, University of Pittsburgh, Dec 6 8,2012

Analyzing Data. PHY310: Lecture 16. Road Map

Next-Generation Water Cherenkov Detectors (1) Hyper-Kamiokande

Super-Kamiokande (on the activities from 2000 to 2006 and future prospects)

K2K and T2K. 2006/10/19 For the 2006 External Review Panel. Masato Shiozawa Kamioka Observatory

Dear Radioactive Ladies and Gentlemen,

Super-Kamiokande ~The Status of n Oscillation ~

What should be considered and improved for CP study.

1 Introduction. 2 Nucleon Decay Searches

Upward Showering Muons in Super-Kamiokande

T2K neutrino oscillation results

The First Results of K2K long-baseline Neutrino Oscillation Experiment

Neutrino interaction at K2K

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Radio-chemical method

Neutrino Oscillation and CP violation

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Single π production in MiniBooNE and K2K

Status and Neutrino Oscillation Physics Potential of the Hyper-Kamiokande Project in Japan

Introduction to Super-K and Hyper-K. Roger Wendell Kyoto U. High-Energy Group Meeting

The Hyper-Kamiodande Project A New Adventure in n Physics

Gadolinium Doped Water Cherenkov Detectors

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

NEW νe Appearance Results from the. T2K Experiment. Matthew Malek Imperial College London. University of Birmingham HEP Seminar 13 June 2012

Recent Results from T2K and Future Prospects

SK Atmospheric neutrino. Choji Saji ICRR,Univ. of Tokyo for the Super-Kamiokande collaboration

Solar and atmospheric ν s

PoS(FPCP2017)024. The Hyper-Kamiokande Project. Justyna Lagoda

Showering Muons in Super Kamiokande. Scott Locke University of California, Irvine August 7 th, 2017

Search for double electron capture on 124 Xe with the XMASS-I detector

Atmospheric neutrinos with Super-Kamiokande S.Mine (University of California, Irvine) for Super-Kamiokande collaboration

Super-K Gd. M.Ikeda(ICRR) for Super-K collaboration Workshop for Neutrino Programs with facilities in Japan

Impression of NNN05. Kenzo NAKAMURA KEK. April 7-9, 2005 NNN05 Aussois, Savoie, France. K. Nakamura NNN05, Aussois, April 7-9,

Grand Unified Theories & Proton Decay. Ed Kearns Boston University NEPPSR 2009

Neutrino Oscillations and the Matter Effect

The Hyper-Kamiokande project

GADZOOKS! project at Super-Kamiokande

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

EXPLORING PARTICLE-ANTIPARTICLE ASYMMETRY IN NEUTRINO OSCILLATION. Atsuko K. Ichikawa, Kyoto University

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

XMASS: a large single-phase liquid-xenon detector

Searching for Supernova Relic Neutrinos. Dr. Matthew Malek University of Birmingham HEP Seminar 11 May 2011

Interactions/Weak Force/Leptons

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Interactions/Weak Force/Leptons

MiniBooNE Progress and Little Muon Counter Overview

Results from T2K. Alex Finch Lancaster University ND280 T2K

Measurement of the baryon number transport with LHCb

Background study for solar neutrino measurement in Super Kamiokande

Study of solar neutrino energy spectrum above 4.5 MeV in Super Kamiokande I

Recent T2K results on CP violation in the lepton sector

arxiv:hep-ex/ v1 1 Oct 1998

PoS(NOW2016)003. T2K oscillation results. Lorenzo Magaletti. INFN Sezione di Bari

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes

Neutron background and possibility for shallow experiments

Indication of ν µ ν e appearance in the T2K EXPERIMENT

arxiv: v1 [hep-ex] 30 Nov 2009

Neutrino oscillation physics potential of Hyper-Kamiokande

Neutrino Oscillation Tomography

Review of Nucleon Decay Searches at Super-Kamiokande

(a) (c)

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e

Neutrino interaction systematic errors in MINOS and NOvA

Review of Nucleon Decay Searches at Super-Kamiokande

Proton Decay Physics Poten/al

arxiv: v1 [nucl-ex] 7 Sep 2009

1. Neutrino Oscillations

Status of the LHCb experiment and minimum bias physics

Neutrino Mass How can something so small be so important? Greg Sullivan University of Maryland April 1999

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Rare Exclusive Decays. Results from BaBar on the. DPF-2002, College of William and Mary. University of California, Jeffrey Berryhill.

Charged Particle Production in Proton-Proton Collisions at s = 13 TeV with ALICE at the LHC

Measurement of the Z ττ cross-section in the semileptonic channel in pp collisions at s = 7 TeV with the ATLAS detector

Detectors for astroparticle physics

LHCb status. Marta Calvi. for the LHCb Collaboration. 103 rd LHCC meeting University Milano-Bicocca and INFN

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center.

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Indirect searches for dark matter particles with the Super-Kamiokande detector

Belle Hot Topics. Nagoya University Koji Ikado (for the Belle Collaboration) Flavor Physics and CP Violation Conference (FPCP2006) Apr.

Super-KamiokaNDE: Beyond Neutrino Oscillations. A. George University of Pittsburgh

Super-Kamiokande. Alexandre Zeenny, Nolwenn Lévêque

Tracking at the LHC. Pippa Wells, CERN

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

The T2K Neutrino Experiment

Atmospheric Neutrinos and Neutrino Oscillations

EeV Neutrinos in UHECR Surface Detector Arrays:

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

Transcription:

Proton Decay searches -- sensitivity, BG and photo-coverage -- Univ. of Tokyo, Kamioka Observatory Masato Shiozawa

April-25 @ NNN5 Water as a proton decay detector Source H 2 O 2/1 free proton no nuclear effect, accurate&high detection efficiency no Fermi motion, good momentum valance.54megaton(hyper-k) ~2 1 35 protons Good detector performance Vertex resolution: 3 cm (1-ring) :~2 cm(p e + π ) Trigger threshold: 5 MeV electrons trigger ε=1% for most of nucleon decay modes Energy resolution: 3~4% for e, μ Particle ID : 99% 1-ring 1 μ,, e : ~95% p e + π,p μ + π These performance is achieved in Super-K-I, 4% photocoverage. Question: can we reduce photo-coverage? Keeping the excellent performance?

April-25 @ NNN5 Large water Cherenkov detectors Super-K 22kton Simulation was done. SK-I: 4% coverage SK-II:19% coverage UNO 44kton Hyper-K 54kton

p e + π @Super-K April-25 @ NNN5 p e + π MC Super-Kamiokande Run 999999 Event 294 12-11-6::6:35 Inner: 3849 hits, 8189 pe Outer: 4 hits, 2 pe (in-time) Trigger ID: x3 D wall: 946.1 cm FC, mass = 99. MeV/c^2 Charge(pe) >15. 13.1-15. 11.4-13.1 9.8-11.4 8.2-9.8 6.9-8.2 5.6-6.9 4.5-5.6 3.5-4.5 2.6-3.5 1.9-2.6 1.2-1.9.8-1.2.4-.8.1-.4 <.1 e + γ γ 91 728 546 364 182 5 1 15 2 Times (ns)

p e + π @Super-K April-25 @ NNN5 Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 p e + π MC Super-Kamiokande Preliminary p e + π MC 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) Criteria for p e + π 2 or 3 Cherenkov rings All rings are showering 85 < Mπ M < 185MeV/c 2 (3-ring) No decay electron 8 < M proton < 15 MeV/c 2 total < 25 MeV/c P total ε = 4 % in SK-I

April-25 @ NNN5 Tight momentum cut for p e p + π Total momentum (MeV/c) P tot < 25 MeV/c, BG2.2ev/Mtyr, eff=44% P tot < 1 MeV/c, BG.15ev/Mtyr, eff=17.4% 1 9 8 7 6 5 4 3 2 1 atmν MC 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) Total momentum (MeV/c) Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 2Mtonyr 2 4 6 8 1 12 Main target Invariant proton is free mass (MeV/c proton 2 ) decays for the tight cut. 1 9 8 7 6 5 4 3 2 1 bind bound proton decay free free proton decay 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 )

Lifetime sensitivity for p e p + π April-25 @ NNN5 1 37 p e+π sensitivity p eπ sensitivity (9%, 3σ CL) Partial Lifetime (years) 1 36 1 35 1 34 1 33 1 32 HK 1years SK-I limit 92ktyr 5.4 x 1 33 yrs (9%CL) Normal cut, 9%CL 3σ CL Tight cut, 9%CL 3σ CL 1 2 1 3 1 4 1 5 1 6 Exposure (kton year) Hyper-K 1yrs ~1 35 years@9%cl ~4x1 34 years@3σcl

Reduce photo-sensor cost? April-25 @ NNN5 sensor cost is a significant part of total cost. in case of Hyper-K 1$(1/3xSK) x 2,(4% coverage) = 2M$ important to understand minimum requirement of photo- coverage from each physics topics (p e+ e+π in my talk) SK-II (19% coverage SK-I I 4%) ) is a good opportunity to investigate physics sensitivity with reduced photo- coverage well tuned SK-II detector simulation fitters (vertex,ring#,particle( ID,momentum ) ) are also well tuned and calibrated. reliable study is possible.

Number of events Number of events 3 25 2 15 1 5 3 25 2 15 1 5 68% April-25 @ NNN5 (1)vertex fitter and (2)ring fitter.1.2.3.4.5.6.7.8.9 1 68% H2O free proton.1.2.3.4.5.6.7.8.9 1 dist. btw reconstructed and true vertex (m) p e+π Monte Carlo SK-I(4%c) SK-II(19%c) Number of events Number of events 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 SK-I 38% 6% 2% 1 2 3 4 5 41% 57% 2% 1 2 3 4 5 Number of rings SK-II 19.7cm(68%) 21.8cm(68%) Almost same performance Efficiency(74% for 2-3rings) doesn t change Fraction of 3ring slightly decrease

Number of events Number of events (3)Particle ID and (4)π mass 4 35 showering type non-showering type 3 25 2 15 1 5 SK-I -4-2 2 4 4 35 showering type non-showering type 3 25 2 15 1 5 SK-II -2-1 1 2 Particle ID likelihood p e+π Monte Carlo Number of events Number of events 6 5 4 3 2 1 6 5 4 3 2 1 April-25 @ NNN5 1 2 3 1 2 3 π invariant mass SK-I SK-II PID performance; 94-95% 96% for free proton decay π mass resolution; 22.1MeV 24.MeV free proton 2.2MeV 28.5MeV

Number of events Number of events (5)Proton mass and (6)proton momentum 1 9 8 7 6 5 4 3 2 1 SK-I 6 8 1 12 1 9 8 7 6 5 4 3 2 1 SK-II 6 8 1 12 proton invariant mass (MeV/c 2 ) p e+π Monte Carlo Number of events Number of events 1 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 April-25 @ NNN5 SK-I 2 4 6 SK-II 2 4 6 total proton momentum proton mass resolution; 33.8MeV 42.3 free proton 28.5MeV 35.2 proton mom. resolution; 177MeV(68%) 171 free proton 81MeV(68%) 83

Efficiency in each step p e+π Monte Carlo April-25 @ NNN5 1 detection efficiency.8.6.4.2 DST 2,3ring combined free proton PID π combined free proton decay-e M tot P tot Detection eff. = (4.1+-1.5)% -- SK-I (41.1+-1.5)% -- SK-II SK-I SK-II Same efficiency within 1% level A B C D E selection criteria Slightly worse resolution of π and proton mass

Total momentum (MeV/c) Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 Proton mass vs momentum p e+π Monte Carlo SK-I 2 4 6 8 1 12 SK-II 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) Total momentum (MeV/c) Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 1 9 8 7 6 5 4 3 2 1 April-25 @ NNN5 atmν(bg) Monte Carlo SK-I 2.2Mtyr 2 4 6 8 1 12 SK-II.45Mtyr 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) (4.1+-1.5)% (41.1+-1.5)% 8ev/2.2Mtonyr 2ev/.45Mtonyr ~1+-7ev/2.2Mtyr Same BG level within 7%

Conclusion April-25 @ NNN5 Water Cherenkov detector is a excellent detector for p e + π searches. detailed comparison btw 4% and 2% coverage same p e p + π efficiency even with 2% coverage slightly worse mass resolution 1% coverage maybe acceptable need further studies on other decay modes, like p ν+k +, e + +K,

supplements

p e + π @Super-K-I April-25 @ NNN5 Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 AtmνBG MC Super-Kamiokande Preliminary 1 years atmν MC 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ).3 exp d BG Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 data Super-Kamiokande Preliminary 1489 days data 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) candidate τ p/b(p e + π ) > 5.4 1 33 years (9% CL)

Comparison of data and MC in April-25 @ NNN5 p e + π search 1 5 1 4 1 3 1 2 total momentum (MeV/c) L (938,2) total mass (MeV/c 2 ) 1 2 1 1 Super-Kamiokande Preliminary 1489.2 days 1-1 2 4 6 8 1 12 total invariant mass (MeV/c 2 ) 1 1 1-1 Super-Kamiokande Preliminary 1489.2 days 2 4 6 8 1 12 distance L in mass v.s. momentum plot 16 14 12 1 8 6 4 2 Super-Kamiokande Preliminary 1489.2 days 5 1 15 2 25 3 total momentum (MeV/c)

April-25 @ NNN5 Backgrounds for p e + π search (2) Tight momentum cut to reduce BG Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 atmν MC 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) P tot < 25 MeV/c P tot < 1 MeV/c BG events in signal box 3 events/2 Mton yr ~.15 events/mton yr

Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 Analysis for discovery of p e + π Tight momentum cut target is mainly free protons efficiency=17.4%,.15bg/mtyr free proton free proton 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) Total momentum (MeV/c) 1 9 8 7 6 5 4 3 2 1 April-25 @ NNN5 bind proton bound proton 2 4 6 8 1 12 Invariant proton mass (MeV/c 2 ) No Fermi momentum No binding energy No nuclear effect Small systematic uncertainty of effici High detection efficiency Perfectly known proton mass and moment

1 3 1 31 1 32 1 33 1 34 1 35 partial nucleon life time (year) Lifetime prediction April-25 @ NNN5 p p Dimension=6 (2 fermion 2 fermion) + e 4 5 u u d g m Γ = p M 4 X : τ ( p e+ π ) = 1 ~35? years Dimension=5 (2 fermion - 2 sfermion) q ~ ν h 4 m 5 u u d w ~ X q ~ H ~ C d d s d π Κ + Γ = p M 2 M 2 Hc X : τ ( p νk + ) = 1 29~39? years minimal SU(5) minimal SUSY SU(5) Super-K SUSY SO(1)

energy reconstruction April-25 @ NNN5 μ momentum/track e momentum 1.5 1.4 1.3 1.2 1.1.99 1.98.97.96.95 1.5 1.4 1.3 1.2 1.1 1.99.98.97.96.95 Full Super-K-I period cosmic ray mu 25 5 75 1 125 15 175 2 Elapsed days from Apr.-1-1996 decay electrons 25 5 75 1 125 15 175 2 Elapsed days from Apr.-1-1996 +-1% ±1% ±1% +-1% Corrected for light attenuation length in water Time variation of E scale ~.9% Number of events 14 12 1 8 6 4 2 π invariant mass 5 1 15 2 25 3 MeV/c 2 E scale difference < 1.8% (decaye, pi, cosmic mu) energy scale uncertainty of neutrino detection < 2.%