Supplement to: How Robust are Switches in Intracellular Signaling Cascades?

Similar documents
Systems Biology Across Scales: A Personal View XIV. Intra-cellular systems IV: Signal-transduction and networks. Sitabhra Sinha IMSc Chennai

Activation of a receptor. Assembly of the complex

Problem Set # 3

arxiv:physics/ v3 [physics.bio-ph] 16 Sep 2003

Study of Tricyclic Cascade Networks using Dynamic Optimization

Bistability from double phosphorylation in signal transduction

Bioinformatics Modelling dynamic behaviour: Modularisation

PKA PKC. Reactions: Kf and Kb are in units of um and sec.

No oscillations in the Michaelis-Menten approximation of the dual futile cycle under a sequential and distributive mechanism

Chapter 4 Signaling Cascades: Consequences of Varying Substrate and Phosphatase Levels

Systems biology 9 Signal Transduction

COMPUTER SIMULATION OF DIFFERENTIAL KINETICS OF MAPK ACTIVATION UPON EGF RECEPTOR OVEREXPRESSION

1 Periodic stimulations of the Incoherent Feedforward Loop network

Simulation Methods for Optimal Experimental Design in Systems Biology

A mechanistic study of evolvability using the mitogen-activated protein kinase cascade

State Machine Modeling of MAPK Signaling Pathways

Overview of Kinetics

Modeling of signaling networks

The Goldbeter-Koshland switch in the first-order region and its response to dynamic disorder

Quasi Steady-State Approximations in Intracellular Signal Transduction a Word of Caution

Operating Regimes of Signaling Cycles: Statics, Dynamics, and Noise Filtering

56:198:582 Biological Networks Lecture 11

Chem Lecture 10 Signal Transduction

14 COMPUTATIONAL CELL BIOLOGY AND COMPLEXITY

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Proceedings of the FOSBE 2007 Stuttgart, Germany, September 9-12, 2007

Hybrid simulations of stochastic reaction-diffusion processes for modeling intracellular signaling pathways

The EGF Signaling Pathway! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 3. EGF promotes cell growth

Mechanism underlying the bio-effects of an electromagnetic field based on the Huang-Ferrell model

Supporting Information. Methods. Equations for four regimes

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Analyzing Pathways using SAT-based Approaches

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2:

Network Dynamics and Cell Physiology

Systems Biology: From the Cell to the Brain

Using Probabilistic Model Checking in Systems Biology

A Structured Approach Part IV. Model Checking in Systems and Synthetic Biology

ENZYME KINETICS. Medical Biochemistry, Lecture 24

EMPLOYING A MECHANISTIC MODEL FOR THE MAPK PATHWAY TO EXAMINE THE IMPACT OF CELLULAR ALL OR NONE BEHAVIOR ON OVERALL TISSUE RESPONSE

Biomolecular Feedback Systems

PROBABILISTIC SENSITIVITY ANALYSIS OF BIOCHEMICAL REACTION SYSTEMS. Hongxuan Zhang

Progress in modeling biological development as it bears on SBML

Signal Transduction Phosphorylation Protein kinases. Misfolding diseases. Protein Engineering Lysozyme variants

The Effect of Site-to-Site Variability in Ultrasensitive Dose Responses

Lecture 19 (10/30/17) Enzyme Regulation

Bahnson Biochemistry Cume, April 8, 2006 The Structural Biology of Signal Transduction

Biomolecular Feedback Systems

CHAPTER 15 Metabolism: Basic Concepts and Design

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Basic Synthetic Biology circuits

Compact Modeling of Allosteric Multisite Proteins: Application to a Cell Size Checkpoint

Modeling Cellular Networks

Prediction of Enzyme Kinetic Parameters Based on Statistical Learning

Bioinformatics 3. V18 Kinetic Motifs. Fri, Jan 8, 2016

Bioinformatics 3! V20 Kinetic Motifs" Mon, Jan 13, 2014"

Modeling Biological Systems in Stochastic Concurrent Constraint Programming

Positive Feedback Promotes Oscillations in Negative Feedback Loops

Stochastic modeling of intracellular signaling and regulation

Computational Biology 1

Macromolecular Crowding

Reasoning about the ERK signal transduction pathway using BioSigNet-RR

Problem Set 2. 1 Competitive and uncompetitive inhibition (12 points) Systems Biology (7.32/7.81J/8.591J)

Time allowed: 2 hours Answer ALL questions in Section A, ALL PARTS of the question in Section B and ONE question from Section C.

Steady State and (Bi-) Stability Evaluation of Simple Protease Signalling Networks

COURSE NUMBER: EH 590R SECTION: 1 SEMESTER: Fall COURSE TITLE: Computational Systems Biology: Modeling Biological Responses

Dynamic Stability of Signal Transduction Networks Depending on Downstream and Upstream Specificity of Protein Kinases

Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB

Rapid and sustained nuclear cytoplasmic ERK oscillations induced by epidermal growth factor

Cell, Volume 153. Supplemental Information. The Ribosome as an Optimal Decoder: A Lesson in Molecular Recognition. Yonatan Savir and Tsvi Tlusty

Learning Outcomes. k 1

Bioinformatics Modelling dynamic behaviour (Systems biology)

Unit 3. Enzymes. Catalysis and enzyme kinetics.

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Signal Transduction. Dr. Chaidir, Apt

Simulation and Optimization Tools to Study Design Principles of Biological Networks. Bambang Senoaji Adiwijaya

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

Alliance for Cellular Signaling

Chemical kinetics and catalysis

A modelling approach to quantify dynamic crosstalk between the pheromone and the starvation pathway in baker s yeast

Network Dynamics and Cell Physiology. John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute

Biochemistry. Lecture 8

Modeling Yeast Cell Polarization Induced by Pheromone Gradients

LIMIT CYCLE OSCILLATORS

Enabling Technologies from the Biology Perspective

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

Glasgow eprints Service

Ch 4: Cellular Metabolism, Part 1

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

The MEK/ERK cascade: From signaling specificity to diverse functions

Advances in high-throughput genomics and proteomics analysis

Introduction. Dagmar Iber Jörg Stelling. CSB Deterministic, SS 2015, 1.

Computing Algebraic Functions with Biochemical Reaction Networks

Pathway Logic: Helping Biologists Understand and Organize Pathway Information

cascade - mapk rule-based)

A compartmental model of the camp/pka/mapk pathway in Bio-PEPA

Semiotic modelling of biological processes: Semiotic processes in the immune system João Queiroz a,b,c & Charbel El-Hani b,c,d

Robustification as a Tool in Modeling Biochemical Reaction Networks

Transcription:

Supplement to: How Robust are Switches in Intracellular Signaling Cascades? Nils Blüthgen and Hanspeter Herzel Institute for Theoretical Biology, Invalidenstrasse 43, D-10115 Berlin, Germany (Dated: January 10, 2005. Journal of Theoretical Biology 225 (2003), 293-300) Corrections There is a typo in the Methods section: Eqn. 3 should read k 1 = Vmax K m (1 + r) instead of k 1 = Vmax K m(1+r). Thanks to Keng-Hwee Chiam and Xinglai Ji who both pointed this out! I. MODELS FOR THE MAPK-CASCADE A. Parameters Concentrations taken from Bhalla & Iyengar (1999) (B/I), Huang & Ferrell (1996) (H/F). Total concentration [µm] (the corresponding parameter names are in brackets) protein B/I H/F Input-enzyme 0.1 (E 1,tot ) 0.0003 (PKC tot ) MAPKKK 0.2 (KKK tot ) 0.003 (KKK tot ) MAPKK 0.18 (KK tot ) 1.2 (KK tot ) MAPK 0.36 (K tot ) 1.2 (K tot ) MAPKKK-Phosphatase 0.224 (KKKS tot ) 0.0003 (PP2A tot ) MAPKK-Phosphatase 0.224 (KKS tot ) 0.0003 (PP2A tot ) MAPK-Phosphatase 0.0032 (KS tot ) 0.12 (MKP1 tot ) V max -values taken from Bhalla & Iyengar (1999) (B/I), Huang & Ferrell (1996) (H/F).

V max [min 1 ] (the corresponding parameter names are in brackets) reaction B/I H/F MAPKKK MAPKKK* (V max,1 ) 240 150 MAPKKK MAPKKK* (V max,2 ) 360 150 MAPKKK* MAPKKK** (V max,3 ) 600 - MAPKKK* MAPKKK** (V max,4 ) 360 - MAPKK MAPKK* (V max,5 ) 6.3 150 MAPKK* MAPKK** (V max,6 ) 6.3 150 MAPKK MAPKK* (V max,7 ) 360 150 MAPKK* MAPKK** (V max,8 ) 360 150 MAPK MAPK* (V max,9 ) 9 150 MAPK* MAPK** (V max,10 ) 9 150 MAPK MAPK* (V max,11 ) 60 150 MAPK* MAPK** (V max,12 ) 60 150 2

k m values taken from Bhalla & Iyengar (1999) (B/I), Huang & Ferrell (1996) (H/F). k m [µm] (the corresponding parameter names are in brackets) reaction B/I H/F MAPKKK MAPKKK* (k m,1 ) 66.6 0.3 MAPKKK MAPKKK* (k m,2 ) 15.65 0.3 MAPKKK* MAPKKK** (k m,3 ) 25.64 - MAPKKK* MAPKKK** (k m,4 ) 15.65 - MAPKK MAPKK* (k m,5 ) 0.159 0.3 MAPKK* MAPKK** (k m,6 ) 0.159 0.3 MAPKK MAPKK* (k m,7 ) 15.65 0.3 MAPKK* MAPKK** (k m,8 ) 15.65 0.3 MAPK MAPK* (k m,9 ) 0.046 0.3 MAPK* MAPK** (k m,10 ) 0.046 0.3 MAPK MAPK* (k m,11 ) 0.066 0.3 MAPK* MAPK** (k m,12 ) 0.066 0.3 In the model according to (Bhalla & Iyengar, 1999), Raf is only active, if it binds to the complex of GTP and RAS, which assumed as a constant here. The concentration of GTP-RAS complex is set to GR tot = 0.2µM. The rate constants are k b = 24min 1 µm 1 for binding and k d = 0.5min 1 for dissotiation. In order to keep variable names short, MAPK is abbreviated as K. An S at the end indicates phosphotases, wherever it is neccessary, a underscore indicates a complex. Stars show the phosphorylation states. B. Model According to Huang and Ferrell The parameters k 1,n, k 1,n and k 2,n were choosen in order to fullfill the Michaelis-Menten constants (k m, n) and maximal velocities (V max,n ) values in Tables above. The ratio of k 1,n and k 2,n (r) was choosen as 4 as in Huang & Ferrell (1996). k 1,n = V max,n (1 + r) k m,n (1) k 1,n = V max,n r (2) k 2,n = V max,n. (3) d [KKK ] = k 2,1 [KKK E 1 ] + k 1,2 [KKK E 2 ] k 1,2 [KKK ] [E 2 ] (4) d [KKK E 1 ] = k 1,1 [KKK] [E 1 ] (k 1,1 + k 2,1 ) [KKK E 1 ] (5) d [KKK E 2 ] = k 1,2 [KKK ] [E 2 ] (k 1,2 + k 2,2 ) [KKK E 2 ] (6) [E 2 ] = [E 2,tot ] [KKK E 2 ] (7) [E 1 ] = [E 1,tot ] [KKK E 1 ] (8) [KKK] = [KKK tot ] [KKK ] [KKK E 1 ] [KKK E 2 ] (9) [KK KKK ] [KK KKK ] d [KK KKK ] = k 1,5 [KK] [KKK ] (k 1,5 + k 2,5 ) [KK KKK ] (10) d [KK ] = k 2,5 [KK KKK ] + k 2,8 [KK KKS] (11) 3

+k 1,7 [KK KKK ] + k 1,6 [KK KKS] k 1,7 [KK ] [KKK ] k 1,6 [KK ] [KKS] d [KK KKK ] = k 1,7 [KK ] [KKK ] (k 2,7 + k 1,7 ) [KK KKK ] (12) d [KK ] = k 2,7 [KK KKK ] + k 1,8 [KK KKS] (13) k 1,8 [KK ] [KKS] d [KK KKS] = k 1,8 [KK ] [KKS] (k 2,8 + k 1,8 ) [KK KKS] (14) d [KK KKS] = k 1,6 [KK ] [KKS] (k 2,6 + k 1,6 ) [KK KKS] (15) [KKS] = [KKS tot ] [KK KKS] [KK KKS] (16) [KK] = [KK tot ] [KK ] [KK KKK ] (17) [KK KKK ] [KK ] [KK KKS] [KK KKS] [K KK ] [K KK ] d [K KK ] = k 1,9 [K] [KK ] (k 2,9 + k 1,9 ) [K KK ] (18) d [K ] = k 2,9 [K KK ] + V 10 [K KS] + k 1,11 [K KK ] (19) +k 1,10 [K KS] k 1,11 [K ] [KK ] k 1,10 [K ] [KS] d [K KK ] = k 1,11 [K ] [KK ] (k 2,11 + k 1,11 ) [K KK ] (20) d [K ] = k 2,11 [K KK ] + k 1,12 [K KS] k 1,12 [K ] [KS] (21) d [K KS] = k 1,12 [K ] [KS] (k 1,12 + k 2,12 ) [K KS] (22) d [K KS] = k 1,10 [K ] [KS] (k 1,10 + k 2,10 ) [K KS] (23) [KS] = [KS tot ] [K KS] [K KS] (24) [K] = [K tot ] [K ] [K ] [K KK ] (25) [K KK ] [K KS] [K KS] C. Model According to Bhalla and Iyengar The parameters k 1,n, k 1,n and k 2,n were calculated like in the Huang/Ferrell model. d [PKC KKK] d [KKK ] d [GR KKK ] = k 1,1 [KKK] [PKC] (k 1,1 + k 2,1 ) [PKC KKK] (26) = k 2,1 [PKC KKK] + k 2,4 [PP2A KKK ] (27) +k 1,2 [K KKK ] + k 1,3 [PP2A KKK ] (k 1,3 [PP2A] + k 1,2 [K ]) [KKK ] k b [GR] [KKK ] + k d [GR KKK ] = k b [GR] [KKK ] k d [GR KKK ] (28) k 1,5 [KK] [GR KKK ] k 1,6 [KK ] [GR KKK ] + (k 1,5 + k 2,5 ) [GR KKK KK] + (k 1,6 + k 2,6 ) [GR KKK KK ] 4

d [K KKK ] d [KKK ] d [PP2A KKK ] d [PP2A KKK ] d [KK] d [GR KKK KK] d [PP2A KK ] d [KK ] d [GR KKK KK ] d [PP2A KK ] d [KK K] d [K ] d [KK K ] d [K ] = k 1,2 [KKK ] [K ] (29) (k 1,2 + k 2,2 ) [K KKK ] = k 2,2 [K KKK ] + k 1,4 [PP2A KKK ] (30) k 1,4 [KKK ] [PP2A] = k 1,4 [PP2A] [KKK ] (31) (k 1,4 + k 2,4 ) [PP2A KKK ] = k 1,3 [PP2A] [KKK ] (32) (k 1,3 + k 2,3 ) [PP2A KKK ] = k 1,5 [GR KKK ] [KK] (33) +k 1,5 [GR KKK KK] + k 2,7 [PP2A KK ] = k 1,5 [GR KKK ] [KK] (34) (k 1,5 + k 2,5 ) [GR KKK KK] = k 1,7 [PP2A] [KK ] (k 1,7 + k 2,7 ) [PP2A KK ] (35) = k 2,5 [GR KKK KK] + k 2,8 [PP2A KK ] (36) +k 1,6 [GR KKK ] [KK ] + k 1,7 [PP2A KK ] (k 1,6 [GR KKK ] + k 1,7 [PP2A]) [KK ] = k 1,6 [KK ] [GR KKK ] (37) (k 1,6 + k 2,6 ) [GR KKK KK ] = k 1,8 [KK ] [PP2A] (k 1,8 + k 2,8 ) [PP2A KK ] (38) = k 1,9 [K] [KK ] (k 1,9 + k 2,9 ) [KK K] (39) = k 2,9 [KK K] + k 2,12 [MKP1 K ] (40) +k 1,11 [MKP1 K ] + k 1,10 [KK K ] (k 1,10 [KK ] + k 1,11 [MKP1]) [K ] = k 1,10 [K ] [KK ] (k 1,10 + k 2,10 ) [KK K ] (41) = k 2,10 [KK K ] + k 1,12 [MKP1 K ] (42) k 1,12 [MKP1] [K ] k 1,2 [K ] [KKK ] + (k 1,2 + k 2,2 ) [K KKK ] d [MKP1 K ] = k 1,12 [MKP1] [K ] (k 1,12 + k 2,12 ) [MKP1 K ] (43) d [MKP1 K ] = k 1,11 [MKP1] [K ] (k 1,11 + k 2,11 ) [MKP1 K ] (44) [KK ] = [KK tot ] ([KK ] + [GR KKK KK] (45) + [KK] + [GR KKK KK ] + [PP2A KK ] + [PP2A KK ] + [KK K] + [KK K ]) [PP2A] = [PP2A tot ] ([PP2A KK ] (46) + [PP2A KK ] + [PP2A K ] + [PP2A K ]) [GR] = [GR tot ] ([GR KKK KK] (47) 5

+ [GR KKK KK ] + [GR KKK ]) [MKP1] = [MKP1 tot ] [MKP1 K ] [MKP1 K ] (48) [K] = [K tot ] [KK K] [KK K ] (49) [MKP1 K ] [MKP1 K ] [K ] [K ] [K KKK ] [PKC] = [PKC tot ] [PKC KKK] (50) [KKK] = [KKK tot ] ([PKC KKK] + [KKK ] (51) + [K KKK ] + [KKK ] + [PP2A KKK ] + [PP2A KKK ] + [GR KKK ] + [GR KKK KK ] + [GR KKK KK]) II. MODEL FOR THE GOLBETER-KOSHLAND SWITCH Goldbeter & Koshland (1981) A. Parameters Parameter value total substrate concentration (A tot ) 1µM total phosphatase concentration (E 2,tot ) 0.01µM V max of kinase (V max,1 ) 1min 1 V max of phosphatase (V max,2 ) 1min 1 k m of kinase (k m,1 ) 0.1µM k m of phosphatase (k m,2 ) 0.1µM B. Equations d [A E 1 ] = k 1,1 [A] [E 1 ] (k 1,1 + k 2,1 ) [A E 1 ] (52) d [A ] = k 2,1 [A E 1 ] k 1,2 [A ] [E 2 ] + k 1,2 [A E 2 ] (53) d [A E 2 ] = k 1,2 [A ] [E 2 ] (k 1,2 + k 2,2 ) [A E 2 ] (54) [A] = [A tot ] [A E 1 ] [A E 2 ] [A ] (55) [E 1 ] = [E 1,tot ] [A E 1 ] (56) [E 2 ] = [E 2,tot ] [A E 2 ] (57) Bhalla, U. & Iyengar, R. (1999) Emergent properties of networks of biological signaling pathways. Science 283, 381 7. Goldbeter, A. & Koshland, D. (1981) An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 6840 4. Huang, C. & Ferrell, J. (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93, 10078 83. 6