Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart

Size: px
Start display at page:

Download "Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere. 07/11/2017 GEO-DEEP 9300 Claire Aupart"

Transcription

1 Geochemical and mineralogical technics to investigate the lithosphere and the asthenosphere 07/11/2017 GEO-DEEP 9300 Claire Aupart

2 Introduction

3 Introduction

4 Getting samples Cores: Maximum depth reach in continental lithosphere: Kola Superdeep Borehole m (mantle depth: 35 km) In oceanic lithosphere: around 2 kilometers (mantle depth: 6 km) Ridges (dredge material): Exposed mantle at slow and very slow ridges Maffione et al., 2013 OIDP science plan Hole 1256D, Eastern equatorial Pacific ocean

5 Time Getting samples Ophiolites: Pieces of oceanic lithosphere on continents Sutures in mountain chains Modified after Coleman, 1977 The largest: Oman ophiolite Picture: F. Boudier A. Nicolas, Les montagnes sous la mer, 1990 Jousselin et al., 1998

6 Xenoliths (Upper mantle, 200 km): Samples brought to the surface by volcanoes Getting samples Picture: M. Lallement Diamonds (Upper and lower mantle): In xenoliths or as xenocrysts in lava Only in Kimberlites, associated to thick old crust (cratons) Stachel et al., 2005 Picture: E. Thomassot

7 Getting samples Meteorites: Differentiated meteorites Accretion: accumulation of particles by gravitation Differentiation: migration of constituting elements of planetesimals according to their density Heating ( 26 Al radioactivity) d Peridotite equivalents: Ureilites Undifferentiated meteorites: chondrites (solar system global composition) NWA 4231 Meteorite 1 cm

8 Experiments: Determine thermodynamics constants, establishing phase diagrams Reproduce observations from natural samples Deformation experiments (rheological properties) Getting samples Piston cylinder apparatus: 4 GPa-1600 C Samples size: cm 3 Diamond Anvil Cell: Earth center conditions Scheme: E. Bali; Picture: ETH, Zürich, Switzerland Multi-anvil press: 26 GPa-2000 C Samples size: 10-5 mm 3 Samples size: up to 1cm 3 Scheme and picture: S. Merkel, Université de Lille, France Picture: Laboratoire Magma et Volcans (LMV), Clermont- Ferrand, France; Scheme: ETH, Zürich, Switzerland

9 Rocks mineralogy and bulk composition Classification Lherzolite: Ol, Opx, Cpx Harzburgite: Ol, Opx Dunite: Ol (Ringwoodite) 30 GPa ~ 1000 km Bulk composition permits to calculate phase diagram Comparison with mineralogy gives P-T constraints Fei and Bertka, 1999 Winter, 2001

10 Rocks chemistry Bulk rock or individual phases Major elements: main constituents of the minerals (Si, Mg, Fe, Ca, etc.) Trace elements: punctually replace major elements in crystallographic structure (< 0.01 wt%) Zonations in zircons Cocherie et Robert, 2012 Partial melting Residual rock Compatible elements Melt Elements fractionation: Compatible and incompatible elements Incompatible elements -- ++

11 Rocks chemistry: Olivine composition Olivine is a solid-solution : solide state mixture of several end members which proportions can vary Initial olivine composition Liquid extract after being formed Olivine becomes more Mg rich Liquid composition Olivine composition Depleted olivine are Mg rich

12 Rocks chemistry: Magmatic processes Trace element spectra Signature Influenced by melting processes, fluid circulation, mineral crystallization, etc. Main group of trace elements: Rare Earth Elements (REE) More incompatible Huot and Maury, 2002

13 Rocks chemistry: Partial melting of the mantle Peridotite composition: 70% Olivine 20% Clinopyroxene 10% Plagioclase First melt Dissolution of plagioclase

14 Rocks chemistry: Partial melting of the mantle 1890 Dissolution of Clinopyroxene 1387 Fo

15 Case of inclusions Inclusions trapped during minerals crystallization Minerals Parent melt Fluids Conditions of crystallization (P-T-fluid?) Vitreous inclusions Inclusions in diamonds: protection form reequilibration and alteration Insigths in very deep earth Lithospheric garnet Picture: E. Thomassot Ringwoodite inclusion containing water Pearson et al., 2014 Ferropericlase from lower mantle Picture: E. Thomassot

16 Elements are defined by their number of protons The number of neutrons can vary same atoms with different masses : isotopes Isotopy: Introduction 1 1 H Hydrogen 1 (Protium) 1 2 H Hydrogen 2 (Deuterium) 1 3 H Hydrogen 3 (Tritium) Not all isotopes are stable: radiogenic isotopes Parent γ Daughter + or or Helium (α) Electron (β-) Positon (β+)

17 Datation Radioactive decay Parent: Daugther: P t = P 0 e λt D t = D 0 + P 0 (1 e λt ) λ: Decay constant Half-life: Time after which half of the parent atoms population has decayed Parent Daugther Decay constant (y -1 ) Half-life (y) 238 U 206 Pb * * U 207 Pb * * Th 208 Pb 4.948* * Pb 206 Pb 204 Pb 206 Pb 204 Pb 0 = 238 U 204 Pb eλ 238t Pb 207 Pb 204 Pb 207 Pb 204 Pb 0 = 208 Pb 204 Pb 208 Pb 204 Pb 0 = 235 U 204 Pb eλ 235t Th 204 Pb eλ 232t Pb 204 Pb 0 e λ 238t U 204 Pb

18 Datation: Pb-Pb Combination of the chronometers 207 Pb 204 Pb 207 Pb 204 Pb Pb 206 = 204 Pb Pb 204 Pb U 238 U eλ235t e λ238t 1 = Pb 206 Pb 235 U 238 U = Concordia show values for which chronometers give same ages Age of crystallization Age of perturbation

19 Isotopy: Heavy elements Radioactive couples with different affinities to melt Example: 87 Rb 87 Sr Parent incompatible Daugther compatible Residual rock Partial melting Melt 87 Sr Sr = Sr 87 init Rb 86 + Sr 86 init Sr eλt 1 Compatible elements Incompatible elements Sr log( 86 Sr ) Partial melting Melt (crust) (primitive mantle) Residual rock (depleted mantle) Normalisation with stable isotope (ratios are easier to measure) Isotope ratios of heavy elements are conserved during partial melting Different isotopic signatures Time

20 Isotopy: Heavy elements Radioactive couples with different affinities to melt Example: 147 Sm 143 Nd Parent compatible Daugther incompatible Residual rock Partial melting Melt 143 Nd Nd = Nd 147 init Sm Nd 144 init Nd eλt 1 Compatible elements Incompatible elements Sr log( 86 Sr ) Partial melting Residual rock (depleted mantle) (primitive mantle) Melt (crust) Normalisation with stable isotope (ratios are easier to measure) Isotope ratios of heavy elements are conserved during partial melting Different isotopic signatures Time

21 Isotopy: Heavy elements Main couples: 87 Rb 87 Sr 147 Sm 143 Nd 238 U 206 Pb 235 U 207 Pb 232 Th 208 Pb Stable isotope 86 Sr 144 Nd 204 Pb 204 Pb 204 Pb Combination of couples : source tracing (DMM, PM, HIMU, EMI and EMII) DM: Depleted Mantle EM: Enriched Mantle (type I and II), recycling Doroozi et al., 2015

22 Isotopy: Light elements Fractionation of light isotopes during changes of state Stable isotopes Depends strongly on temperature: thermometry Source tracers δ 18 O = ( 18 O/ 16 O 18 O/ 16 O SMOW - 1)*1000 SMOW: Standard Mean Ocean Water 18 O/ 16 O mineral 1 α = 18 O/ 16 O mineral 2 Eiler et al., 1997 White, 2001

23 Summary A lot more technics Combinations Chronology P-T-fluid Magmatic processes Etc. Give an history to rocks and to earth

24 Thank you!

Effect of tectonic setting on chemistry of mantle-derived melts

Effect of tectonic setting on chemistry of mantle-derived melts Effect of tectonic setting on chemistry of mantle-derived melts Lherzolite Basalt Factors controlling magma composition Composition of the source Partial melting process Fractional crystallization Crustal

More information

Evidences for geochemically distinct mantle components

Evidences for geochemically distinct mantle components Evidences for geochemically distinct mantle components 1 Mantle Array Oceanic basalts, including seamounts, oceanic islands and middle ocean ridge basalts, were used. 2 Binary All analyses fall between

More information

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 is initial number of parents, D* is number of radiogenic daughter atoms, and λ is the decay

More information

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us?

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us? The mantle metasomatism: diversity and impact What the mantle xenoliths tell us? Mantle metasomatism Physical and chemical processes that are implemented during the flow of magmas and / or fluids within

More information

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Radiogenic Isotopes W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan (Dated: May 17, 2018) I. SUMMRY Isotope systems

More information

Radiogenic Isotope Systematics and Noble Gases. Sujoy Mukhopadhyay CIDER 2006

Radiogenic Isotope Systematics and Noble Gases. Sujoy Mukhopadhyay CIDER 2006 Radiogenic Isotope Systematics and Noble Gases Sujoy Mukhopadhyay CIDER 2006 What I will not cover.. U-Th-Pb sytematics 206 Pb 204 Pb 207 Pb 204 Pb 208 Pb 204 Pb = t = t = t 206 Pb 204 Pb 207 Pb 204 Pb

More information

12. Data from Ito et al. (1987) Chemical Geology, 62, ; Figure ; and LeRoex et al. (1983) J. Petrol., 24,

12. Data from Ito et al. (1987) Chemical Geology, 62, ; Figure ; and LeRoex et al. (1983) J. Petrol., 24, Announcements Reading for Wed: p.363-399!!! p.362-366; p.373-378; p.383-386; p.392-394; p.395-399 Last lecture on Wednesday Bring food for pizza party Bring class notes, labs, book N-MORBs: 87 Sr/ 86 Sr

More information

Trace Elements - Definitions

Trace Elements - Definitions Trace Elements - Definitions Elements that are not stoichiometric constituents in phases in the system of interest For example, IG/MET systems would have different trace elements than aqueous systems Do

More information

Trace Elements. Today s lecture

Trace Elements. Today s lecture Trace Elements 300 Ni 200 ppm 100 0 300 Zr 200 100 0 40 50 60 70 80 SiO 2 wt. % Updates: M&M due date: Tuesday Today s lecture Topics: Trace element compositions Trace element behavior Partitioning Spider(

More information

Mantle geochemistry: How geochemists see the deep Earth

Mantle geochemistry: How geochemists see the deep Earth Geochemistry: Overview: the geochemist's Earth (reservoirs, budgets and processes) Mantle geochemistry: How geochemists see the deep Earth Don DePaolo/Stan Hart CIDER - KITP Summer School Lecture #1, July

More information

Fundamental Importance of Returned Samples to Understanding the Martian Interior

Fundamental Importance of Returned Samples to Understanding the Martian Interior Fundamental Importance of Returned Samples to Understanding the Martian Interior David S. Draper and Carl B. Agee Institute of Meteoritics Department of Earth and Planetary Sciences University of New Mexico

More information

What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay. Harvard University

What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay. Harvard University What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay Harvard University The mantle zoo Hofmann, 1997 187 Os/ 188 Os 0.168 0.156 0.144 0.132 EM1 Hawaii Pitcairn DMM peridotites Shield Basalts

More information

SEA-FLOOR SPREADING. In the 1950 s and early 1960 s detailed study of the oceans revealed the following surprising information:-

SEA-FLOOR SPREADING. In the 1950 s and early 1960 s detailed study of the oceans revealed the following surprising information:- SEA-FLOOR SPREADING In the 1950 s and early 1960 s detailed study of the oceans revealed the following surprising information:- Detailed bathymetric (depth) studies showed that there was an extensive submarine

More information

Isotope Geochem Notes (U,Th-Pb; Sm-Nd; Re-Os; Lu-Hf)

Isotope Geochem Notes (U,Th-Pb; Sm-Nd; Re-Os; Lu-Hf) Isotope Geochem Notes (U,Th-Pb; Sm-Nd; Re-Os; Lu-Hf) Reading for this topic: White, Nos. 7,8,9,11. Guide questions: What are the special features of the U,Th - Pb system that make it uniquely useful for

More information

Formation of the Earth and Solar System

Formation of the Earth and Solar System Formation of the Earth and Solar System a. Supernova and formation of primordial dust cloud. NEBULAR HYPOTHESIS b. Condensation of primordial dust. Forms disk-shaped nubular cloud rotating counterclockwise.

More information

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already

Lecture 38. Igneous geochemistry. Read White Chapter 7 if you haven t already Lecture 38 Igneous geochemistry Read White Chapter 7 if you haven t already Today. Magma mixing/afc 2. Spot light on using the Rare Earth Elements (REE) to constrain mantle sources and conditions of petrogenesis

More information

Worked Example of Batch Melting: Rb and Sr

Worked Example of Batch Melting: Rb and Sr Worked Example of Batch Melting: Rb and Sr Basalt with the mode: Table 9.2. Conversion from mode to weight percent Mineral Mode Density Wt prop Wt% ol 15 3.6 54 0.18 cpx 33 3.4 112.2 0.37 plag 51 2.7 137.7

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

THE MONTE MAGGIORE PERIDOTITE (CORSICA)

THE MONTE MAGGIORE PERIDOTITE (CORSICA) MONTE MAGGIORE CAPO CORSO CORSICA Giovanni B. Piccardo THE MONTE MAGGIORE PERIDOTITE (CORSICA) FIELD RELATIONSHIPS MORB Gabbro Spinel (ex-garnet) pyroxenites L ESCURSIONE A MONTE MAGGIORE The Monte Maggiore

More information

Origin of Basaltic Magma. Geology 346- Petrology

Origin of Basaltic Magma. Geology 346- Petrology Origin of Basaltic Magma Geology 346- Petrology 2 principal types of basalt in the ocean basins Tholeiitic Basalt and Alkaline Basalt Table 10-1 Common petrographic differences between tholeiitic and alkaline

More information

Florida Atlantic University PETROLOGY -- MIDTERM TWO KEY

Florida Atlantic University PETROLOGY -- MIDTERM TWO KEY GLY4310 Name 60 points March 26, 2012 12 took exam - Numbers to the left of the question number in red are the number of incorrect responses. Instructor comments are in blue. Florida Atlantic University

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

Stop the Presses! New discovery about the origin of tetrapods!

Stop the Presses! New discovery about the origin of tetrapods! Mantle Plumes and Intraplate Volcanism Origin of Oceanic Island Volcanoes Lecture 20 Stop the Presses! New discovery about the origin of tetrapods! Tiktaalik rosaea Volcanism on the Earth Mid-ocean ridges

More information

Composition of the Earth and its reservoirs: Geochemical observables

Composition of the Earth and its reservoirs: Geochemical observables Composition of the Earth and its reservoirs: Geochemical observables Cin-Ty A. Lee Rice University MYRES-I 2004 The Earth is dynamic and heterogeneous Atmosphere Midocean Ridge Plume Ocean Crust Oceanic

More information

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T heating stage: application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque GSA Data Repository 2017365 Marshall et al., 2017, The role of serpentinite derived fluids in metasomatism of the Colorado Plateau (USA) lithospheric mantle: Geology, https://doi.org/10.1130/g39444.1 Appendix

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Lecture 13 Introduction to Trace Elements Wednesday, March 9, 2005 Chapter 9: Trace Elements Note magnitude of major element changes Figure 8-2. Harker variation diagram for 310 analyzed volcanic rocks

More information

Geochronology Using U,Th-Pb; U,Th-He; U,Th-He; Sm-Nd; Re- Os; Lu-Hf and the Evolution of the Earth s Mantle and Crust

Geochronology Using U,Th-Pb; U,Th-He; U,Th-He; Sm-Nd; Re- Os; Lu-Hf and the Evolution of the Earth s Mantle and Crust Geochronology Using U,Th-Pb; U,Th-He; U,Th-He; Sm-Nd; Re- Os; Lu-Hf and the Evolution of the Earth s Mantle and Crust Reading for this topic, from White s notes: Chapter 3: (U,Th-Pb) read up to, but not

More information

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith Ultramafic rocks Definition: Color Index > 90, i.e., less than 10% felsic minerals. Not to be confused with Ultrabasic Rocks which are rocks with

More information

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals Sphene (Titanite) Plane polarized light Honey brown/orange Wedge-shaped crystals Sphene (Titanite) Crossed nicols High-order, washedout interference colors (light orange) #1 Rule for (Heavy) Radiogenic

More information

Lecture 36. Igneous geochemistry

Lecture 36. Igneous geochemistry Lecture 36 Igneous geochemistry Reading - White Chapter 7 Today 1. Overview 2. solid-melt distribution coefficients Igneous geochemistry The chemistry of igneous systems provides clues to a number of important

More information

Chapter 9: Trace Elements

Chapter 9: Trace Elements Chapter 9: Trace Elements Note magnitude of major element changes Figure 8.2. Harker variation diagram for 310 analyzed volcanic rocks from Crater Lake (Mt. Mazama), Oregon Cascades. Data compiled by Rick

More information

Structure of the Earth and the Origin of Magmas

Structure of the Earth and the Origin of Magmas Page 1 of 12 EENS 2120 Petrology Tulane University Prof. Stephen A. Nelson Structure of the Earth and the Origin of Magmas This document last updated on 23-Jan-2015 Magmas do not form everywhere beneath

More information

Differentiation 2: mantle, crust OUTLINE

Differentiation 2: mantle, crust OUTLINE Differentiation 2: mantle, crust OUTLINE Reading this week: Should have been White Ch 10 and 11!! 7- Nov Differentiation of the Earth, Core formation W 10.6.6, 11.4 9- Nov Moon, crust, mantle, atmosphere

More information

The Lead 206/207 Dating Method

The Lead 206/207 Dating Method The Lead 206/207 Dating Method 1 U Pb Zircon Ages, Chemical Geology, Volume 211 (2004) Pages 87 109 2 Lead Isotope Planetary Profiling, Chemical Geology, Volume 233 (2006) Pages 1 45 3 U Pb Step-Leaching

More information

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating Dating Martian Lafayette Asteroid with patterns caused by the passaged through the atmosphere. Line on the fusion crust were caused by beads of molten rock. AST111 Lecture 8a Isotopic composition Radioactive

More information

Chapter 4 Rocks & Igneous Rocks

Chapter 4 Rocks & Igneous Rocks Chapter 4 Rocks & Igneous Rocks Rock Definition A naturally occurring consolidated mixture of one or more minerals e.g, marble, granite, sandstone, limestone Rock Definition Must naturally occur in nature,

More information

b. atomic mass H What is the density of an object with a volume of 15cm 3 and a mass of 45g?

b. atomic mass H What is the density of an object with a volume of 15cm 3 and a mass of 45g? Name Period Date Earth Science Midterm Review 2015-2016 Quarter 1 Review Assign #1 Basic Chemistry An atom is a basic chemical building block of matter. An atom consists of protons, neutrons, and electrons.

More information

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES Geology 316 (Petrology) (03/26/2012) Name LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES INTRODUCTION Ultramafic rocks are igneous rocks containing less than 10% felsic minerals (quartz + feldspars

More information

Tectonic-Igneous Associations

Tectonic-Igneous Associations Tectonic-Igneous Associations Associations on a larger scale than the petrogenetic provinces An attempt to address global patterns of igneous activity by grouping provinces based upon similarities in occurrence

More information

Wed. Oct. 04, Makeup lecture time? Will Friday noon work for everyone? No class Oct. 16, 18, 20?

Wed. Oct. 04, Makeup lecture time? Will Friday noon work for everyone? No class Oct. 16, 18, 20? Wed. Oct. 04, 2017 Reading: For Friday: Bugiolacchi et al. 2008 Laurence et al. 1998" Makeup lecture time? Will Friday noon work for everyone? No class Oct. 16, 18, 20? Today: Finish Lunar overview (from

More information

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m

Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m Supplementary Figure 1 Map of the study area Sample locations and main physiographic features of the study area. Contour interval is 200m (a) and 40m (b). Dashed lines represent the two successive ridge

More information

Deep and persistent melt layer in the Archaean mantle

Deep and persistent melt layer in the Archaean mantle SUPPLEMENTARY INFORMATION Articles https://doi.org/10.1038/s41561-017-0053-9 In the format provided by the authors and unedited. Deep and persistent melt layer in the Archaean mantle Denis Andrault 1 *,

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

Basaltic and Gabbroic Rocks

Basaltic and Gabbroic Rocks Page 1 of 18 EENS 212 Prof. Stephen A. Nelson Basaltic and Gabbroic Rocks Petrology Tulane University This document last updated on 04-Mar-2004 Although basaltic and gabbroic rocks are found in nearly

More information

Igneous Rocks. Igneous Rocks. Genetic Classification of

Igneous Rocks. Igneous Rocks. Genetic Classification of Igneous Rocks Fig. 5.1 Genetic Classification of Igneous Rocks Intrusive: crystallized from slowly cooling magma intruded within the Earth s crust; e.g. granite, gabbro 1 Fig. 5.2 Genetic Classification

More information

HP and UHP garnet peridotites and pyroxenites

HP and UHP garnet peridotites and pyroxenites HP and UHP garnet peridotites and pyroxenites Mantle wedge The least known piece of the subduction factory Mantle-wedge peridotites emplace within subducting continental crust (Brueckner, 998; van Roermund

More information

Differentiation 1: core formation OUTLINE

Differentiation 1: core formation OUTLINE Differentiation 1: core formation Reading this week: White Ch 12 OUTLINE Today 1.Finish some slides 2.Layers 3.Core formation 1 Goldschmidt Classification/Geochemical Periodic Chart Elements can be assigned

More information

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools -

High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - High-T T heating stage: : application for igneous petrogenesis and mantle processes - melt inclusions as key tools - SZABÓ, Csaba Lithosphere Fluid Research Lab (LRG), Department of Petrology and Geochemistry,

More information

Diamonds and the Geology of Mantle Carbon

Diamonds and the Geology of Mantle Carbon Diamonds and the Geology of Mantle Carbon Steven B. Shirey 1 Pierre Cartigny 2 Daniel J. Frost 3 Shantanu Keshav 4 Fabrizio Nestola 5 Paolo Nimis 5 D. Graham Pearson 6 Nikolai V. Sobolev 7 Michael J. Walter

More information

Geochemistry of Mars from SNCs meteorites

Geochemistry of Mars from SNCs meteorites Geochemistry of Mars from SNCs meteorites Marc Chaussidon Centre de Recherches Pétrographiques et Géochimiques CRPG-CNRS, UPR 2300, Nancy (France) Their composition : from mineralogy to major elements,

More information

The Earth. February 26, 2013

The Earth. February 26, 2013 The Earth February 26, 2013 The Planets 2 How long ago did the solar system form? Definition: Cosmic Rays High-energy particles that constantly bombard objects in space Mostly they are hydrogen nuclei

More information

Topic Page: Peridotite

Topic Page: Peridotite Topic Page: Peridotite Definition: peridotite from The Hutchinson Unabridged Encyclopedia with Atlas and Weather Guide Rock consisting largely of the mineral olivine; pyroxene and other minerals may also

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40

GEOL 2312 Igneous and Metamorphic Petrology Spring 2009 Sc ore / 40 GEOL 2312 Igneous and Metamorphic Petrology Name Spring 2009 Sc ore / 40 QUIZ 3 1) Name two geologic features that provide physical evidence for the mineralogy of the earth s mantle (2 pts) Ophiolites,

More information

Radioactivity. Lecture 11 The radioactive Earth

Radioactivity. Lecture 11 The radioactive Earth Radioactivity Lecture 11 The radioactive Earth The Violent Beginning Most of the planet s radioactivity was generated in neutron driven nucleosynthesis processes in previous star generations and implemented

More information

Rare Earth Elements in some representative arc lavas

Rare Earth Elements in some representative arc lavas Rare Earth Elements in some representative arc lavas Low-K (tholeiitic), Medium-K (calc-alkaline), and High-K basaltic andesites and andesites. A typical N-MORB pattern is included for reference Notes:

More information

Geochemical constraints on the core formation and composition

Geochemical constraints on the core formation and composition Geochemical constraints on the core formation and composition Bernard Bourdon ENS Lyon with: Mathieu Touboul, Caroline Fitoussi, John Rudge and Thorsten Kleine Collège de France November 25 th Core formation

More information

Mantle Dynamics and Geochemical Cycle: What can Ocean Drilling contribute?

Mantle Dynamics and Geochemical Cycle: What can Ocean Drilling contribute? Mantle Dynamics and Geochemical Cycle: What can Ocean Drilling contribute? Geochemical Cycle: input and output Subduction Factory Carbon Transfer at Deep Mantle Diamond in Oceanic Mantle? Carbon/Water

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 9, Number 7 29 July 2008 Q07025, doi: ISSN: 1525-2027 Click Here for Full Article

More information

Lecture 13. Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System

Lecture 13. Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System Lecture 13 Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System (for reference: see Uranium-Series Geochemistry, volume 52 of Reviews in Mineralogy and Geochemistry (Bourdon,

More information

GSA Data Repository

GSA Data Repository GSA Data Repository 218145 Parolari et al., 218, A balancing act of crust creation and destruction along the western Mexican convergent margin: Geology, https://doi.org/1.113/g39972.1. 218145_Tables DR1-DR4.xls

More information

LIGO sees binary neutron star merger on August 17, 2017

LIGO sees binary neutron star merger on August 17, 2017 LIGO sees binary neutron star merger on August 17, 2017 Laser Interferometer Gravitational-Wave Observatory (LIGO) Laser Interferometer Gravitational-Wave Observatory (LIGO) Multi-Messenger Astronomy This

More information

Announcements. Manganese nodule distribution

Announcements. Manganese nodule distribution Announcements Lithospheric plates not as brittle as previously thought ESCI 322 Meet in Env. Studies Bldg Rm 60 at 1 PM on Tuesday One week (Thursday): Quiz on Booth 1994 and discussion. (Lots of odd terms

More information

TRACE ELEMENT ANALYSIS OF DIAMOND BY LAM ICPMS: STANDARDISATION, RESULTS AND DIRECTIONS

TRACE ELEMENT ANALYSIS OF DIAMOND BY LAM ICPMS: STANDARDISATION, RESULTS AND DIRECTIONS TRACE ELEMENT ANALYSIS OF DIAMOND BY LAM ICPMS: STANDARDISATION, RESULTS AND DIRECTIONS W.L. Griffin 1, 3, Sonal Rege 1, Rondi M. Davies 1, 2, Simon Jackson 1, Suzanne Y. O Reilly 1 1.ARC National Key

More information

EARTH S ENERGY SOURCES

EARTH S ENERGY SOURCES EARTH S ENERGY SOURCES The geological processes that shape the Earth s surface are powered by two major sources of energy; geothermal heat from the Earth s interior and external energy from the sun. The

More information

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data)

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Peter Kibarov, Peter Marchev, Maria Ovtcharova, Raya Raycheva,

More information

Insights into the Evolution of the Solar System from Isotopic Investigations of Samples. Lars Borg

Insights into the Evolution of the Solar System from Isotopic Investigations of Samples. Lars Borg Insights into the Evolution of the Solar System from Isotopic Investigations of Samples Lars Borg Harold Masursky Harold Masursky was a stalwart of the U.S. planetary exploration program for nearly three

More information

GEOLOGY 1--Physical Geology Lecture #2, 2/9/2006

GEOLOGY 1--Physical Geology Lecture #2, 2/9/2006 Topics: GEOLOGY 1--Physical Geology Lecture #2, 2/9/2006 Lithospheric plates and their motions Types of plate boundaries or margins The present is the key to the past Relative Time Numerical Age Age of

More information

Lecture 24 Hawaii. Hawaii

Lecture 24 Hawaii. Hawaii Lecture 24 Hawaii Friday, April 22 nd 2005 Hawaii The Hawaiian Islands, in the middle of the Pacific Ocean, are volcanic islands at the end of a long chain of submerged volcanoes. These volcanoes get progressively

More information

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure.

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure. Standard 2: Students will understand Earth s internal structure and the dynamic nature of the tectonic plates that form its surface. Standard 2, Objective 1: Evaluate the source of Earth s internal heat

More information

Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium Hafnium isotopic evidence from peridotite mantle xenoliths

Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium Hafnium isotopic evidence from peridotite mantle xenoliths Earth and Planetary Science Letters 257 (2007) 259 273 www.elsevier.com/locate/epsl Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium Hafnium isotopic evidence from peridotite mantle xenoliths

More information

doi: /nature09369

doi: /nature09369 doi:10.1038/nature09369 Supplementary Figure S1 Scanning electron microscope images of experimental charges with vapour and vapour phase quench. Experimental runs are in the order of added water concentration

More information

Layer Composition Thickness State of Matter

Layer Composition Thickness State of Matter Unit 4.2 Test Review Earth and Its Layers 1. Label the layers of the earth. oceanic crust continental crust lithosphere asthenosphere mantle outer core inner core 2. Complete the Following Table about

More information

Differentiation & Thermal Evolution

Differentiation & Thermal Evolution Differentiation & Thermal Evolution 1 1 Meteorite Classification: Iron Meteorites 2 Meteorite Classification: Iron Meteorites 2 Meteorite Classification Basic Types of Meteorites: - Stony (93% of falls)

More information

WATER IN THE EARTH S MANTLE:

WATER IN THE EARTH S MANTLE: WATER IN THE EARTH S MANTLE: NATHALIE BOLFAN-CASANOVA LABORATOIRE MAGMAS ET VOLCANS => Heterogeneous distribution of water in the mantle > 10000 pmm wt H2O ~ 10000 pmm wt H2O ~ 1000 pmm wt H2O On what

More information

Petrogenetic Constraints at Mount Rainier Volcano, Washington

Petrogenetic Constraints at Mount Rainier Volcano, Washington Petrogenetic Constraints at Mount Rainier Volcano, Washington S. C. Kuehn and P. R. Hooper, Department of Geology, Washington State University, Pullman, WA A. E. Eggers and C. Kerrick, Department of Geology,

More information

What can noble gases really say about mantle. 2) Extent of mantle degassing

What can noble gases really say about mantle. 2) Extent of mantle degassing What can noble gases really say about mantle convection and the deep Earth volatile cycles? 1) Constraints on mass flow 1) Constraints on mass flow 2) Extent of mantle degassing Outline: -Noble gas geochemistry

More information

Radioactivity. Lecture 11 The radioactive Earth

Radioactivity. Lecture 11 The radioactive Earth Radioactivity Lecture 11 The radioactive Earth The Violent Beginning Most of the planet s radioactivity was generated in neutron driven nucleosynthesis processes in previous star generations and implemented

More information

Lecture 25 Subduction Related Magmatism

Lecture 25 Subduction Related Magmatism Lecture 25 Subduction Related Magmatism Monday, May 2 nd 2005 Subduction Related Magmatism Activity along arcuate volcanic chains along subduction zones Distinctly different from the mainly basaltic provinces

More information

Meteorites free samples from the solar system

Meteorites free samples from the solar system Meteorites free samples from the solar system It is easier to believe that Yankee professors would lie, than that stones would fall from heaven [Thomas Jefferson, 3rd president of the USA] 2.1 Collection

More information

Geochemical evolution of the Earth mantel and crust Part 1: Mantle geochemistry

Geochemical evolution of the Earth mantel and crust Part 1: Mantle geochemistry Geochemical evolution of the Earth mantel and crust Part 1: Mantle geochemistry Mantel geochemistry Snæfellsjökull, Iceland Stromboli, Sicily Recommended reading Allègre, J.C. (2008) Isotope Geology, Cambridge

More information

Silica enrichment in the continental upper mantle via melt=rock reaction

Silica enrichment in the continental upper mantle via melt=rock reaction ELSEVIER Earth and Planetary Science Letters 164 (1998) 387 406 Silica enrichment in the continental upper mantle via melt=rock reaction Peter B. Kelemen a,ł,stanleyr.hart a, Stefan Bernstein b a Woods

More information

LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING

LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING LATE ARCHAEAN FELSIC ALKALINE MAGMATISM: GEOLOGY, GEOCHEMISTRY, AND TECTONIC SETTING ZOZULYA DMITRY 1, EBY NELSON 2 1 - Geological Institute Kola Science Centre RAS, Apatity, Russia 2 - Department of Environmental,

More information

XM1/331 XM1/331 BLFX-3 XM1/331

XM1/331 XM1/331 BLFX-3 XM1/331 a b AkC AkC strontian fluoro-apatite clinopyroxene phlogopite K-richterite XM1/331 clinopyroxene XM1/331 Fe-Ti ox c d clinopyroxene kric AkC ilmenite Sr-barite AkC XM1/331 BLFX-3 Supplementary Figure 1.

More information

Igneous & Metamorphic Petrology I LECTURE 11

Igneous & Metamorphic Petrology I LECTURE 11 Igneous & Metamorphic Petrology I LECTURE 11 The Earth s Mantle 1. Structure of the Earth A Reminder The velocities of seismic waves differ with the elastic properties and densities of rocks and allow

More information

What is going on here?

What is going on here? Major Digression! Atoms? Elements? Compounds? Minerals? Rocks? What is going on here? Source:SERC @ Carleton College http://www.brocku.ca/earthsciences/people/gfinn/petrology/periodic.gif http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?pt_id=335

More information

Fluids, melts, and supercriticality in the MSH system and element transport in subduction zones

Fluids, melts, and supercriticality in the MSH system and element transport in subduction zones cosmic rays Fluids, s, and supercriticality in the MSH system and element transport in subduction zones 10 Be volcanic front N, O 10 Be ocean water + CO 2 tracing petrologic and geotectonic processes (trace)

More information

A MICROANALYTICAL APPROACH TO UNDERSTANDING THE ORIGIN OF CUMULATE XENOLITHS FROM MAUNA KEA, HAWAII

A MICROANALYTICAL APPROACH TO UNDERSTANDING THE ORIGIN OF CUMULATE XENOLITHS FROM MAUNA KEA, HAWAII A MICROANALYTICAL APPROACH TO UNDERSTANDING THE ORIGIN OF CUMULATE XENOLITHS FROM MAUNA KEA, HAWAII Megan Pickard, Michael J. Dorais, Eric Christiansen, R. V. Fodor Limited Access to Subsurface Processes

More information

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks? Date Period Name IGNEOUS ROCKS SECTION.1 What are igneous rocks? In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements. basaltic

More information

Discrimination between Archean A-type granitoids and sanukitoid suites using tectonic setting, geochemistry, and fertility type

Discrimination between Archean A-type granitoids and sanukitoid suites using tectonic setting, geochemistry, and fertility type Discrimination between Archean A-type granitoids and sanukitoid suites using tectonic setting, geochemistry, and fertility type ZOZULYA DMITRY 1, EBY NELSON 2 1 - Geological Institute Kola Science Centre

More information

Cosmic Building Blocks: From What is Earth Made?

Cosmic Building Blocks: From What is Earth Made? Cosmic Building Blocks: From What is Earth Made? The Sun constitutes 99.87% of the mass of the Solar system. Earth is big and important, so its composition should be similar to that of the average Solar

More information

Remote Sensing of the Earth s Interior

Remote Sensing of the Earth s Interior Remote Sensing of the Earth s Interior Earth s interior is largely inaccessible Origin and Layering of the Earth: Geochemical Perspectives Composition of Earth cannot be understood in isolation Sun and

More information

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers 2. When did the Earth form? A. About 540 million years ago B. About 2.5 billion years ago

More information

Question 1 (1 point) Question 2 (1 point) Question 3 (1 point)

Question 1 (1 point) Question 2 (1 point) Question 3 (1 point) Question 1 (1 point) If the Earth accreted relatively slowly, the heat obtained from the gravitational potential energy would have had time to escape during its accretion. We know that the Earth was already

More information

Table of Isotopic Masses and Natural Abudances

Table of Isotopic Masses and Natural Abudances Table of Isotopic Masses and Natural Abudances in amu, where 1amu = 1/12 mass 12 C Atomic weight element = M i (abun i )+M j (abun j ) + Four types of radioactive decay 1) alpha (α) decay - 4 He nucleus

More information

http://eps.mcgill.ca/~courses/c220/ Nucleosynthesis neutron electron + proton = é + H + t 1/2 = 12 minutes H + + neutron Deuterium (D) 2 H + + neutrons Helium (He) 3 H + + neutrons Lithium (Li) From: W.S.

More information

high and ultrahigh pressures.

high and ultrahigh pressures. Stability of hydrous phases in serpentinites to high and ultrahigh pressures. Study of fluid and multiphase solid inclusions in high, very high pressure rocks and metamorphic veins The crust to mantle

More information

Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics

Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics Chemical Geology 183 (2002) 143 168 www.elsevier.com/locate/chemgeo Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics Marc D. Norman a, *, Michael

More information