Groundwater Simulation

Similar documents
In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

dynamics of f luids in porous media

Darcy s Law. Darcy s Law

Darcy's Law. Laboratory 2 HWR 531/431

APPENDIX Tidally induced groundwater circulation in an unconfined coastal aquifer modeled with a Hele-Shaw cell

GG655/CEE623 Groundwater Modeling. Aly I. El-Kadi

Soils, Hydrogeology, and Aquifer Properties. Philip B. Bedient 2006 Rice University

Second-Order Linear ODEs (Textbook, Chap 2)

The Power of Spreadsheet Models. Mary P. Anderson 1, E. Scott Bair 2 ABSTRACT

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #5: Groundwater Flow Patterns. Local Flow System. Intermediate Flow System

Introduction to Heat and Mass Transfer. Week 7

Pollution. Elixir Pollution 97 (2016)

Groundwater Flow and Solute Transport Modeling

2. Governing Equations. 1. Introduction

Introduction to Well Hydraulics Fritz R. Fiedler

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #4: Continuity and Flow Nets

Homogenization and numerical Upscaling. Unsaturated flow and two-phase flow

Instructor : Dr. Jehad Hamad. Chapter (7)

RATE OF FLUID FLOW THROUGH POROUS MEDIA

Flow toward Pumping Well, next to river = line source = constant head boundary

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

" = ˆ i # #x + ˆ j # #y + ˆ k # #z. "t = D #2 h

Groundwater Modeling for Flow Systems with Complex Geological and Hydrogeological Conditions

Hydraulic properties of porous media

Basic Aspects of Discretization

Simulation of hydrologic and water quality processes in watershed systems using linked SWAT-MODFLOW-RT3D model

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

New Mexico Tech Hyd 510

An Introduction to COMSOL Multiphysics v4.3b & Subsurface Flow Simulation. Ahsan Munir, PhD Tom Spirka, PhD

CFD in COMSOL Multiphysics

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

11/22/2010. Groundwater in Unconsolidated Deposits. Alluvial (fluvial) deposits. - consist of gravel, sand, silt and clay

Numerical Simulation of Single-Phase and Multiphase Non-Darcy Flow in Porous and Fractured Reservoirs

Unsaturated Flow (brief lecture)

Geophysical Surveys for Groundwater Modelling of Coastal Golf Courses

ABSTRACT GOVERNING EQUATIONS

AP Physics C. Electric Circuits III.C

This section develops numerically and analytically the geometric optimisation of

Hydraulics Prof Dr Arup Kumar Sarma Department of Civil Engineering Indian Institute of Technology, Guwahati

MasteringPhysics: Assignment Print View. Problem 30.50

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Numerical Solution of the Two-Dimensional Time-Dependent Transport Equation. Khaled Ismail Hamza 1 EXTENDED ABSTRACT

Modelling of pumping from heterogeneous unsaturated-saturated porous media M. Mavroulidou & R.I. Woods

18 Single vertical fractures

The use of straddle packer testing to hydraulically characterize rock boreholes for contaminant transport studies

MATLAB Solution of Flow and Heat Transfer through a Porous Cooling Channel and the Conjugate Heat Transfer in the Surrounding Wall

1 Finite difference example: 1D implicit heat equation

A Hybrid Method for the Wave Equation. beilina

4.11 Groundwater model

Table 17 1 Some general field equation terms. Heat Power. Current Source. 0 0 Boundary Current Porous Media Flow. Flow Source

Numerical Solution I

Analytical solutions for water flow and solute transport in the unsaturated zone

The RC Circuit INTRODUCTION. Part 1: Capacitor Discharging Through a Resistor. Part 2: The Series RC Circuit and the Oscilloscope

Chapter 3 Permeability

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Comparison of Heat and Mass Transport at the Micro-Scale

' International Institute for Land Reclamation and Improvement. 2 Groundwater Investigations. N.A. de Ridder'? 2.1 Introduction. 2.

Solving a RLC Circuit using Convolution with DERIVE for Windows

5. FVM discretization and Solution Procedure

Electrostatics: Electrostatic Devices

FINITE VOLUME METHOD OF MODELLING TRANSIENT GROUNDWATER FLOW

Exercise 2: Partial Differential Equations

Time Rate of Consolidation Settlement

Inverse Modelling for Flow and Transport in Porous Media

1. INTRODUCTION TO CFD SPRING 2019

Capacitors. Chapter How capacitors work Inside a capacitor

Simulation of Unsaturated Flow Using Richards Equation

Chapter 7 Direct-Current Circuits

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils

Evaluation and optimization of multi-lateral wells using. MODFLOW unstructured grids. Modelling multi-lateral wells using unstructured grids

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

Towards Seamless Interactions Between Geologic Models and Hydrogeologic Applications

Index. Index. More information. in this web service Cambridge University Press

Problem info Geometry model Labelled Objects Results Nonlinear dependencies

Assessing Groundwater Vulnerability and Contaminant Pathways at MCAS Beaufort, SC

Earth dam steady state seepage analysis

Solving PDEs with Multigrid Methods p.1

JOURNAL OF ENVIRONMENTAL HYDROLOGY

Modeling Mining Impacts on Groundwater

Lecture 9 Approximations of Laplace s Equation, Finite Element Method. Mathématiques appliquées (MATH0504-1) B. Dewals, C.

1. INTRODUCTION TO CFD SPRING 2018

PDE Solvers for Fluid Flow

The Conjugate Gradient Method

Simple closed form formulas for predicting groundwater flow model uncertainty in complex, heterogeneous trending media

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

Numerical Solution for Two Dimensional Laplace Equation with Dirichlet Boundary Conditions

CHARACTERIZATION OF HETEROGENEITIES AT THE CORE-SCALE USING THE EQUIVALENT STRATIFIED POROUS MEDIUM APPROACH

Hydrogeology and Simulated Effects of Future Water Use and Drought in the North Fork Red River Alluvial Aquifer: Progress Report

Finite Difference Methods (FDMs) 1

BME STUDIES OF STOCHASTIC DIFFERENTIAL EQUATIONS REPRESENTING PHYSICAL LAW

O.R. Jimoh, M.Tech. Department of Mathematics/Statistics, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria.

Linear stability of radial displacements in porous media: Influence of velocity-induced dispersion and concentration-dependent diffusion

az - ah= 0 or Homogeneous, Isotropic Systems

DNAPL migration through interbedded clay-sand sequences

Modeling two-phase flow in strongly heterogeneous porous media

Marine Heat Flow Measurements Information Brochure

Evaluation of the hydraulic gradient at an island for low-level nuclear waste disposal

Transcription:

Review Last time Measuring Water Levels Water Level Fluctuations Examples Fluctuations due to well tests, ET, recharge, atms. pressure, earth tides, river stage, ocean tides, surface loading, etc. Todd, 980 Groundwater Simulation Today Modeling Analog Methods Numerical Methods Computer Models Visual Modflow

Imagine you wanted to model the Albuquerque Basin to study water supply Suppose we wanted to develop a model groundwater in the Albuquerque Basin in order to study the future of water supply. How would you do this? The Albuquerque Public Schools have a two day exercise, for students in grades 6-8, to construct a model of the basin. Here is a typical result: Its edible! But we ll need more that something good to eat APS That s Whitney with her yummy cake model of the basin. http://www.aps.edu/aps/wilson/albuquerquegeology/activities/d_edible_model.htm Compete Mathematical Statement Geometry and domain Governing equation (e.g., the Aquifer Equation). Boundary Conditions On all boundaries Initial Condition Let s return to the If the problem is transient Values of properties and other parameters Within the domain, on the boundary, and for the initial condition Such as values of S s, K, f, h, q, h,!, h 0! h(t=t 0 ) = h 0 (x,y,z) "! L(h) = f! 4

Forward Model How do we solve this mathematical model? INPUTS Values of S s, K, f, h, q, h,!, & h 0! h(t=t 0 ) " L(h) = f!! OUTPUTS Values of h(x,y,z,t) & q(x,y,z,t) within domain; h(t) on " & " ; q(t) on " & " MODEL Geometry and domain Governing equation Boundary Conditions Initial Condition 5 Solution Methods Given the inputs (parameters and forcings) and the conceptual & mathematical models, how do you solve them to find the outputs? Analytical solutions Look it up In GW literature: e.g., the Theis or Hantush-Jacob well hydraulics models In other literature using homology &/or analogy Develop a new solution: e.g., LaPlace Transforms Flow nets Analog Models (we ll look at some examples) Scale models using a sand box Electrical analogs based on a homology Hele-Shaw Analogs Q s = W ( u) 4! T All of these involve lots of simplifications or assumptions, and often lots of specificity. Leads to the common use of Computer codes and numerical simulations Offer flebility, versatility, portability, etc. We ll spend most of our time on these numerical methods. 6

Analog Models: Sand Boxes Advantages: Allow good visualization Easy to execute Actually uses flow through porous media VEGAS: U. of Stuttgart Large process sand tanks Tissa Illangasekare, CSM Small size process sand tank http://cesep.mines.edu/facilities.htm Claire Welty, UMBC Medium size process sand tank UW Educational sand tank Disadvantages Expensive to construct Hard to represent field situations Hard to (spatially) scale all processes eg., permeability and capillary rise Not fleble eg., field models can only be applied to one situation Applications Laboratory research of fundamental processes Scale models of engineered structures (e.g., a flood dike) Education 7 Laboratory sandbox study of downward DNAPL migration through a heterogeneous saturated zone Captured & processed image. Numerical simulation Heterogeneous sandpack Different colors represent different invasion times. Glass and Conrad, Flow Visualization Lab, Sandia National Laboratory www.sandia.gov/subsurface/factshts/geohydrology/dnapl.pdf 8 4

Analog Models: Hele-Shaw Essentially horizontal flow Hele-Shaw model of an aquifer Place two glass or pleglass plates a small distance b apart. Laminar flow in the interspace is a homology to Darcy s Law. Analog: aquifer permeability k = b /, where b = Hele-Shaw interspace (De Wiest, 965) Adjust time constant by using a viscous liquid such as oil is between the plates Interspace b parabolic velocity profile back plate Also mimic storage in a horizontal model with storage tubes penetrating the top plate mean velocity b " g! h u mean = µ Mechanically intensive spacer bolt front plate Hele-Shaw models used now for teaching & research; used to be used for applied studies. See JLW MS thesis: Collins, Gelhar & Wilson, Hele-Shaw model of Long Island aquifer system, J. Hydrau. Div., ASCE, 98(9), 70-74, 97. Jacob Bear, Technion Cross-sectional Hele-Shaw model of coastal sea-water intrusion. 9 Should 764 bolts! we try Forget anotherit! permeability? 0 5

Analog Model: Electrical We ve already discussed the homology between Darcy s Law and Ohm s Law: Head, h, is analogous to voltage, V Hydraulic conductivity, K, is analogous to /resistance, / " Discharge, Q, is analogous to current, A Storage, S, is related to capacitance, C Two typical methods of application: ) Teledos paper: - Paper coated with conductive material of uniform characteristics - Limited to D steady flow analogies - Used only in teaching today (as in Hyd 50 lab) ) Resistor-Capacitor (RC) networks - Transient or steady flow analogies - Previously used for applied studies (no longer used) Analog Model: Electrical Teledos paper: Electro-sensitive paper coated with conductive material of uniform characteristic. Works fine for solutions of Laplace s equation. Easy to apply, but: No capacitance, so storage can t be modeled -D flow only (no third-dimension possible) Can only model isotropic materials Uniform properties: can t model heterogeneities Difficult to handle complex boundary conditions such as spatially variable head or flux Like the flow-net method it s a method aimed at Laplace s Equation, and has the same limitations. http://web.mit.edu/6.0_book/www/chapter7/7.6.html 6

/6/08 Analog Model: Electrical Resistor-Capacitor (RC) networks: Advantages: -D or -D Can represent heterogeneities Can simulate transient hydraulics More easily modified than sand tank or Hele-Shaw #ym Typical network Disadvantages Take up lots of space Large capital/labor costs Not as fleble/versatile as numerical simulation using a standard computer code (Freeze and Cherry, 979) Long Island, NY Illinois, ISWS See Bear, Dynamics of Fluids in Porous Media, 97 Imagine you wanted to model the Albuquerque Basin to study water supply Basin Water Table 994-95 Complex geology. It s a basin, Its D! http://pubs.usgs.gov/circ/00/circ/ 4 7

Imagine you wanted to model the Albuquerque Basin to study water supply Suppose we wanted to develop a model groundwater in the Albuquerque Basin in order to study the future of water supply. How would we do this? Analytical solutions are two simple and generic. Even image well theory can t handle the heterogeneity & complex geometry. Flow nets, Hele-Shaw models and Teledeltos paper are D, and this basin is D. They would have difficulty with and the heterogeneity and complex boundary conditions. Flow nets and Teledeltos paper can t handle the transients. An RC network model would possibly work, APS but it would be expensive, cumbersome and infleble. (& anachronistic) We ll need something that can handle - D, transient flow, - hetergeneous (+ anisotropic) conditions, - complex geology & BCs, and is - easy to use, - relatively inexpensive, & - fleble. Approach addressing these issues: A numerical method implemented using a standard computer program (code) on a readily available computer platform to solve:! h " # K" h = S S! t in D 5 Forward Model Numerical Methods: solve for heads at a discrete number of node points INPUTS Discrete values of S s, K, f, h, q, h,!, & h 0 #z #x Grid block and node Block centered FDM! h(t=t 0 ) " L(h) = f!! MODEL Geometry and domain Governing equation Boundary Conditions Initial Condition OUTPUTS Discrete values of h & q within domain, and h on " & " ; q on " & " 6 8

Numerical Methods We solve differential equations, for given boundary conditions, forcings, and parameters, on a discrete mesh or grid, by using numerical appromations instead of analytical solutions. Key Concept: Replace an infinite number of unknowns h(x,y,z,t) in space-time with a finite number of unknowns h k,m, (k=,nnodes, m=,ntimes) at a limited number of points in space (n grid node points) and times (m simulation times). Converts our partial differential equation to, at each time step m, to a set of n simultaneous algebraic equations solved simultaneously using matrix algebra methods by iteration, like Gauss-Seidel or Pre-conditioned Conjugate Gradient, or by direct (sparse) matrix solution, like LU decomposition or Cholesky, on a digital computer. 7 Steady D flow in the cross-section of a homogeneous, isotropic aquifer. Recharge at the water table (location and head specified) and discharge to a (tile) drain. What is the head inside the domain and the flux from & to both Dirichlet boundaries? h = 0 m Dirichlet boundaries h = 00 m Neuman no-flow boundaries Simple Example We could solve this using: - Flow nets - Teledeltos paper - Hele-Shaw model We ll show how to solve this by numerical methods. This will introduce the finite difference method (FDM), the most common solution method employed in groundwater hydrology, e.g., in the code MODFLOW. 8 9

Finite Difference Method Application of node-centered FDM. FDM can be block centered or node centered Node centered: establish the nodes first, and then the blocks surround them. Block centered: establish the blocks first and locate nodes at block centroids. Does it make any difference? Yes! Mostly regarding BCs, non-unform grids, & heterogeneities Modflow is block centered. The example here is node centered. Example: D steady, x-sectional flow in a homogeneous, isotropic aquifer: grid rows Cartesian grid Dirichlet boundaries (nodes) The rest are Neuman no-flow boundaries Dashed lines represent blocks Solid lines intersect at nodes grid columns (Freeze and Cherry, 979) In this example: 8 nodes with known heads 7 nodes with unknown heads 9 Finite Difference Method Let s say we want to find head, h, at node located at grid node i = 4, j =. Renumber the nodes points, so that they have a single index, eg, k = 5. For example, consider the following local index, So that node (4,) becomes local node 5: #x #z Flux between two nodes, Q 5 = flux into 5 from Then for steady flow: Q 5 + Q 5 + Q 5 + Q 45 = 0 (Freeze and Cherry, 979) 0 0

Finite Difference Method Let s say we want to find head, h, at node located at i = 4, j =. Renumber the nodes points, so that they have a single index, eg, k = 5. Flux between two nodes is given by Darcy s Law*, h " h5 Q 5 = K5b! x ; K5 = avg. K between & 5! z Q = Kb( h " h5) ; K = homogeneous, and =! z 5 (Freeze and Cherry, 979) *If D vertically integrated model replace z with y, and Kb with T. b = thickness in y direction. For steady flow: Q 5 + Q 5 + Q 5 + Q 45 = Kb(h -h 5 ) + Kb(h -h 5 ) + Kb(h -h 5 ) + Kb(h 4 -h 5 ) = 0 or, h + h + h + h 4 4(h 5 ) = 0! h 5 = " (h + h + h + h 4 ) Return to the double i,j grid index: Solve by iteration h i,j = " (h i,j- + h i+,j + h i,j+ + h i-,j ) i=,7; j=,5 in example; modified along boundaries. For the Laplacian: head at grid node i,j is simply the mean of the surrounding heads. Finite Difference Method is based on the Taylor Series Appromation h i- i i+ D example Forward and backward st differences: dh dh FD hi + " hi = + O( ) BD hi " " hi = " + O( ) h i+ h i" #x Forward and backward (difference) Taylor Series: FD = h + BD i = h " i x i- x i x i+ dh dh + + Forward to larger x Backward to smaller x d h d h x Average: add & divide by two +... +... Central nd difference: d h d h d h FD hi + " hi! x dh = " BD hi " " hi! x dh = + h # i" " hi + hi + + O( ) + 0 + O( ) + O( ) Steady D Flow: d h K K = 0 # ( h ) i!! hi + hi + " x

node block centered FDM, D, steady flow; example of solution Consider pumping from a finite width aquifer located next to a lake. Use vertically integrated, essentially horizontal flow model. Side view of domain Q = m /d Top view of grid T = 00 m /d x= 0m 00 m Continuous Model, exact solution: 0! L. d h ODE : T = 0 Analytical solution : So that : Q' h = h = 0! 0.0x T h = h( x = 0) = 0m h h lake midway well = h( x = 00m) = 9m = h( x = 00m) = 8m #x= 00 m ( m) = h = h = h Heads at nodes,,& #y Finite Difference Method node, D, steady flow; example of direct solution (Con t) Finite Difference Model: Block : prescribed head, h =0m Block : unknown head; flux balance: [( h " h ) " ( h " h)]! yt = 0, ( h " h + h)]! yt = 0, or " h + h = " h = " 0m,if =! y Solving: adding! h + h =! 0m h! h = + m! h + 0 =! 9m " Top view of grid h! h = + m " h = h! m = 8m #y #x= 00 m Block : unknown head; flux balance: ( h " h)! yt = Q'! y, or Q'! y Q' h " h = =! y T T (m / d )(00m) = = m 00m / d h = 9m 4

Example Finite Difference Grid (Freeze and Cherry, 979) 5 Block-centered FDM uniform gridblocks Discretizing in Space! Node-centered FDM non-uniform spacing Triangular FEM irregular mesh h(t=t 0 ) " L(h) = f!! #z j #z #x Grid block and node FDM methods and the finite element method (FEM) handle both uniform and non-uniform grids. FEM, finite volume (FVM), and integrated finite difference (IFDM) methods handle irregular grids. #x i Node point Node point Element The different methods have different ways of handling non-uniform or irregular grids, heterogeneity, & boundary conditions. Fundamentally they have different ways of connecting node points. 6

Numerical Modeling (Computer code) INPUTS Discrete values of S s, K, f, h, q, h,!, & h 0 fpr the numerical model OUTPUTS Discrete space/time values of h & q within domain, and h on " & " ; q on " & " NUMERICAL MODEL Geometry and domain Discretized equation Boundary Conditions Initial Condition 7 Modeling Process Information & Purpose Revise Conceptual Model** Revise Parameters* Conceptual Model, BCs, ICs and mathematical model Numerical Model Estimate properties Code Code Observations No diagnostics Past test? Yes * Historically called model calibration ** Historically called model validation Prediction With these feedback loops you can see the desirability of the versatility, an important attribute of numerical methods. 8 4

Usually performed together Modes Numerical Modeling Parameter Estimation (the inverse problem) Given Model & BCs, ICs & observed heads or drawdowns Estimate properties & other parameters Diagnostics (model hypothesis testing) Given observed heads or drawdowns Test assumptions re Model Structure, BCs, ICs Prediction (the forward problem or application) Given Model & BCs, ICs and properties & other parameters Predict futures heads, drawdowns & velocities Perform ancillary calculations for fluxes, travel paths, travel times, solute transport, etc. 9 Numerical Methods Advantages: Analytical & other solutions may be impossible to obtain for many situations Numerical methods can be used to easily represent heterogeneities, boundary completies, and many other features Can be programmed into a computer program or code, which is then highly portable, versatile, and fleble Codes available from government & commercial firms - often with convenient user interfaces Disadvantages Discrete in time and space no continuous solutions Answer is not exact Depending on problem & the matrix solution method may have to iterate to find solution The codes available to you may not handle your problem 0 5

Available Codes Standard groundwater codes with or without interfaces (shown: Visual Modflow) See code library at IGWC: Colo. School of Mines Multiphysics codes, like COMSOL Multiphysics, that can do groundwater: http://typhoon.mines.edu/software/igwmcsoft/ http://www.comsol.com Application of Numerical Models Summary: Formulate a conceptual and mathematical model, with prior estimates of BCs, forcings, and parameters. Obtain appropriate code for your model. Set up the physical grid Set up input data Run forward model; obtain heads and specific discharges Perform ancillary calculations - fluxes at Dirichlet boundaries, - travel paths and travel times, - solute transport advection and dispersion, etc Test model and adjust conceptualization/ parameters; then apply model. - reserve some data to test conceptualization ( validation ) - don t use it all to estimate parameters ( calibration ) 6

USGS Modflow model of Albuquerque Basin Numerical Grid Numerical Grid Detail Simulated Water Level Decline 995-00 http://pubs.usgs.gov/fs/fs-0-96/#hdr07 http://pubs.usgs.gov/circ/00/circ/ Groundwater Simulation Review Simulation Methods Computer Models Visual Modflow 4 7