Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Similar documents
Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Dynamic properties of interacting bosons and magnons

Magnetic ordering of local moments

Non-equilibrium time evolution of bosons from the functional renormalization group

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Persistent spin current in a spin ring

The Quantum Heisenberg Ferromagnet

Andreas Kreisel. University of Florida, Gainesville, FL. Bosons: Spin-waves and BEC in thin-film ferromagnets spin-wave theory interactions and BEC

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

Interaction between atoms

Ground State Projector QMC in the valence-bond basis

The Quantum Theory of Magnetism

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

FRG approach to interacting fermions with partial bosonization: from weak to strong coupling

Heisenberg-Kitaev physics in magnetic fields

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

Spontaneous symmetry breaking in fermion systems with functional RG

Quantum Many Body Theory

The Mermin-Wagner Theorem

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

Hole dynamics in frustrated antiferromagnets: Coexistence of many-body and free-like excitations

Linear spin wave theory

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Kitaev honeycomb lattice model: from A to B and beyond

Winter School for Quantum Magnetism EPFL and MPI Stuttgart Magnetism in Strongly Correlated Systems Vladimir Hinkov

Spinor Bose gases lecture outline

Low dimensional interacting bosons

Luigi Paolasini

Unusual ordered phases of magnetized frustrated antiferromagnets

1 The Heisenberg model

Quantum criticality of Fermi surfaces

Quantum spin systems - models and computational methods

Spinons and triplons in spatially anisotropic triangular antiferromagnet

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Schwinger-boson mean-field theory of the Heisenberg ferrimagnetic spin chain

II.D Scattering and Fluctuations

The Higgs particle in condensed matter

arxiv:cond-mat/ v1 2 Mar 1997

Green's Function in. Condensed Matter Physics. Wang Huaiyu. Alpha Science International Ltd. SCIENCE PRESS 2 Beijing \S7 Oxford, U.K.

Spin liquids in frustrated magnets

Magnets, 1D quantum system, and quantum Phase transitions

Decoherence in molecular magnets: Fe 8 and Mn 12

arxiv: v2 [cond-mat.str-el] 12 Oct 2012

Functional renormalization for ultracold quantum gases

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

in-medium pair wave functions the Cooper pair wave function the superconducting order parameter anomalous averages of the field operators

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Bogoliubov theory of the weakly interacting Bose gas

3.14. The model of Haldane on a honeycomb lattice

Topological Insulator Surface States and Electrical Transport. Alexander Pearce Intro to Topological Insulators: Week 11 February 2, / 21

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spin-wave dispersion in half-doped La3/2Sr1/2NiO4

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

STUDY OF THE EXCITED STATES OF THE QUANTUM ANTIFERROMAGNETS

Transport theory and low energy properties of colour superconductors

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Multiple spin exchange model on the triangular lattice

Spin liquids on ladders and in 2d

Collective Effects. Equilibrium and Nonequilibrium Physics

Diagrammatic Green s Functions Approach to the Bose-Hubbard Model

arxiv:cond-mat/ v1 [cond-mat.str-el] 15 Jul 2005

Longitudinal spin fluctuations in the antiferromagnet MnF 2 studied by polarized neutron scattering

Superfluidity and spin superfluidity (in spinor Bose gases and magnetic insulators)

Cooperative Phenomena

Solution of the Anderson impurity model via the functional renormalization group

1 Equal-time and Time-ordered Green Functions

5 Topological insulator with time-reversal symmetry

The bosonic Kondo effect:

The ultrametric tree of states and computation of correlation functions in spin glasses. Andrea Lucarelli

Exact diagonalization methods

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

2D Bose and Non-Fermi Liquid Metals

Phase transitions and critical phenomena

Talk online at

Quantum dynamics in many body systems

Topological sector of two dimensional φ 4 theory in Discrete Light Cone Quantization p. 1/3

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Fermionic condensation in ultracold atoms, nuclear matter and neutron stars

Reference for most of this talk:

Quasi-1d Antiferromagnets

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Quark Structure of the Pion

Thermal Hall effect of magnons

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

A New Electronic Orbital Order Identified in Parent Compound of Fe-Based High-Temperature Superconductors

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

PION DECAY CONSTANT AT FINITE TEMPERATURE IN THE NONLINEAR SIGMA MODEL

Magnetism in ultracold gases

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014

Phase transitions in Hubbard Model

Symmetry protected topological phases in quantum spin systems

EXPLODING BOSE-EINSTEIN CONDENSATES AND COLLAPSING NEUTRON STARS DRIVEN BY CRITICAL MAGNETIC FIELDS

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Transcription:

BEC of magnons and spin wave interactions in QAF Andreas Kreisel Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main July, 18 2007 collaborators: N. Hasselmann, P. Kopietz

Interacting bosons T=0 Bogoliubov theory (1947) euclidean action for interacting Bose gas S[ ¹ª; ª] = S 2 [ ¹ª; ª] + S 4 [ ¹ª; ª] Z S 2 [ ª; ¹ ª] = ( i! + ² k ¹) ª ¹ K ª K S 4 [ ª; ¹ ª] = K Z Z 1 (2!) 2 ± K1 +K 2 ;K 3 +K 4 V (fk i g) ª ¹ K1 ªK2 ¹ ª K3 ª K4 K 1 K 4 Bogoliubov shift ª K = ª 0 K + ª K ª 0 K = ± K;0 p ½0 h ª k i = 0 ) ~ S ¹ ª; ª = N. Bogoliubov (1947) 4X i=0 ~S i ¹ ª; ª

Goldstone bosons constraint to chemical potential (minimum) ~S 1 ¹ ª; ª = 0 diagonalization q E k = ² 2 k + 2½ 0U(k)² k = c 0 jkj + jkj 3 + O(k 5 ) condensate density ½ 0 = ¹ U(0) gapless excitations: velocity c 0 = r ¹ m

Heisenberg ferromagnet Spin waves in Heisenbergmagnets Holstein-Primakoff transformation around classical ground state S i = p r 2Sb y i 1 n i 2S = (S+ i )y n i = b Si z = S n i bosonic hamiltonian ^H = 1 2 X J ij S i S j J ij = J < 0 ij y i b i ; h i b y i ; b j = ± ij H = E cl + H 2 + H 4 + O(b 6 ) E cl = NS[2DJS h] H 2 = S X J ij ³n i + n j + b y i 2 b j b y j b i + h X ij i H 4 = 1 X ³ J ij 2n i n j b y i 4 n ib j b y j n ib j ij N. Hasselmann, P. Kopietz, Europhys. Lett. 74, 1067 (2006) n i

BEC of Holstein-Primakoff bosons in ferromagnets? FT: diagonalizes quadratic part b i = p 1 X e ik r i b k N k E k = ~ J 0 S(1 k k = X ± ~J 0 = 2DJ e ik ± H 2 = X k E k b y k b k interaction vanishes: to weak interaction of ferromagnetic spin waves H 4 = 1 X ± k1 +k 2V 2 ;k 3 +k 4 V (fk i g) b y k 1 b y k 2 b k3 b k4 k 1 k 4 V (fk i g)» k 1 k 2 + k 3 k 4 + O(k 4 ) no BEC!

^H = 1 2 Heisenberg antiferromagnet X J ij S i S j J ij = J > 0 ij conventional spin wave expansion transformations Holstein-Primakoff H = E cl + H 2 + H 4 + O(b 6 ) E cl = DNJS 2 H 2 = S X J ij ³b y i b i + b y j b j + b i b j + b y i by j ij Fourier transformation using reduced BZ r r 2 X b i = e ik r i 2 X A k b i = e ik r i B k N N k diagonalization: Bogoliubov transformation µ µ µ Ak uk v B y = k k ² k = p 1 k 2 k v k u k y k k = 1 DX cos(k i a) D Anderson (1952), Kubo (1952), Oguchi (1960) k i=1

Spin-wave interactions 2 degenerate magnon modes H 2 = X ³ E k y k k + y k k + 1 + E 0 k E k = ~ J 0 S² k spin-wave interactions: complicated H 4 = 1 X ³ 4V Â 0 k 1 k 4 V (1) 1234 interaction vertices s V (1) 1234» 1 jk 1 jjk 2 j 2 jk 3 jjk 4 j y 1 y 2 3 4 + y 3 y 4 1 2 + : : : µ 1 + k 1 k 2 jk 1 jjk 2 j but: all divergences cancel in physical quantities infrared singular in some limits N. Hasselmann, P. Kopietz, Europhys. Lett. 74, 1067 (2006)

BEC of magnons in QAF quantum antiferromagnet in magnetic field h = g¹ B B ^H = 1 X J ij S i S j h X has U(1) symmetry Si z rotational symmetry 2 ij i around magnetic field classical ground states I. h = 0 II. h < h c = 2 ~ J 0 S III. h > h c A. Kreisel, N. Hasselmann, and P. Kopietz, Phys. Rev. Lett. 98, 067230 (2007)

Formulation in terms of 2 Transformations magnons Holstein-Primakoff (fluctuations around FM ground state) S i = p r 2Sb y i 1 n i 2S = h i (S+ i )y y n i = bi b i ; b y i ; b j = ± ij Si z = S n i H = E cl + H 2 + H 4 + O(b 6 ) fourier transformation: red. BZ (2 Modes) H 2 = X k;¾= (² k¾ ¹) b y k¾ b k¾ ² k = k2 2m + O(k4 ) ² k+ = h c + O(k 2 ) h c = 2 ~ J 0 S

Continuum formulation neglect gapped mode for simplicity ª k = p Na D b k interacting bosonic fields H = Z d D k (2¼) D µ k 2 2m ¹ ª y k ª k + 1 2 Z k Z k 0 Z q U q ª y k+ q ªy k 0 q ª k 0 ª k effective interaction: constant for small momenta U q = ( 0 jqj)â 1 0 Â 0 = 1 2 ~J 0 a D m = 1 2JSa 2

Hermitian parametrization hermitian operators k = y k k = y k [ k ; q ] = i(2¼) D ±(k q) transformation: split up field r s ª k = 2 µ k + p i k 2sµ s = S a D transverse longitudinal advantage: physical interpretation of operators k» X i k» X i ³ i e ik r i S x i ³ i e ik r i S y i ³ i = h = he z ½ 1 i 2 A 1 i 2 B P. W. Anderson (1952) N. Hasselmann, P. Kopietz, Europhys. Lett. 74, 1067 (2006)

Symmetry breaking impose nonzero expectation value k = k + (2¼) D ±(k)á 0 H = E 0 + H 1 + H 2 + H 3 + H 4 fix chemical potential ¹ = U 0sÁ 0 2 diagonalization: Bogoliubov transformation H 2 = 1 Z d D k ³ 2 (2¼) ² D k y k k + y k k + E 0 r ¹ ² k = c 0 jkj + jkj 3 + O(k 5 ) c 0 = m = 1 8 p m 3 ¹

Quasiparticle decay decay in two or more quasiparticles energy conservation momentum conservation E k = E k1 + E k2 k = k 1 + k 2 consider energy dispersion E k = c 0 jkj + jk 3 + O(k 5 ) stable quasiparticles > 0 unstable quasiparticles concerning spontaneous decay < 0 M. E. Zhitormirsky, A. L. Chernyshev, Phys. Rev. Lett. 82, 4536 (1999)

Correlation functions hermitian fields ª k = r s 2 µ k + i p 2sµ k transverse correlations in gaussian approximation (linear spinwave theory)  1 0 h K K 0i = ± K; K 0! 2 + c 2 0 k2! h K K 0i = ± K; K 0! 2 + c 2 0 k2 h K K 0i = ± K; K 0 C. Castellani, C. Di Castro, F. Pistolesi, and G. C. Strinati, Phys. Rev. Lett. 78, 1612 (1997) F. Pistolesi, C. Castellani, C. Di Castro, and G. C. Strinati, Phys. Rev. B 69, 024513 (2004) K = (!; k) longitudinal  0 c 2 0k 2! 2 + c 0 k 2 quantitatively wrong in gaussian approximation

Beyond Bogoliubov divergences in pertubation theory (contribution to anomal Propagator) cancellations controlled by Ward identities due to U(1) - symmetry (2 correlations correct) critical continuum in longitudinal correlation function h K K i = Z 2 k contribution cancels in physical quantities of the Bose gas! 2! 2 + c 2 k 2 + K (mc) 3 D+1 Z½ 2½ 0 observable? Yes, BEC of magnons! fields: staggered magnetization 8 >< >: ln 2 3 D h (mc) 2! 2 =c 2 +k 2 i h i D 3! 2 c + k 2 2 2 D = 3 1 < D < 3

Possible measurement neutron scattering might detect anomalous dimension in correlation function longitudinal 2 staggered structure factor 3 S k (k;!) = Âs2 M 2 s 4 Z2 k 2 cjkj ± (! cjkj) + C D(mc) 2 (! cjkj) 5 Z½½ 3 3 D! 2 0 c k2 2 2 critical continuum! only valid at (Ginzburg-scale) c k G

Restrictions Ginzburg-scale! c k G 2 contributions to abnormal propagator symmetry breaking divergent diagrams k G ¼ (mc)3 ½ 0 ¼ 4p 2 Sa µ» µ D = 2 k G ¼ mc e ½ 0 (mc) 3 ¼ p 3 S a µe 6 p 3µ D = 3 energy integrated structure factor spectral weight I ± : ± -function I critical continuum ³ c : ¼ k G k jkj ln G jkj D = 2 I c I ± I c I ± ¼ (mc)2 ½ 0 k G jkj D = 3

Summary not-so-well known facts about the Bose gas large corrections to Bogoliubov approximation in 1 < D 3 Spin-wave interactions in QAF interaction vertices: divergent (usual spin-wave expansion) hermitian field parametrization weak interactions between Goldstone modes fields: physical quantities QAF in uniform magnetic field: BEC of magnons measurable quantities via neutron scattering but only at D=2