doi: /nature09369

Similar documents
GSA DATA REPOSITORY

Metal saturation in the upper mantle

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

Abstract. 1. Introduction

An Experimental Study of Water in Nominally AnhydrousMineralsintheUpperMantlenear the Water-saturated Solidus

Partial melting of mantle peridotite

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us?

Chapter - IV PETROGRAPHY. Petrographic studies are an integral part of any structural or petrological studies in

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

This work follows the international standard nomenclature (IUGS) in naming the

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY

Lithology: Olivine-rich gabbro medium grained Observer: Texture: granular Ave. grain size: medium grained [345] Shape Habit Comments

Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth s upper mantle

Supplementary Information

THE MONTE MAGGIORE PERIDOTITE (CORSICA)

Supporting Information

Advanced Igneous petrology EOSC 530 Laboratory 1: Mantle Xenoliths

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

An Experimental Study of Liquid Compositions in Equilibrium with Plagioclase þ Spinel Lherzolite at Low Pressures (0 75 GPa)

Worked Example of Batch Melting: Rb and Sr

Pyroxenes (Mg, Fe 2+ ) 2 Si 2 O 6 (monoclinic) and. MgSiO 3 FeSiO 3 (orthorhombic) Structure (Figure 2 of handout)

SCHOOL OF EARTH SCIENCES, UNIVERSITY OF TASMANIA, GPO BOX , HOBART, TAS. 7001, AUSTRALIA

Laboratory Electrical Conductivity Measurement of Mantle Minerals

- low FeO*/MgO is controlled by the reaction relation oliv + liq! opx.

SECTION 5: THIN SECTIONS

III-1 MANGANESE PARTITIONING DURING HYDROUS MELTING OF PERIDOTITE. J. Brian Balta. Paul D. Asimow. Jed L. Mosenfelder

Effect of tectonic setting on chemistry of mantle-derived melts

HP and UHP garnet peridotites and pyroxenites

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

Origin of Basaltic Magma. Geology 346- Petrology

II-1 HYDROUS, LOW-CARBON MELTING OF GARNET PERIDOTITE. J. Brian Balta. Paul D. Asimow. Jed L. Mosenfelder

THERMAL METAMORPHISM

Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

Chapter 9: Trace Elements

Textures of Igneous Rocks

COMPO- SITION. Euhedral skeletal. Twinned, zoned. Euhedral. Calcic. Anhedral. Mafic. brown clay.

Page 499 PERCENT PRESENT. SIZE (mm) PERCENT ORIGINAL COMPO- SITION MORPHOLOGY COMMENTS

Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart

-RICH FLUIDS IN THE MANTLE: A COMPARATIVE FLUID INCLUSION STUDY

Near-solidus melting of the shallow upper mantle: Partial melting experiments on depleted peridotite

Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

Chapter 9: Trace Elements

FACTS FOR DIAMOND OCCURRENCE IN KIMBERLITES

Harzburgite melting with and without H 2 O: Experimental data and predictive modeling

PETROGENESIS OF A SERIES OF MAFIC SHEETS WITHIN THE VINALHAVEN PLUTON, VINALHAVEN ISLAND, MAINE

The Effect of Cr 2 O 3 on the Partial Melting of Spinel Lherzolite in the System CaO MgO Al 2 O 3 SiO 2 Cr 2 O 3 at 11 GPa

Weidner and Wang (1999) Phase transformations - implications for mantle structure

The Effect of H 2 O on the 410-km Seismic Discontinuity

Igneous petrology EOSC 321

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

Geos 306, Mineralogy Final Exam, Dec 12, pts

Igneous petrology EOSC 321 Laboratory 1: Ultramafic plutonic and volcanic rocks

Shantanu Keshav 1,2 and Gudmundur H. Gudfinnsson Introduction

PUBLICATIONS. Journal of Geophysical Research: Solid Earth

Constitution of Magmas. Magmas. Gas Law. Composition. Atomic Structure of Magma. Structural Model. PV = nrt H 2 O + O -2 = 2(OH) -

Melting Behavior of Simplified Lherzolite in the System CaO-MgO-Al 2 O 3 -SiO 2 -Na 2 O from 7 to 35 kbar

Hydration of Olivine and. Earth s Deep Water Cycle

Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER

Minerals II: Physical Properties and Crystal Forms. From:

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

Supplementary Materials for

Classification of Igneous Rocks

Topic Page: Peridotite

XM1/331 XM1/331 BLFX-3 XM1/331

Silicates. The most common group of minerals forming the silicate Earth

UV-V-NIR Reflectance Spectroscopy

The Origin of Highly Silicic Glass in Mantle Xenoliths from the Canary Islands

Mineral/feature Modal% Size, morphology, distinguishing optical properties

Trace Elements. Today s lecture

Ch 6: Internal Constitution of the Earth

MORPHOLOGY COMMENTS. Saponite Tr Vesicles Forms an inner lining of some vesicles. FILLING SHAPE COMMENTS:

The role of clinopyroxene in the chemical evolution of Earth s mantle

XI LIU*, HUGH ST. C. O NEILLy AND ANDREW J. BERRY

GSA Data Repository

The Mohelno and Nové Dvory Peridotites: Two Contrasting Types of Peridotite in the Gföhl Unit

The influence of H 2 O on mantle wedge melting

Effect of water on the spinel-postspinel transformation in Mg 2 SiO 4

J. Mangas and F.J. Perez-Torrado. Departamento de Física. Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria.

Near-solidus Melting of the Shallow Upper Mantle: Partial Melting Experiments on Depleted Peridotite

The Composition of Hydrous Partial Melts of Garnet Peridotite at 6 GPa: Implications for the Origin of Group II Kimberlites

Significance of silicate melt pockets in upper mantle xenoliths from the Bakony Balaton Highland Volcanic Field, Western Hungary

ESS 439 Lab 2 Examine Optical Properties of Minerals

Igneous petrology EOSC 321

Notes for Use of the Cpx-Plag-Ol Thermobar Workbook Last Updated:

WATER IN THE EARTH S MANTLE:

Alkaline Seafloor Hydrothermal Systems: Experimental Simulation of CO 2 -Peridotite-Seawater Reactions

A Rock is a solid aggregate of minerals.

The Nature of Igneous Rocks

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals

Optical Mineralogy in a Nutshell

Earth and Planetary Science Letters

Characterization of Montana Grow Product David Mogk January 16, 2014

13. PETROLOGY OF BASALTS FROM DEEP SEA DRILLING PROJECT, LEG 38

(Received 26 May 1988; revised typescript accepted 10 March 1989)

Ansrru,cr. plateau of the experimental assembly used (generally. -5 mm maximum). However, the thermal gradient inmatism

Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid rock reaction

Transcription:

doi:10.1038/nature09369 Supplementary Figure S1 Scanning electron microscope images of experimental charges with vapour and vapour phase quench. Experimental runs are in the order of added water concentration from the lowest wt.% of added H 2 O to highest wt.% of added H 2 O. parg pargasite, ga garnet, cpx clinopyroxene, opx orthopyroxene, ol olivine. www.nature.com/nature 1

RESEARCH SUPPLEMENTARY INFORMATION A) Experiment D968 (P30) HZ1 lherzolite composition at 2.5 GPa, 1000 C, dry (i.e. no H 2 O added). Back-scattered electron image of polished surfaces of pargasite lherzolite. The order of decreasing brightness in the images is clinopyroxene > garnet (poikilitic) > pargasite > olivine > orthopyroxene, similar as in B) and C). Pargasite grains are right of the centre. Although nominally dry, the presence of pargasite indicates that trace water/hydrogen gained access. Also note the lower intergranular void space in A) and B) relative to D) (1.45 wt.% H 2 O). B) Experiment C2901 (O57) HZ2 lherzolite composition at 2.5 GPa, 1000 C, 0.073 wt.% H 2 O. Back-scattered electron image of polished surfaces of pargasite lherzolite. Pargasite grains are in the upper right of the image. C) Experiment D1036 (P77(2)) HZ1 lherzolite composition at 1.5 GPa, 950 C, ~1 wt.% H 2 O. Secondary electron image of lherzolite with excess water-rich vapour showing pargasite intergrowth with olivine and pyroxenes. Broken surface illustrating crystal faces against voids (vapour). Pargasite in the upper centre. D) Experiment C2886 (O52) HZ2 composition at 2.5 GPa, 1025 C, 1.45 wt.% H 2 O. Back-scattered electron image of polished surfaces of pargasite lherzolite. Pargasite grains are in the upper right of the image. Pargasite increases in abundance A, B, D as shown by decreasing K 2 O in pargasite. E) Experiment C2876 (O49) HZ2 lherzolite composition at 2.5 GPa, 1025 C, 1.45 wt.% H 2 O. Back-scattered electron image of edge of pargasitebearing garnet lherzolite layer against the layer of carbon spheres. Silicate minerals between spheres are not quenched from silicate melt or vapour phase but are pargasite (the most common phase), clinopyroxene, orthopyroxene, garnet and olivine with compositions identical with those of the lherzolite layer, except for vanishingly small Cr 2 O 3 contents in all phases. The minerals are interpreted as void-filling growth of equilibrium phases by element transport through the vapour phase. F) Experiment C2919 (O89) HZ2 lherzolite composition at 2.5 GPa, 1000 C, 7.25 wt.% H 2 O. Back-scattered electron image of fragment of olivine disc within garnet lherzolite. The olivine single crystal shows an open fracture along which olivine is replaced by clinopyroxene giving a discontinuous clinopyroxene veinlet. Olivine close to the fracture or disc edge is ~Mg 93.5 whereas olivine at >10 microns from the fracture has Mg 91. The insert is a secondary electron image of a train of fluid inclusions within the same olivine disc. 2 WWW.NATURE.COM/NATURE

RESEARCH G) Experiment C2836 (O18) HZ2 lherzolite composition at 2.4 GPa, 960 C, 14.5 wt.% H 2 O. Euhedral olivine crystals with fragmented thin films of silica-rich glass (secondary electron image). H) Experiment C2841 (O22) HZ2 lherzolite composition at 2.8 GPa, 840 C, 14.5 wt.% H 2 O. Quench rosette of carbonate and glass fragments adhering to euhedral pyroxene and olivine crystals (secondary electron image). Supplementary Figure S2 Scanning electron microscope images of experimental charges with quench from water-rich silicate melt of experiment UHPPC114 (P49) HZ1 lherzolite composition at 6 GPa, 1400 C, 1.45 wt.% H 2 O. Abbreviations as in Supplementary Figure S1. A) Back-scattered electron image of lherzolite layer between two olivine layers. Recrystallization and grain growth of olivine is accompanied by migration of hydrous silicate melt into the olivine melt trap. B) Back-scattered electron image of olivine layer with lherzolite layer. Image shows interserts of quench clinopyroxene, oxide and carbonate, and quench rims on olivine. www.nature.com/nature 3

RESEARCH SUPPLEMENTARY INFORMATION Supplementary Table S3 Experimental conditions and results on 'HZ1' composition. HZ1 and MOR Pyrolite are estimates of the upper mantle composition in the region acting as the source for MORB i.e. the asthenosphere. Run No. Mount No. T Time wt.% H 2O Capsule Top L Bottom L Phase assemblage ( C) (days) (with OL+OPX+CPX) SP/GA PAR Melt Vap HZ1 Peridotite at 1.5 GPa D1036 P77(2) 950 4 ~1 Au - - SP PAR - Vap D1041 P82 1025 3 ~0.05 Au OL(SC) OL(SC) SP PAR - - C3230 P83 1025 3 ~0.3 Au OL(SC) OL(SC) SP PAR - - HZ1 Peridotite at 2.5 GPa D968 P-30 1000 7 DRY Au OL(SC) Lo-Al Opx GA PAR - - D1039 P80 1000 3 ~0.3 Au OL(SC) OL(SC) GA PAR - - D897 O-85 1000 2.7 1.45 Ag OL(SC) OL(SC) GA PAR - Vap D937 P-4 1000 7 1.45 Au Hi-Al Opx Hi-Al Cpx GA - - Vap D944 P-7 1000 7 1.45 Au Lo-Al Opx Lo-Al Cpx GA - - Vap C3225 P81 1025 3 ~0.3 Au OL(SC) OL(SC) GA PAR Melt a C2936 O-79 1025 3 1.45 Ag OL(SC) OL(SC) GA - Melt a Vap D1038 P78 1050 3 ~0.05 Au OL(SC) OL(SC) GA PAR - - C3222 P79 1050 3 ~0.3 Au OL(SC) OL(SC) GA - Melt a - C2930 O-77 1050 3 1.45 Ag OL(SC) OL(SC) GA - Melt a - HZ1 Peridotite at 3.0 GPa D1035 P77(1) 950 4 ~0.5 Au - - GA PAR - Vap HZ1 Peridotite at 4.0 GPa C2987 O-92 1100 4 0.145 Au OL(SC) OL(SC) GA - - Vap C2942 O-80 1100 3 1.45 Au OL(SC) OL(SC) GA - - Vap C2935 O-78 1150 3 1.45 Au OL(SC) OL(SC) GA - - Vap 4 WWW.NATURE.COM/NATURE

RESEARCH C3005 P-3 1150 7 1.45 Au Hi-Al Opx Hi-Al Cpx GA - - Vap C3010 P-6 1150 7 1.45 Au Lo-Al Opx Lo-Al Cpx GA - - Vap C2950 O-81 1200 3 1.45 Au OL(SC) OL(SC) GA - - Vap C2899 O-98/99 1225 1 1.45 AuPd OL(SC) OL(SC) GA - Melt a - HZ1 Peridotite at 6.0 GPa UHPPC117 P53 1300 12h 1.45 AuPd OL(SC) OL(SC) GA - -?Va UHPPC116 P51 1350 12h 0.145 AuPd OL(SC) OL(SC) GA - -?Va UHPPC129 P84 1350 12h ~1 AuPd 1/3 OL GA - -?Va UHPPC95 P-21 1350 3 1.45 AuPd OL(SC) Lo-Al Opx GA - -?Va UHPPC131 P86 1400 12h ~1 AuPd 1/3 OL GA - Melt a - UHPPC113 P47 1400 12h 1.45 AuPd OL(SC) Lo-Al Opx GA - Melt a - UHPPC114 P49 1400 12h 1.45 AuPd OL(SC) OL(SC) GA - Melt a - UHPPC130 P85 1450 4.5h ~1 AuPd 1/3 OL GA - Melt a - OL, olivine; OPX, orthopyroxene; CPX, clinopyroxene; SP, Spinel; GA, garnet; PAR, pargasite; Vap, vapour; L, Layer; C-Sph, Carbon-spheres; Lo-Al OPX, Low alumina orthopyroxene; Hi-Al OPX, High alumina orthopyroxene; OL(SC), San Carlos olivine; AuPd, AuPd double capsule; a, Quench materials of cpx or amp, oxide and carbonate - hydrous silicate melt quench; b, Quench materials of dolomite, minor oxide and minor Na-Si-rich silicate Fluid phase or carbonatitic melt quench. www.nature.com/nature 5

RESEARCH SUPPLEMENTARY INFORMATION Supplementary Table S4 Experimental conditions and results on 'HZ2' composition. Run# Mount# T Time wt.% H 2O Capsule Top L Bottom L Phase assemblage ( C) (days) (with OL+OPX+CPX+GA) PAR Melt Vap HZ2 Peridotite at 2.0 GPa C2866 O-35,38 850 3 14.5 Ag C-Sph C-Sph PAR - Vap C2848 O-26 940 7 1.45 Au - - PAR - Vap HZ2 Peridotite at 2.4 GPa C2842 O-24 960 6 1.45 Au - - PAR - Vap C2836 O-17,18 960 4 14.5 Au - - - - Vap C2835 O-16 a 1100 3 DRY Au - - - - - HZ2 Peridotite at 2.5 GPa C2911 O-65 1000 7 DRY G-Ag b - - PAR - - C2901 O-57 1000 1 0.073 Ag - - PAR - - C2900 O-56 1000 1 0.145 Ag - - PAR -?Vap D879 O-70 1000 1 0.725 Ag C-Sph C-Sph PAR - Vap C2867 O-36 1000 3 1.45 Ag C-Sph C-Sph PAR - Vap C2888 O-60 1000 3 2.9 Ag OL-Disc PAR - Vap C2919 O-89 1000 1 7.25 Ag OL-Disc - - Vap C2877 O-50 1000 3 14.5 Ag C-Sph C-Sph - - Vap C2876 O-49 1025 3 1.45 Ag C-Sph C-Sph PAR - Vap C2886 O-52 1025 3 1.45 Ag OL(SC) OL(SC) PAR - Vap C2909 O-62 1050 3 1.45 Ag C-Sph C-Sph PAR - Vap C2887 O-53 1050 3 1.45 Ag OL(SC) OL(SC) - Melt - D881 O-72 1075 1 1.45 Ag C-Sph C-Sph PAR - Vap HZ2 Peridotite at 2.8 GPa C2841 O-22,23 840 7 14.5 Au - - - - Vap 6 WWW.NATURE.COM/NATURE

RESEARCH C2849 O-27 950 7 1.45 Au - - PAR - Vap HZ2 Peridotite at 3.0 GPa D880 O-71 1000 3 0.145 Ag - - PAR -?Vap C2924 O-73 1000 3 1.45 Ag C-Sph C-Sph PAR - Vap HZ2 Peridotite at 4.0 GPa C2889 O-61 1100 3 2.9 Ag OL Disc - - Vap C2928 O-76 1150 1 1.45 Ag OL(SC) OL(SC) - - Vap a, Run 2836 (O16) contains Spinel rather than Garnet; b, Graphite in Ag; OL, olivine; OPX, orthopyroxene; CPX, clinopyroxene; GA, garnet; PAR, pargasite; Vap, Vapour; L, Layer; C-Sph, Carbon-spheres; OL(SC), San Carlos olivine. www.nature.com/nature 7