Part III: Chap. 2.5,2.6 & 12

Similar documents
Chapter 4. Location-Scale-Based Parametric Distributions. William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Foundations of Statistical Inference. Sufficient statistics. Definition (Sufficiency) Definition (Sufficiency)

Solution of Assignment #2

Reliability of Technical Systems

A new flexible Weibull distribution

Vehicle Arrival Models : Headway

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

Transform Techniques. Moment Generating Function

Survival Analysis Math 434 Fall 2011

2. Nonlinear Conservation Law Equations

ECE 510 Lecture 4 Reliability Plotting T&T Scott Johnson Glenn Shirley

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Diagnostic tests for frailty

CHAPTER 2 Signals And Spectra

ECE 510 Lecture 4 Reliability Plotting T&T Scott Johnson Glenn Shirley

Semi-Competing Risks on A Trivariate Weibull Survival Model

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

THE BERNOULLI NUMBERS. t k. = lim. = lim = 1, d t B 1 = lim. 1+e t te t = lim t 0 (e t 1) 2. = lim = 1 2.

School and Workshop on Market Microstructure: Design, Efficiency and Statistical Regularities March 2011

International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October ISSN

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Testing for a Single Factor Model in the Multivariate State Space Framework

U( θ, θ), U(θ 1/2, θ + 1/2) and Cauchy (θ) are not exponential families. (The proofs are not easy and require measure theory. See the references.

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

6. Stochastic calculus with jump processes

5. Stochastic processes (1)

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

5.2. The Natural Logarithm. Solution

M-estimation in regression models for censored data

Econ Autocorrelation. Sanjaya DeSilva

Introduction to Probability and Statistics Slides 4 Chapter 4

Generalized Least Squares

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Distribution of Estimates

Regular Variation and Financial Time Series Models

Discrete Markov Processes. 1. Introduction

Stochastic Modelling in Finance - Solutions to sheet 8

REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Comparing Means: t-tests for One Sample & Two Related Samples

10. State Space Methods

Duration Models. Class Notes Manuel Arellano November 1989 Revised: December 3, 2008

Reliability Estimate using Degradation Data

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

Maximum Likelihood Parameter Estimation in State-Space Models

Stochastic Structural Dynamics. Lecture-6

ψ(t) = V x (0)V x (t)

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

Examples of Dynamic Programming Problems

4.1 - Logarithms and Their Properties

TMA 4265 Stochastic Processes

Answers to QUIZ

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

Graphical Event Models and Causal Event Models. Chris Meek Microsoft Research

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Two Coupled Oscillators / Normal Modes

Linear Gaussian State Space Models

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

References are appeared in the last slide. Last update: (1393/08/19)

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

Internet Traffic Modeling for Efficient Network Research Management Prof. Zhili Sun, UniS Zhiyong Liu, CATR

T L. t=1. Proof of Lemma 1. Using the marginal cost accounting in Equation(4) and standard arguments. t )+Π RB. t )+K 1(Q RB

non -negative cone Population dynamics motivates the study of linear models whose coefficient matrices are non-negative or positive.

INTRODUCTION TO MACHINE LEARNING 3RD EDITION

SELBERG S CENTRAL LIMIT THEOREM ON THE CRITICAL LINE AND THE LERCH ZETA-FUNCTION. II

New Challenges for Longitudinal Data Analysis Joint modelling of Longitudinal and Competing risks data

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

arxiv:math/ v1 [math.nt] 3 Nov 2005

d 1 = c 1 b 2 - b 1 c 2 d 2 = c 1 b 3 - b 1 c 3

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

Time series Decomposition method

The Arcsine Distribution

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Final Spring 2007

13.3 Term structure models

Math 36. Rumbos Spring Solutions to Assignment #6. 1. Suppose the growth of a population is governed by the differential equation.

Endpoint Strichartz estimates

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

Mathematical Theory and Modeling ISSN (Paper) ISSN (Online) Vol 3, No.3, 2013

CHERNOFF DISTANCE AND AFFINITY FOR TRUNCATED DISTRIBUTIONS *

Lecture 33: November 29

EXERCISES FOR SECTION 1.5

MODELING AND PLANNING ACCELERATED LIFE TESTING WITH PROPORTIONAL ODDS

Ecological Archives E A1. Meghan A. Duffy, Spencer R. Hall, Carla E. Cáceres, and Anthony R. Ives.

Asymptotic Equipartition Property - Seminar 3, part 1

GMM - Generalized Method of Moments

Lecture 2 October ε-approximation of 2-player zero-sum games

in Engineering Prof. Dr. Michael Havbro Faber ETH Zurich, Switzerland Swiss Federal Institute of Technology

12: AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES IN DISCRETE TIME. Σ j =

On Measuring Pro-Poor Growth. 1. On Various Ways of Measuring Pro-Poor Growth: A Short Review of the Literature

Homework 10 (Stats 620, Winter 2017) Due Tuesday April 18, in class Questions are derived from problems in Stochastic Processes by S. Ross.

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Stability and Bifurcation in a Neural Network Model with Two Delays

Continuous Time. Time-Domain System Analysis. Impulse Response. Impulse Response. Impulse Response. Impulse Response. ( t) + b 0.

Transcription:

Survival Analysis Mah 434 Fall 2011 Par III: Chap. 2.5,2.6 & 12 Jimin Ding Mah Dep. www.mah.wusl.edu/ jmding/mah434/index.hml Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 1/14

Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 2/14

Oulines Exponenial disribuion exp(λ), λ > 0; Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 3/14

Oulines Exponenial disribuion exp(λ), λ > 0; Weiblull disribuion W eibull(λ, α), λ > 0; Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 3/14

Oulines Exponenial disribuion exp(λ), λ > 0; Weiblull disribuion W eibull(λ, α), λ > 0; Lognormal disribuion logn(µ, σ 2 ), σ > 0; Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 3/14

Oulines Exponenial disribuion exp(λ), λ > 0; Weiblull disribuion W eibull(λ, α), λ > 0; Lognormal disribuion logn(µ, σ 2 ), σ > 0; Gamma disribuion Gamma(λ, β), λ > 0; Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 3/14

Oulines Exponenial disribuion exp(λ), λ > 0; Weiblull disribuion W eibull(λ, α), λ > 0; Lognormal disribuion logn(µ, σ 2 ), σ > 0; Gamma disribuion Gamma(λ, β), λ > 0; Log-logisic disribuion loglogi(λ, α), λ > 0; Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 3/14

Oulines Exponenial disribuion exp(λ), λ > 0; Weiblull disribuion W eibull(λ, α), λ > 0; Lognormal disribuion logn(µ, σ 2 ), σ > 0; Gamma disribuion Gamma(λ, β), λ > 0; Log-logisic disribuion loglogi(λ, α), λ > 0; * Gomperz disribuion Gomperz(θ, α), α > 0. Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 3/14

Oulines Exponenial disribuion exp(λ), λ > 0; Weiblull disribuion W eibull(λ, α), λ > 0; Lognormal disribuion logn(µ, σ 2 ), σ > 0; Gamma disribuion Gamma(λ, β), λ > 0; Log-logisic disribuion loglogi(λ, α), λ > 0; * Gomperz disribuion Gomperz(θ, α), α > 0. For each parameric model, we will discuss he disribuion properies and parameer esimaion. Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 3/14

Exponenial Disribuion S() 0.8 0.6 0.4 0.2 Survival Funcion lambda= 0.5 lambda= 1 lambda= 2 f() 2.0 1.5 0.5 Densiy Funcion lambda= 0.5 lambda= 1 lambda= 2 Hazard Funcion 2.5 2.0 lambda= 0.5 lambda= 1 lambda= 2 1.5 h() 0.5 Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 4/14

Exponenial Disribuion Properies 4-1

Parameer Esimaion in Exponenial Mo 4-2

Weilbull Disribuion Exension of exponenial disribuion: S() 0.8 0.6 0.4 0.2 Survival Funcion f() 2.0 1.5 0.5 Densiy Funcion Hazard Funcion f() 2.0 1.5 0.5 0 1.5 0.5 lambda= 0.5, alpha= 2 lambda= 0.5, alpha= 1 lambda= 0.5, alpha= 2 lambda= 1, alpha= 2 lambda= 1, alpha= 1 lambda= 1, alpha= 2 lambda= 2, alpha= 2 lambda= 2, alpha= 1 lambda= 2, alpha= 2 Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 5/14 0.2 0.4 0.6 0.8

Weilbull Disribuion Properies 5-1

Parameer Esimaion in Weilbull Model 5-2

Lognormal Disribuion Exponenial of normal disribuion: S() Survival Funcion 0.8 0.6 0.4 0.2 f() 2.0 1.5 0.5 Densiy Funcion Hazard Funcion f() 5 4 3 2 0 1.5 0.5 mu= 1, sigma= 0.1 mu= 1, sigma= 1 mu= 1, sigma= 2 mu= 0, sigma= 0.1 mu= 0, sigma= 1 mu= 0, sigma= 2 mu= 1, sigma= 0.1 mu= 1, sigma= 1 mu= 1, sigma= 2 1 0 Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 6/14 0.2 0.4 0.6 0.8

Lognormal Disribuion Properies 6-1

Parameer Esimaion in Lognormal Mod 6-2

Gamma Disribuion Survival Funcion Densiy Funcion S() 0.2 0.4 0.6 0.8 f() 0.5 1.5 2.0 Hazard Funcion f() 0 1 2 3 4 0 0.5 1.5 scale= 0.5, shape= 0.5 scale= 0.5, shape= 1 scale= 0.5, shape= 2 scale= 1, shape= 0.5 scale= 1, shape= 1 scale= 1, shape= 2 scale= 2, shape= 0.5 scale= 2, shape= 1 scale= 2, shape= 2 0.2 0.4 0.6 0.8 Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 7/14 0

Gamma Disribuion Properies 7-1

Parameer Esimaion in Gamma Model 7-2

Log-logisic Disribuion Survival Funcion Densiy Funcion 2.0 S() 0.8 0.6 0.4 0.2 f() 1.5 0.5 Hazard Funcion f() 4 3 2 1 0 1.5 0.5 mu= 1, sigma= 0.5 mu= 1, sigma= 1 mu= 1, sigma= 2 mu= 0, sigma= 0.5 mu= 0, sigma= 1 mu= 0, sigma= 2 mu= 1, sigma= 0.5 mu= 1, sigma= 1 mu= 1, sigma= 2 0 0.2 0.4 0.6 0.8 Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 8/14 0

Log-logisic Disribuion Properies 8-1

Parameer Esimaion in Logisic Model 8-2

Gomperz Disribuion Survival Funcion Densiy Funcion 2.0 S() 0.8 0.6 0.4 0.2 f() 1.5 0.5 Hazard Funcion f() 10 8 6 4 0 1.5 0.5 hea= 0.5, alpha= 0.5 hea= 0.5, alpha= 1 hea= 0.5, alpha= 2 hea= 1, alpha= 0.5 hea= 1, alpha= 1 hea= 1, alpha= 2 hea= 2, alpha= 0.5 hea= 2, alpha= 1 hea= 2, alpha= 2 2 0 0.2 0.4 0.6 0.8 Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 9/14 0

Parameric Regression Models wih Covariae Denoe X as he survival ime of ineres, Z = (Z 1,, Z p ) as he vecor of covariaes. Consider a linear model for modeling Y = log(x), namely, Y = µ + γ T Z + σw, where γ T = (γ 1,, γ p ) is a vecor of regression coefficiens and W is he error disribuion. Common choices for W : W N(0, 1) X logn(µ + γ T Z, σ 2 ); W exreme value disribuion X Weibull. W sandard logisic X log-logisic. Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 10/14

Acceleraed Failure-Time The above regression models are special cases of acceleraed failure-ime model (AFT). AFT model saes ha he survival funcion of an individual wih covariae Z could be wrien as he survival funcion of exp(µ + σw) wih scaled age xexp( γ T Z). Mahemaically we have S(x Z) = S 0 (xexp( γ T Z)), where S 0 (x) is he survival funcion of he random variable exp(µ + σw) and referred as he baseline survival funcion. When γ is negaive, he ime is acceleraed by a consan. The AFT propery is independen of error disribuion. A general AFT model relax he error disribuion assumpion and belongs semiparameric models. (The (γ) is a p-dim parameer and he disribuion of W is an infinie dimensional parameer.) Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 11/14

Proporional Hazards Model Anoher common model for survival ime assumes h(x Z) = h 0 (x) exp(β T Z), where h 0 (x) is called he baseline hazard funcion. This ype of model has consan hazard raios over ime. If he form of h 0 (x) is known, hen i is corresponding o a parameric model. For example h 0 (x) = αλ α 1, he proporional hazards model is same as Weibull model. Noe ha β = γ/σ. In fac, Weibull disribuion is he only disribuion saisfies boh proporional Hazards assumpion and AFT assumpion. If he form of h 0 (x) is unknown and need o be esimaed, hen i is a semiparameric model. This model was firs proposed by Cox (1972) and is one of he mos popular survival models currenly. Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 12/14

Proporional Odds Model Define odds() = S() assumes: 1 S(). The proporional odds model odds( Z) = odds( Z = 0) exp( β T Z), and odds( Z = 0) is called he baseline odds funcion. This ype of model has consan odds raios over ime. Similar as he proporional hazard model, if he form of odds 0 () = odds( Z = 0) is unknown, his is a semiparameric model. Log-logisic disribuion is he only disribuion saisfies boh proporional odds assumpion and AFT assumpion. The parameers of log-logisic disribuion are λ = exp(µ/σ), α = 1/σ, β i = γ i /σ. Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 13/14

Model Comparison Using Akaikie Informaion To compare nesed parameric models, we could use Wald or Likelihood raio ess. In general, o compare wo parameric models, one may use AIC defined as, AIC = 2 log (Likelihood) + 2p, where p is he oal number of parameers in he model. For example, p = 1 for he exponenial model, p = 2 for he Weibull model and p = 3 for he generalized gamma model. The smaller AIC, he beer he model is. Example 12.1 on P407. Jimin Ding, Ocober 4, 2011 Survival Analysis, Fall 2011 - p. 14/14