Satoshi Tanimoto, Yasushi Nakamura, Hitoshi Yamaoka, and Yoshitsugu Hirokawa

Similar documents
Supporting Information

Supracolloidal Polymer Chains of Diblock Copolymer Micelles

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

Sequential dynamic structuralisation by in situ production of

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Chemically recyclable alternating copolymers with low polydispersity from

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens

Supporting Information. Reduction- and Thermo-Sensitive Star Polypeptide Micelles. and Hydrogels for On-Demand Drug Delivery

Ring-Opening Polymerization of N-Carboxyanhydrides Initiated by a Hydroxyl Group

Synthesis of hydrophilic monomer, 1,4-dibromo-2,5-di[4-(2,2- dimethylpropoxysulfonyl)phenyl]butoxybenzene (Scheme 1).

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

Supporting Information

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supplementary Material for

Supporting Information. Competitive Interactions of π-π Junctions and their Role on Microphase Separation of Chiral Block Copolymers

SUPPORTING INFORMATION

A novel smart polymer responsive to CO 2

Supporting Information

Photo-Cleavage of Cobalt-Carbon Bond: Visible. Light-Induced Living Radical Polymerization Mediated by. Organo-Cobalt Porphyrins

Supporting Information

Synthesis and characterization of amino-functionalized Poly(propylene carbonate)

Supporting information

Supplementary Information

Chia-Shing Wu, Huai-An Lu, Chiao-Pei Chen, Tzung-Fang Guo and Yun Chen*

Supplementary Information. "On-demand" control of thermoresponsive properties of poly(n-isopropylacrylamide) with cucurbit[8]uril host-guest complexes

Supporting Information

Research Article Nonacyclic Ladder Silsesquioxanes and Spectral Features of Ladder Polysilsesquioxanes

Supporting Information for

Self-Assembly and Multi-Stimuli Responsive. Behavior of PAA-b-PAzoMA-b-PNIPAM Triblock. Copolymers

Supporting Information for

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material

Supporting Information

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization

Rational design of light-directed dynamic spheres

Temperature, ph, and Glucose Responsive Gels via Simple Mixing of Boroxole- and Glyco-Based Polymers

Novel Supercapacitor Materials Including OLED emitters

Supporting Information

Beads-On-String-Shaped Poly(azomethine) Applicable for Solution Processing of Bilayer. Devices using a Same Solvent

Redox-switchable supramolecular polymers for responsive. self-healing nanofibers in water

Photo-switched self-assembly of Gemini -helical peptide into supramolecular architectures

How does A Tiny Terminal Alkynyl End Group Drive Fully Hydrophilic. Homopolymers to Self-Assemble into Multicompartment Vesicles and

Yujuan Zhou, Kecheng Jie and Feihe Huang*

Helix Formation of Poly(phenylacetylene)s Bearing Azide Groups through Click Polymer Reaction with Optically Active Acetylenes

Supporting Information

Supporting Information

Pre-seeding -assisted synthesis of high performance polyamide-zeolite nanocomposie membrane for water purification

SUPPLEMENTARY INFORMATION

Amphiphilic diselenide-containing supramolecular polymers

Electropolymerization of cobalto(5,10,15-tris(4-aminophenyl)- 20-phenylporphyrin) for electrochemical detection of antioxidant-antipyrine

Supplementary Information. Rational Design of Soluble and Clickable Polymers Prepared by. Conventional Free Radical Polymerization of

Electronic Supplementary Information (ESI) A Green Miniemulsion-Based Synthesis of Polymeric Aggregation-Induced Emission.

Supporting Information

Electronic Supplementary Information. Water-Soluble Aromatic Polyamide for New Polymer Hydrogelator with Thixotropic Nature

Supporting Information

SUPPLEMENTARY INFORMATION

SYNTHESIS AND PROPERTIES OF CROSS-LINKED POLYMERS CONTAINING DIARYLBIBENZOFURANONE BY ADMET POLYMERIZATION

Electronic Supplementary Information. Jiani Wang, Lei Zhang, Qiong Qi, Shunhua Li* and Yunbao Jiang

SUPPORTING INFORMATION

Supporting Information

A Novel Polytriazole-based Organogel Formed by the Effects. of Copper Ions

Efficient Magnesium Catalysts for the Copolymerization of Epoxides and CO 2 ; Using Water to Synthesize Polycarbonate Polyols

Supporting information

A Facile and High-Recovery Material for Rare Metals Based on a Water- Soluble Polyallylamine with Side-Chain Thiourea Groups

Supporting Information

Supporting Information. Synthesis of Sulfur-Rich Polymers: Copolymerization of Episulfide with Carbon Disulfide

A dual redox-responsive supramolecular amphiphile fabricated by selenium-containing pillar[6]arene-based molecular recognition

Electronic Supplementary Information

Supporting Information

Dendritic Star Polymer of Polyacrylamide Based on β-cyclodextrin Trimer: A. Flocculant and Drug Vehicle

Supporting Information for

Supporting Information Supramolecular Polymerization at Interface: Layer-by-layer Assembly Driven by Host-enhanced π-π Interaction

Supporting Information. Sequence-Regulated Copolymers via Tandem Catalysis of Living Radical Polymerization and In Situ Transesterification

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination

Supporting Information for. Immobilizing Tetraphenylethylene into Fused Metallacycles: Shape Effects on Fluorescence Emission

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Temperature profile of self-seeding method for polymer single crystal preparation in dilute solution.

Experimental Section

Indium Triflate-Assisted Nucleophilic Aromatic Substitution Reactions of. Nitrosobezene-Derived Cycloadducts with Alcohols

Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction

Supporting Information

Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto , Japan. Contents

Supporting Information for

A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour

Supporting Information

Supporting Information. Surface Functionalized Polystyrene Latexes using Itaconate based Surfmers

A Combination of Visible-light Photoredox and Metal Catalysis for the Mannich-type Reaction of N-Aryl Glycine Esters

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

Permeable Silica Shell through Surface-Protected Etching

Supplementary Information. for. Stable Supramolecular Helical Structure of C 6 -Symmetric

Facile Polymerization of Water and Triple-bond

Unusual ph-dependent Surface Adsorption and Aggregation Behavior of a series of Asymmetric Gemini Amino-acid Surfactants

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Supporting Information

SUPPORTING INFORMATION

Supporting information

Supporting Information for Polybenzimidazolium Salts: A New Class of. Anion-Conducting Polymer

Supporting Information (SI)

Electronic Supplementary Information. Highly Efficient Deep-Blue Emitting Organic Light Emitting Diode Based on the

Sacrifical Template-Free Strategy

Zwitterionic Polymerization: A Kinetic Strategy for the Controlled Synthesis of Cyclic Polylactide

Transcription:

International Polymer Science Volume 2010, Article ID 294790, 6 pages doi:10.1155/2010/294790 Research Article Diblock/Triblock Structural Transition and Sol-Gel Transition of Peptide/PEG Diblock Copolymer Having a Terminal Terpyridine Group Induced by Complexation with Metal Ion Satoshi Tanimoto, Yasushi akamura, Hitoshi Yamaoka, and Yoshitsugu Hirokawa Department of Materials Science, The University of Shiga Prefecture, Hassaka, Hikone 522-8533, Japan Correspondence should be addressed to Satoshi Tanimoto, tanimoto@mat.usp.ac.jp Received 26 January 2010; Accepted 21 June 2010 Academic Editor: Harald W. Ade Copyright 2010 Satoshi Tanimoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Terpyridine-polyethyleneglycol-block-polyleucine block copolymer (tpy-peg-pleu) was synthesized by a ring-opening polymerization of L-leucine -carboxyanhydride. The copolymer complexed with Fe 2+ ion and its aqueous solution showed a purple color as a result of the complexation. This complexation caused the diblock/triblock structural transition of the copolymer. The change of the aggregation behavior caused by the structural transition was observed by a dynamic light scattering apparatus. The diblock tpy-peg-pleu copolymer formed a micelle in the aqueous solution. n the other hand, the triblock-type copolymer, after the complexation, formed the micelle structures and huge aggregates, which is considered to be a network structure. The complexation of the diblock tpy-peg-pleu copolymer with Fe ion is consequently considered to be a trigger of the gelation. 1. Introduction The chloroform solution of the ABA-type triblock copolymer which consists of a polyleucine (PLeu) chain as the A segment and a polyethylene glycol (PEG) as the B segment has been reported to show a thermoresponsive sol-gel transition [1]. This sol-gel transition was not observed on the solution system of AB-type block copolymer having the same components. These results were attributed to the difference in the aggregation behavior between the ABtype and the ABA-type block copolymers. Since the two polyleucine segments of the triblock copolymer behave as the junction point due to the hydrophobic interaction to string the many copolymers together, the ABA-type triblock copolymer in the solution can form the network structure, resulting in the formation of the gel. n the other hand, the AB-type diblock copolymer could not form the gel like the ABA-type [2]. n the basis of the facts mentioned above, we would like to propose the novel sol-gel transition system made up of the AB-type diblock copolymer as a basic material. In this study, the terminal functionalized AB-type diblock copolymer consisting of PEG and polyleucine segments was synthesized. A terpyridine, which was known to make a complex with metal ion [3 6], was employed as a terminal functional group. The terminal functionalized ABtype diblock copolymer consisting of PEG and polyleucine segments and having the terpyridine group (tpy) at the end of PEG is, hereafter, referred to as tpy-peg-pleu. When the divalent metal ion is added to the solution of the tpy-peg-pleu, the metal ion should behave as the terminal connector of the diblock copolymer and make the tpy-peg-pleu into the ABA-type triblock copolymer. Therefore, the addition of the divalent metal ion could be expected to induce the diblock/triblock structural transition followed by the network formation of gel. The aggregation behavior of the block copolymer was investigated by a dynamic light scattering (DLS) apparatus. 2. Experimental 2.1. Materials. 4 -chloro-2,2 :6,2 -terpyridine (tpy) was purchased from Aldrich and used as received. α- aminopropyl-ω-hydroxypolyoxyethylene (H-PEG-H 2 )

2 International Polymer Science Cl + H n KH H 2 H 2 DMS 60 C72h n 4 -chloro-2,2 :6,2 -terpyridine H-PEG-H 2 tpy-peg-h 2 Scheme 1: Synthesis procedure of macroinitiator, tpy-peg-h 2. H H Leu-CA H 2 DMF 40 C48h H n n m H tpy-peg-h 2 tpy-peg-p(leu) Scheme 2: Copolymerization of tpy-peg-pleu. (SUBRIGHT HPA-2000) was purchased from F Corp. Ltd. and used after reprecipitation into diethyl ether from chloroform solution. L-leucine was purchased from Wako Pure Chemicals Ltd., Tokyo, Japan, and it was used without further purification. Triphosgene and sodium sulfate were purchased from acalai Tesque, saka, Japan and used as received. All solvents used in the synthesis procedures were purchased from Wako Pure Chemicals Ltd., Tokyo, Japan, and used after appropriate desiccating treatment. 2.2. Characterization Methods. Characterization of the copolymers was performed by gel permeation chromatograph (GPC) (Series-10A, Shimadzu Corporation) with polystyrene columns (Polymer Laboratory, Mixed-C and Mixed-E) and by a nuclear magnetic resonance (MR) (Lambda-400, JEL Ltd.). Diameter of the copolymer micelle was measured by a dynamic light scattering (DLS) apparatus (DLS-7000, tsuka Electronics, Japan). Spectroscopic analysis was carried out with Fourier transform Infrared spectrometer (FT-IR430, Jasco, Japan), and UVvisible spectrometer (U-3000, Hitachi, Japan). 2.3. Synthesis of tpy-peg-pleu. PEG, having a terpyridine group and an amino group on each end (tpy-peg-h 2 ), was synthesized under nitrogen atmosphere by the procedures as shown in Scheme 1. H-PEG-H 2 (3.0 mmol) was dissolved in DMS (100 ml), and KH (15 mmol) was added to the solution. The mixture was stirred for one hour at 60 C. After the addition of tpy (3.0 mmol), the solution was further stirred for 72 hours at 60 C and then filtered off the excess of KH. After evaporation of DMS, the product was dissolved by chloroform (30 ml) and desiccated on sodium sulfate, then the residual tpy was removed by filtration. tpy-peg- H 2 was obtained as a yellowish oily product, after removal of chloroform. L-leucine was converted into -carboxyanhydride (Leu- CA) as a monomer by Fuchs-Farthing method [7]. The procedure was described in detail in our previous paper [1]. Molar ratio of L-leucine to triphosgene was 3 : 2, and the reaction was carried out in THF for one hour at 40 C. The reaction was performed until the solution became transparent. The product was purified by three-time recrystallization with THF/hexane and obtained as white powder after freeze-drying. Diblock copolymer consisting of PEG segment terminated by tpy group and polyleucine segment (tpy- PEG-PLeu) was synthesized by the procedure as shown in Scheme 2. The whole process was carried out under nitrogen atmosphere. The tpy-peg-h 2 was added to Leu- CA/DMF solution as an initiator. The polymerization was conducted for 48 hours at 40 C. After the polymerization, the product was purified by precipitation with diethyl ether. The precipitate was freeze-dried to obtain a white powdery product, which is tpy-peg-pleu copolymer. 2.4. Metal Ion Complexation of tpy-peg-pleu. 0.22 g of tpy- PEG-PLeu dissolved in 30 ml of chloroform and 1.0 mg of

International Polymer Science 3 10 8 6 4 2 0 (ppm) Figure 1: MR spectrum of tpy-peg-h 2. Solvent: chloroform-d, temperature: 20 C. FeCl 2 dissolved in 20 ml of methanol was mixed and kept for 6 hours at 40 C to make a complex of terpyridine group with Fe ion [8]. The solvent was evaporated and the product was finally freeze-dried from benzene. The tpy-peg-pleu with Fe complex was thus obtained. 2.5. Evaluation of tpy-peg-pleu Aggregation. The aggregate size of tpy-peg-polyleucine was measured in chloroform at 20 C by DLS equipped with He-e laser. The block copolymers were of diblock type, tpy-peg-pleu, and triblock type, and the concentration of the block copolymer was 1.0 g/l for both types. 3. Results and Discussion 3.1. Characterization of tpy-peg-pleu. The macroinitiator, tpy-peg-h 2, obtained by the reactions, as shown in the Scheme 1, was characterized by MR spectroscopy. Figure 1 shows MR spectra of the tpy-peg-h 2. The fraction of the polymer having the tpy unit was calculated from the integrated area ratio of the signals assigned to the tpy protons found at 7.0 9.0 ppm to the signal assigned to PEG protons at 3.0 4.2 ppm. The number-averaged molecular weight and the polydispersity index of the tpy-peg-h 2 was found to be 1882 and 1.01, respectively, by means of GPC measurements. The monomer, leu-ca, was polymerized with tpy- PEG-H 2 as a macroinitiator. After 48 hours from the addition of the monomer to the tpy-peg-h 2,IRabsorption band assigned to CA-ring structure disappeared. The reaction mixture was poured drop by drop into diethyl ether, and the white precipitate was recovered by filtration. The yield throughout the total synthesis procedures was about 60%. 10 8 6 4 2 0 (ppm) Figure 2: MR spectrum of the final product, tpy-peg-pleu. The polymerization degree of the peptide segment, that is, the molecular weight, and the fraction of the polymer chain having the tpy unit at the end in Table 1 were obtained by MR measurements. The polydispersity index, Mw/Mn, was obtained by GPC measurements. Table 1: Characterization of tpy-peg-pleu. PEG : PLeu (1) M.W. (1) Mw/Mn (2) [tpy]/[polymer] (%) (1) EG45L14 45 : 14 3980 1.38 89 EG45L24 45 : 24 5280 1.43 92 EG45L41 45 : 41 7490 1.51 91 (1) Calculated from 1 HMRspectra. (2) Measured by GPC. The final products were characterized by MR and GPC. Figure 2 shows the proton MR spectrum of the product, tpy-peg-pleu. In Figure 2, the signals observed at 7.7 9.2 and 3.5 4.1 ppm were assigned to terpyridine group and PEG chain, respectively. The signals observed at 0.7 2.0 ppm and 4.7 ppm were assigned to the peptide segment. GPC curve of the tpy-peg-pleu showed only the monodisperse peak but not other peaks, which might suggest that the amount of impurities was inevitably small. The product was thus confirmed to be the tpy-peg-pleu copolymer. The characteristics of the copolymer were summarized in Table 1. The polymerization degree of the used precursor, H-PEG-H 2, was fixed to be 45 and that of the peptide segment was found to be varied in the range from 14 to 41 depending on the introduced amount of the monomer, Leu-CA. The polymerization degree of the peptide chain was thus easily controlled by the amount of the introduced monomer. 3.2. Metal Ion Complexation of tpy-peg-pleu. Color change of the tpy-peg-pleu solution caused by metal ion complexation was observed and shown in Figure 3. AfterFe 2+ ion was added to the tpy-peg-pleu chloroform solution,

4 International Polymer Science (a) (b) (c) Figure 3: Color change of the tpy-peg-pleu solution caused by the complexation with metal ion. (a) Chloroform solution of tpy-peg- PLeu. (b) Methanol solution of Fe 2+ ion. (c) Mixture of the solution (a) and (b). Abs. 2.5 2 1.5 1 0.5 0 400 500 600 700 800 900 Before complexation After complexation Wavelength (nm) Figure 4: UV-Vis spectra of tpy-peg-pleu before and after complexation with Fe 2+ ion. the solution changed its color from transparent colorless to purple as shown in Figure 3(c). UV-vis absorption spectrum of the purple solution was measured and shown in Figure 4. Theabsorptionpeakwasfoundaround580nmandassigned to the metal ligand charge-transfer complex of the tpy unit with Fe 2+ [8]. The metal ion complexation was also confirmed by the change of the molecular weight, where those of the AB-type block copolymer (EG45L14) before and after complexation measured by a static light scattering (SLS) apparatus were 3077 and 7808, respectively. The molecular weight of the copolymer became doubled after the addition of the metal ion. Therefore, these facts indicate that the tpy unit at the end of the diblock copolymer can form the complex with Fe ion, which connects the two diblock copolymers. 3.3. Aggregation Behavior of tpy-peg-pleu. Since chloroform is a good solvent of PEG but is a poor solvent of PLeu, the tpy-peg-pleu will form the micelle structure having a core region composed of PLeu chains in chloroform. Aggregation behavior of the tpy-peg-pleu copolymer in the chloroform solution was investigated by DLS measurement before and after complexation with metal ion. The concentration of the copolymer solution was fixed to be 1.0 g/l, which was above the critical micelle concentration. Figure 5 shows the size distributions of aggregates formed in the chloroform from the tpy-peg-pleu (EG45L24) before and after the complexation with metal ion. Figure 5(a)shows the size distribution of the micelle formed by the tpy-peg- PLeu diblock copolymers themselves. The histogram showed a single-peak profile having 70 nm as an average diameter. The chain length of the copolymer EG45L24 was estimated to be about 30 nm as a fully stretched trans-zigzag chain. The size of the micelle was acceptable on the basis of its polymerization degree. These facts indicate that the PEG chain as a corona part of the micelle takes fully stretched form in the chloroform solution. n the other hand, in the case of the triblock copolymer formed by the complexation of tpy-peg-pleu with metal ion, the micelles having the same size as that observed before complexation and huge aggregate with the size of over 1000 nm were observed, as shown in Figure 5(b). This huge aggregate, which is formed from the triblock-type copolymers, is considered to play an important role in the polymer network formation [9]. 3.4. Gelation of tpy-peg-pleu. The gelation behavior of the 5.0 wt% (75 g/l) chloroform solutions of the copolymer before and after complexation was investigated. The solution of the copolymer having a triblock structure showed a sol-gel transition as the temperature was cooling from room temperature down to 0 C. This sol-gel transition

International Polymer Science 5 20 form network structures. Therefore, the huge aggregation indicated in Figure 5(b) was considered to have the same structure as the junction point existing in the gel phase of the thick solution of the triblock-type copolymer. umber fraction (a.u.) 15 10 5 0 20 1 4 16 64 256 1024 4096 Diameter (nm) (a) 4. Conclusion tpy-peg-pleu, which had a terminal terpyridine group, was synthesized by a ring-opening polymerization of Leu-CA initiated by the macroinitiator having amino group. The diblock copolymer complexed with Fe 2+ ion and its aqueous solution showed a purple color. This complexation caused the diblock/triblock structural transition of the copolymer. The change of the aggregation behavior caused by the structural transition was estimated by means of DLS. The diblock tpy-peg-pleu formed a micelle in the aqueous solution. n the other hand, the triblock-type copolymer after the complexation with metal ion showed the micelle structures and the huge aggregates, which are considered to form the network structures. Eventually, the complexation of the diblock copolymer, tpy-peg-pleu, with Fe ion, which is considered to be a trigger of gelation, caused the diblock/triblock structural transition, which induced the network formation of the triblock polymer, resulting in the formation of the gel. umber fraction (a.u.) 15 10 5 0 1 4 16 64 256 1024 4096 Diameter (nm) (b) Figure 5: Size distribution of aggregates obtained from (a) diblock-type structure and (b) triblock-type structure. Copolymer: EG45L24, concentration: 1.0 g/l, temperature: 20 C. was a reversible phenomena depending on the temperature. n the other hand, the solution of the diblock copolymer without complexation did not show the sol-gel transition even when the temperature was cooling down below 50 C. The transition temperature increased with the increase of the peptide length. In the case of EG45L41 having the longest peptide chain among the used copolymer samples, the transition temperature was found to be 7 C. In the case of the diblock copolymer before the complexation with metal ion, the solution system did not show the sol-gel transition, since there was no bridging molecule, which is necessary to References [1] S. Tanimoto,. Yagi, and H. Yamaoka, Application of thermosensitive peptide copolymer gels to removal of endocrine disruptor, Research Letters in Materials Science, vol. 2009, Article ID 597308, 4 pages, 2009. [2] S. Tanaka, A. gura, T. Kaneko, Y. Murata, and M. Akashi, Precise synthesis of ABA triblock copolymers comprised of poly(ethylene oxide) and poly(β-benzyl-l-aspartate): a hierarchical structure inducing excellent elasticity, Macromolecules, vol. 37, no. 4, pp. 1370 1377, 2004. [3] S. Schmatloch, A. M. J. Van Den Berg, A. S. Alexeev, H. Hofmeier, and U. S. Schubert, Soluble high-molecular-mass poly(ethylene oxide)s via self-organization, Macromolecules, vol. 36, no. 26, pp. 9943 9949, 2003. [4] U. S. Schubert, C. Eschbaumer, P. Andres et al., 2,2 :6,2 - terpyridine metal complexes as building blocks for extended functional metallo-supramolecular assemblies and polymers, Synthetic Metals, vol. 121, no. 1 3, pp. 1249 1252, 2001. [5] J. S. Choi, C. W. Kang, K. Jung, J. W. Yang, Y.-G. Kim, and H. Han, Synthesis of DA triangles with vertexes of bis(terpyridine)iron(ii) complexes, the American Chemical Society, vol. 126, no. 28, pp. 8606 8607, 2004. [6] G. W. M. Vandermeulen, C. Tziatzios, D. Schubert et al., Metal ion assisted folding and supramolecular organization of a De ovo designed metalloprotein, Australian Chemistry, vol. 57, no. 1, pp. 33 39, 2004. [7] A. Harada and K. Kataoka, Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments, Macromolecules, vol. 28, no. 15, pp. 5294 5299, 1995. [8] B. G. G. Lohmeijer and U. S. Schubert, Water-soluble building blocks for terpyridine-containing supramolecular polymers: synthesis, complexation, and ph stability studies of poly(ethylene oxide) moieties, Macromolecular Chemistry and Physics, vol. 204, no. 8, pp. 1072 1078, 2003.

6 International Polymer Science [9] M. Kasuya, K. Inomata, and E. akanishi, Helix-coil transition and association behavior of both-end hydrophobicallymodified poly[ 5 -(2-hydroxyethyl) L-glutamine], Polymer Preprints, Japan, vol. 54, no. 1, p. 737, 2005.

anotechnology International International Corrosion Polymer Science Smart Materials Research Composites Metallurgy BioMed Research International anomaterials Submit your manuscripts at Materials anoparticles anomaterials Advances in Materials Science and Engineering anoscience Scientifica Coatings Crystallography The Scientific World Journal Textiles Ceramics International Biomaterials