Please be sure to look over the study guides for the midterms, and your review questions and the keys for those (from the course webpages).

Similar documents
Chapter 10: Volcanoes and Other Igneous Activity Section 1: The Nature of Volcanic Eruptions I. Factors Affecting Eruptions Group # Main Idea:

Section 10.1 The Nature of Volcanic Eruptions This section discusses volcanic eruptions, types of volcanoes, and other volcanic landforms.

Chapter 16. Mountain Building. Mountain Building. Mountains and Plate Tectonics. what s the connection?

Mineral Element Compound Atom Crystal. Silicate Nonsilicate Inorganic Luster Streak. Cleavage Fracture Hardness Density Reclamation

Earthquakes = shaking of Earth because of a rapid release of energy

Plate Tectonics. entirely rock both and rock

EARTH SCIENCE KESSEL

Earth s Structure. Earth has 4 layers. The inner core, outer core, mantle and crust. How do we know???

Imagine the first rock and the cycles that it has been through.

Theory of Plate Tectonics

Geology 1 st Semester Exam YSBAT

Plate Tectonics IDEA THAT EARTH S SURFACE IS BROKEN INTO PLATES THAT MOVE AROUND. Fault = fracture in the crust where the movement has occurred

The Nature of Igneous Rocks

Overview of Ch. 4. I. The nature of volcanic eruptions 9/19/2011. Volcanoes and Other Igneous Activity Chapter 4 or 5

Engineering Geology ECIV 2204

TAKE HOME EXAM 8R - Geology

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

YORK CASTLE HIGH SCHOOL CHRISTMAS TERM EXAMINATIONS GEOGRAPHY Duration 1 1 /2 HRS.

Features of Tectonic Plates

PHYSICAL GEOGRAPHY. By Brett Lucas

Structure of the Earth

Geology 300, Physical Geology Spring 2019 Quiz Ch 19, Plate Tectonics Name

Chapter 7 Plate Tectonics

Earthquakes & Volcanoes

Earthquakes. Earthquakes are caused by a sudden release of energy

Moho (Mohorovicic discontinuity) - boundary between crust and mantle

Warm-up #15. How does magma move throughout the mantle? What is another example of this movement in nature?

Topic 12: Dynamic Earth Pracatice

1. are most likely to study the images sent back from Mars. A. Astronomers B. Geologists C. Doctors D. Engineers

Dynamic Planet PUT ALL YOUR ANSWERS ON THE ANSWER SHEET. c) low temperature d) high volatile content

Geology Example Midterm Exam #1

PHYSICAL GEOLOGY AND THE ENVIRONMENT (2 ND CANADIAN EDITION)

Tectonic Plates Test Study Guide Answers

Physical Geography. Tectonics, Earthquakes, and Volcanism. Chapter 12 GEOGRAPHY Earthquakes and Volcanoes. What are Earthquakes?

Prentice Hall EARTH SCIENCE

The continents are in constant! movement! Earth Science!

1. I can describe evidence for continental drift theory (e.g., fossil evidence, mountain belts, paleoglaciation)

11.1 Rock Deformation

Topic 12 Review Book Earth s Dynamic Crust and Interior

Chapter 4 Rocks & Igneous Rocks

Do NOT open the test until instructed to do so.

Rock Cycle. Draw the Rock cycle on your remediation page OR use a sheet of notebook paper and staple

GEOLOGY MEDIA SUITE Chapter 12

10. Paleomagnetism and Polar Wandering Curves.

EASC100: EXAM1 (07) Lithosphere and Hydrosphere

Ch12&13 Test. 3. Where does the first motion of an earthquake occur? a. fault c. epicenter b. focus d. locus

Igneous Rock. Magma Chamber Large pool of magma in the lithosphere

Unit Topics. Topic 1: Earth s Interior Topic 2: Continental Drift Topic 3: Crustal Activity Topic 4: Crustal Boundaries Topic 5: Earthquakes

WHAT IS A MAGMA. Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth.

Part A GEOLOGY 12 CHAPTER 4 WORKSHEET VOLCANOES. Name

4 Deforming the Earth s Crust

DYNAMIC PLANET. Name: School:

UNIT COVER PAGE. School District: Bremen Dist. 228 Department: Science Course: Earth Science. Unit Title: Plate Tectonics Grade Levels: 9

Earthquakes and Earthquake Hazards Earth - Chapter 11 Stan Hatfield Southwestern Illinois College

Questions and Topics

Igneous Rocks. Magma molten rock material consisting of liquid rock and crystals. A variety exists, but here are the end members:

Directed Reading. Section: Volcanoes and Plate Tectonics

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion

Chapter 22: Earth s Interior

Chapter. Mountain Building

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary.

Magma. Objectives. Describe factors that affect the formation of magma. Compare and contrast the different types of magma. Vocabulary.

Dynamic Crust Practice

UNIT 4: Earth Science Chapter 12: Earth s Internal Processes (pages )

Chapter. Graphics by Tasa Graphic Arts. Inc.

Continental Drift and Plate Tectonics

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

Name: Answer Key Date: Period:

GEOLOGY. What is geology?

Earth overall average density = 5.5 g/cm 3 Temp increases with depth, the thermal gradient 30 0 C/km Pressure and the density also increase with

A) B) C) D) 4. Which diagram below best represents the pattern of magnetic orientation in the seafloor on the west (left) side of the ocean ridge?

OCN 201 Seafloor Spreading and Plate Tectonics. Question

How to Build a Mountain and other Geologic Structures. But first a short review

FINAL EXAM Crustal Deformation CONVERGE DIVERGENT PLATES MANTLE PLUMES FLUX BASALTIC GRANITIC

! Profile of Mauna Loa in Hawaii. Mauna Loa is one of five huge shield volcanoes that make up the island of Hawaii.

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

DYNAMIC PLANET. School Name Team # Division B Science Olympiad Ladera Vista Invitational 12/10/2016

Chapter 18 - Volcanic Activity. Aka Volcano Under the City

Introduction. Volcano a vent where molten rock comes out of Earth

Igneous Rocks. Igneous Rocks. Genetic Classification of

Mountain Building. Mountain Building

Convergent plate boundaries. Objective to be able to explain the formation and key features of these zones.

Layers of the Earth Date: SWABT: Identify and describe the layers of the Earth and their characteristics

Unit 5: Plate Tectonics

180 points. 1. Lava erupts through an opening in Earth s crust called a. 2. A bowl-shaped depression that forms around the vent of a volcano is a

Plate Tectonics. Earth has distinctive layers - Like an onion

Global Tectonics. Kearey, Philip. Table of Contents ISBN-13: Historical perspective. 2. The interior of the Earth.

CONTENT. A. Changes in the Crust Facts Changes Construction and Destruction. B. Continental Drift What is it? Evidence

Earth s Interior HW Packet HW #1 Plate Tectonics (pages )

Earth and Space Science Semester 2 Exam Review. Part 1. - Convection currents circulate in the Asthenosphere located in the Upper Mantle.

Earth Movement and Resultant Landforms

Instructor: Ms. Terry J. Boroughs Geology 305 Restless/Dynamic EARTH: Geologic Structures (Folds & faults); Earthquakes; and the Earth s Interior

Name Class Date. 1. What is the outermost layer of the Earth called?. a. core b. lithosphere c. asthenosphere d. mesosphere

Earthquakes. Earthquakes and Earth s Interior Earth Science, 13e Chapter 8. Elastic rebound. Earthquakes. Earthquakes 11/19/2014.

Visualizing Earth Science. Chapter Overview. Volcanoes and Eruption Types. By Z. Merali and B. F. Skinner. Chapter 9 Volcanism and Other

Introduction to Earth s s Spheres The Benchmark

Earth s Interior. Theory of Tectonics. Tectonics & Landforms. Vocabulary

Earthquakes Chapter 19

Instructor: Ms. Terry J. Boroughs Geology 300 Restless/Dynamic EARTH: Geologic Structures (Folds & faults); Earthquakes; and the Earth s Interior

PLATE TECTONICS. Continental Drift. Continental Drift. Continental Drift. Continental Drift- Wegener s Evidence

Transcription:

Earth Science 104 Study Guide Final Exam Please be sure to look over the study guides for the midterms, and your review questions and the keys for those (from the course webpages). Vocabulary A a Accretionary wedge Active continental margin Andesitic composition Anticline Atom Atomic mass number Atomic number Basaltic composition Basin Batholith Bowen s reaction series Brittle failure Caldera Cinder cone Cleavage Coarse-grained texture Columnar joint Composite cone Continental volcanic arc Crater Crystal Crystal settling Crystallization Decompression melting Deformation Dike Dip-slip fault Dissolved gases Dome Ductile deformation Electron Element Fault Fault scarp Fault-block mountains Feldspar Felsic Fine-grained texture Fissure Fissure eruption Flood basalt Fold Fracture Geothermal gradient Glassy texture Graben Hardness Horst Intermediate composition Igneous rock Intrusive Ion Island arc Isostasy Isostatic adjustment Joint Laccolith Lahar Lava Luster Mafic Magma Mantle plume Mineral Mohs hardness scale Monocline Neutron Normal fault Nucleus

Orogenesis Orogeny Partial melting Pahoehoe Passive continental margin Pluton Plutonic Porphyritic texture Proton Pyroclastic flow Pyroclastic materials Quartz Reverse fault Rock Rock cycle Rock forming minerals Scoria Shield volcano Silicate Silicon-oxygen tetrahedron Sill Specific gravity Stratovolcano Streak Strike-slip fault Syncline Terrane Texture Thrust fault Transform fault Ultramafic composition Vein deposit Vent Viscosity Volatiles Volcanic island arc Volcanic neck Volcano Minerals are naturally-occurring, inorganic crystalline solids with definite chemical formulas. Physical properties important for mineral identification include cleavage, crystal form, hardness, luster, and some special properties like magnetism or effervescing in weak acid. The largest group of minerals is the silicates. Quartz and feldspar are the most common silicate minerals. Other rock-forming silicate minerals are biotite, hornblende, pyroxene, and olivine. Common nonsilicates include halite, calcite and gypsum. Rocks are composed of minerals or mineral-like solids. There are three main classes of rocks: igneous, sedimentary, and metamorphic. Each can form from any of the others. Know how each forms. Igneous rocks are divided on the basis of composition, and on grain size (texture). Know the implications of the texture of an igneous rock. Know the differences of granite, diorite, gabbro, rhyolite, andesite and basalt. Each compositional group occurs in a distinct tectonic environment. Know that basalt is the most common volcanic rock, has predominantly passive eruptions, from hot-spots or diverging plates. Know that granite is the most common plutonic rock, and occurs chiefly within continental volcanic arcs at convergent margins.

Minerals are composed of elements: the smallest unit of matter that retains the properties of the material. Atoms are composed of protons, neutrons and electrons. The mass is contained in the nucleus: which has the protons and the neutrons. Protons have positive charge, and determine which element the atom is. There are varying numbers of neutrons within the nuclei of the same element. The electrons have a negative charge, and are responsible for the atoms bonding to other atoms: if an atom loses an electron, it becomes positively charged, and is called a CATion; if an atom gains an electron, it becomes negatively charged, and is called an ANion. Magma is generated by partial melting of the mantle, by pressure release or by addition of water as a flux. Know where (in terms of plate tectonics) each of these events occurs. Two distinct types of magma are formed: basaltic (mafic) and granitic (felsic); intermediate types occur by assimilation of continental material in basaltic magma. The two types of magma lead to different styles of volcanic eruptions. Know the difference, and where each is likely to occur. What affects the viscosity of magma, and how do these variations affect the viscosity? Basalt is fluid, and commonly flows as pahoehoe. Felsic magma often is explosive, and commonly erupts violently with a large outpouring of pyroclastic material. Shield volcanoes are the largest type of volcanic peak, composed of basalt, and usually have quiet eruptions. Composite cones (stratovolcanoes) are also large, have interbedded lava and pyroclastic deposits, and can have violent eruptions, including nuee ardente flows. Cinder cones are the smallest, short-lived, steep sided, and composed nearly completely of pyroclastic material. Most volcanoes are associated with plate boundaries, however remember hot-spots. Magma chambers feed volcanoes via conduits or pipes, that may remain after the volcanoes erode away as volcanic necks. Intrusive features of plutonic rocks solidified below Earth s surface include dikes, sills, laccoliths, stocks and plutons. Know the differences of these. Deformation can be ductile or brittle. Ductile deformation includes various styles of folding: know the names of the kinds of folds, and that folds form as a result of compressive forces. Domes and basins are regional features associated with crustal uplift or subsidence.

Brittle deformation can be faulting, where appreciable movement occurs on the break, or joints, without appreciable movement on the breakage plane. Faults can be dip-slip or strike-slip. Dip-slip faults that have movement of the hanging wall down the fault plane are called normal. Normal faulting is the result of tensional forces, often at diverging tectonic plates or as a consequence of regional uplift. If the hanging wall has moved up the fault plane, it is called reverse. Reverse faults with a low angle fault plane (<45 o ) are classed as thrust faults. Reverse faults are the result of compressional forces, often where tectonic plates are converging. Thrust faults can move crustal blocks tens or hundreds of kilometers. Strike-slip faults have movement parallel to the trend of the fault plane. The best-known strike-slip fault is the San Andreas Fault, in California, where right-lateral movement between the Pacific Plate and the North American Plate has offset rocks for at least the past 29 million years. Many strike-slip faults link offsets in the mid ocean ridge, where their motion accommodates displacement of lithospheric plates. Mountain belts are created along plate boundaries. Where plates converge, the generation of magma, and the deformation of the rocks will lead to folded mountain belts with plutonic cores. Aleutian type mountain belts are the result of convergence of two oceanic plates, where an oceanic volcanic arc is created. Andes type mountain belts occur where the convergence is between an oceanic plate and a continental plate. There is emplacement of felsic and andesitic magma, a continental volcanic arc, and deformation of the accretionary wedge of sediment deposited on the continental margin and in the oceanic trench. Himalayan type mountain belts occur where two continental plates collide. There is little magma generation in this type of mountain building event. Continents are built by successive mountain-building events, and by addition of accreted terrane: fragments of crust within ocean basins may be added to continents when the crustal fragment does not subduct, and becomes attached to the continent. Lithospheric plates rise and fall on the mantle surface, depending upon their density and their thickness. Thickening by mountain building, or removal of material by erosion results in an isostatic adjustment of the lithosphere.

Vocabulary Aftershock Asthenosphere Body wave Continental drift Continental rift Continental Volcanic arc Convergent plate boundary Core Crust Divergent plate boundary Earthquake Elastic rebound Epicenter Fault Fault creep Focus Foreshock Hot spot Inner core Intensity Liquefaction Lithosphere Lower_mantle Magnitude Mantle Mantle plume Mercalli Intensity Scale Mid Oceanic ridge Moho Upper mantle Moment magnitude Normal polarity Oceanic trench Oceanic volcanic arc Outer core Paleomagnetism Pangaea Plate tectonics Polar wandering Primary (P) wave Reverse polarity Richter scale Ridge-push hypothesis Rift valley Seamount chain Sea floor spreading Secondary (S) wave Seismic sea wave (tsunami) Seismogram Seismograph Seismology Shadow zone Spreading center Slab-pull hypothesis Subduction zone Surface wave Trench Transform fault boundary Volcanic island arc Know the details of Wegener s hypothesis of continental drift, including what evidence he had, and how he proposed the continents drifted. Know how long ago Pangaea existed. Be able to recognize on a diagram the various parts of Earth: inner core, outer core, mantle, lower mantle, asthenosphere, lithosphere,

crust (both oceanic and continental), and know the thicknesses of each of these. Know the composition of each. Divergent plates move apart, and new crust/lithosphere is created: sima, oceanic crust (eventually), basaltic magma and shallow-focus earthquakes occur at divergent margins. Most divergent boundaries are in ocean basins, due to the nature of the type of crust created. Convergent plates move together. When an oceanic plate is involved, there is subduction, a destruction of crust. There are earthequakes associated with the subducting plate, with a specific relationship to the subducting plate and oceanic trench. There is volcanism also related to the subduction, with a specific relationship to the subducting plate, creating volcanic arcs. Continental crust does not subduct, being composed of less dense sial. Continental convergence results in the suturing of continental plates. Transform boundaries do not create of destroy crust. They do not have significant volcanism associated with them. Most earthquakes at transform boundaries are shallow. Many transform boundaries connect segments of the mid-oceanic ridge. Know the evidence that supports the plate tectonics theory: paleomagnetism (both sea floor anomalies and pole location indication), paleoclimatic data, actual rates of spreading, ages of chains of seamounts, continental shelf fit, continuation of structural trends, correlation of fossil locations, distribution of earthquakes and volcanism, age of sea floor sediments. KNOW BOTH WHAT SUPPORTS IT, AND WHY IT SUPPORTS IT. There are three models of mantle convection. What are they? What evidence supports each; what evidence, or lack of it, weakens each model? Earthquakes are caused by subjecting rocks to stresses beyond their strength. Most earthquakes occur at plate boundaries. The focus of an earthquake is the point below ground where the fault releases energy. The epicenter is directly above the focus, and usually is not on the fault that allowed the movement. Earthquakes generate both body waves and surface waves. Surface waves do not penetrate deeply into Earth, and are chiefly s type waves, in that the movement is at right angles to the direction of wave travel. Body waves generated are both P waves (primary) and S

waves. P waves move material in the same direction as wave travel, and can penetrate any type of material. S waves can only travel through solid material. P waves are fastest, body S waves next fastest, and surface waves are slowest. The distance to an earthquake can be determined if you know the difference in time from the arrival of the first P wave and the first body S wave. Intensity and magnitude are different ways to describe the strength of an earthquake. Intensity relies upon how it affects people: how much damage, and what it felt like. Magnitude is calculated from seismic records, and can be used to estimate how much energy was released by an earthquake. Moment magnitude includes rock strength, area of extent, distance of ground rupture. Richter magnitude measures the displacement created by the ground shaking. Earthquake damage is related to the proximity to populated areas, the local building standards, the intensity, magnitude and duration of earthquake, the type of bedrock it propagates through. Secondary damage includes tsunamis, landslides, liquefaction and subsidence, and fire. Long-range forecasts for earthquakes rely upon statistical occurrences of past events. They are reasonably accurate, but not that useful, except for building design. Short-range forecasts rely on a variety of methods, and have poor reliability. Earth s interior structure can be determined by the speed of seismic waves, and the location where they penetrate through Earth and the locations where they do not (shadow zones). In addition, remember to study the review questions that were assigned.